summaryrefslogtreecommitdiffstats
path: root/src/libnetdata/statistical/statistical.c
blob: ef9fe4e56bb74fbaa87dd82ebaf1c1ec5cd6ea75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// SPDX-License-Identifier: GPL-3.0-or-later

#include "../libnetdata.h"

NETDATA_DOUBLE default_single_exponential_smoothing_alpha = 0.1;

void log_series_to_stderr(NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE result, const char *msg) {
    const NETDATA_DOUBLE *value, *end = &series[entries];

    fprintf(stderr, "%s of %zu entries [ ", msg, entries);
    for(value = series; value < end ;value++) {
        if(value != series) fprintf(stderr, ", ");
        fprintf(stderr, "%" NETDATA_DOUBLE_MODIFIER, *value);
    }
    fprintf(stderr, " ] results in " NETDATA_DOUBLE_FORMAT "\n", result);
}

// --------------------------------------------------------------------------------------------------------------------

inline NETDATA_DOUBLE sum_and_count(const NETDATA_DOUBLE *series, size_t entries, size_t *count) {
    const NETDATA_DOUBLE *value, *end = &series[entries];
    NETDATA_DOUBLE sum = 0;
    size_t c = 0;

    for(value = series; value < end ; value++) {
        if(netdata_double_isnumber(*value)) {
            sum += *value;
            c++;
        }
    }

    if(unlikely(!c)) sum = NAN;
    if(likely(count)) *count = c;

    return sum;
}

inline NETDATA_DOUBLE sum(const NETDATA_DOUBLE *series, size_t entries) {
    return sum_and_count(series, entries, NULL);
}

inline NETDATA_DOUBLE average(const NETDATA_DOUBLE *series, size_t entries) {
    size_t count = 0;
    NETDATA_DOUBLE sum = sum_and_count(series, entries, &count);

    if(unlikely(!count)) return NAN;
    return sum / (NETDATA_DOUBLE)count;
}

// --------------------------------------------------------------------------------------------------------------------

NETDATA_DOUBLE moving_average(const NETDATA_DOUBLE *series, size_t entries, size_t period) {
    if(unlikely(period <= 0))
        return 0.0;

    size_t i, count;
    NETDATA_DOUBLE sum = 0, avg = 0;
    NETDATA_DOUBLE p[period];

    for(count = 0; count < period ; count++)
        p[count] = 0.0;

    for(i = 0, count = 0; i < entries; i++) {
        NETDATA_DOUBLE value = series[i];
        if(unlikely(!netdata_double_isnumber(value))) continue;

        if(unlikely(count < period)) {
            sum += value;
            avg = (count == period - 1) ? sum / (NETDATA_DOUBLE)period : 0;
        }
        else {
            sum = sum - p[count % period] + value;
            avg = sum / (NETDATA_DOUBLE)period;
        }

        p[count % period] = value;
        count++;
    }

    return avg;
}

// --------------------------------------------------------------------------------------------------------------------

static int qsort_compare(const void *a, const void *b) {
    NETDATA_DOUBLE *p1 = (NETDATA_DOUBLE *)a, *p2 = (NETDATA_DOUBLE *)b;
    NETDATA_DOUBLE n1 = *p1, n2 = *p2;

    if(unlikely(isnan(n1) || isnan(n2))) {
        if(isnan(n1) && !isnan(n2)) return -1;
        if(!isnan(n1) && isnan(n2)) return 1;
        return 0;
    }
    if(unlikely(isinf(n1) || isinf(n2))) {
        if(!isinf(n1) && isinf(n2)) return -1;
        if(isinf(n1) && !isinf(n2)) return 1;
        return 0;
    }

    if(unlikely(n1 < n2)) return -1;
    if(unlikely(n1 > n2)) return 1;
    return 0;
}

inline void sort_series(NETDATA_DOUBLE *series, size_t entries) {
    qsort(series, entries, sizeof(NETDATA_DOUBLE), qsort_compare);
}

inline NETDATA_DOUBLE *copy_series(const NETDATA_DOUBLE *series, size_t entries) {
    NETDATA_DOUBLE *copy = mallocz(sizeof(NETDATA_DOUBLE) * entries);
    memcpy(copy, series, sizeof(NETDATA_DOUBLE) * entries);
    return copy;
}

NETDATA_DOUBLE median_on_sorted_series(const NETDATA_DOUBLE *series, size_t entries) {
    if(unlikely(entries == 0)) return NAN;
    if(unlikely(entries == 1)) return series[0];
    if(unlikely(entries == 2)) return (series[0] + series[1]) / 2;

    NETDATA_DOUBLE average;
    if(entries % 2 == 0) {
        size_t m = entries / 2;
        average = (series[m] + series[m + 1]) / 2;
    }
    else {
        average = series[entries / 2];
    }

    return average;
}

NETDATA_DOUBLE median(const NETDATA_DOUBLE *series, size_t entries) {
    if(unlikely(entries == 0)) return NAN;
    if(unlikely(entries == 1)) return series[0];

    if(unlikely(entries == 2))
        return (series[0] + series[1]) / 2;

    NETDATA_DOUBLE *copy = copy_series(series, entries);
    sort_series(copy, entries);

    NETDATA_DOUBLE avg = median_on_sorted_series(copy, entries);

    freez(copy);
    return avg;
}

// --------------------------------------------------------------------------------------------------------------------

NETDATA_DOUBLE moving_median(const NETDATA_DOUBLE *series, size_t entries, size_t period) {
    if(entries <= period)
        return median(series, entries);

    NETDATA_DOUBLE *data = copy_series(series, entries);

    size_t i;
    for(i = period; i < entries; i++) {
        data[i - period] = median(&series[i - period], period);
    }

    NETDATA_DOUBLE avg = median(data, entries - period);
    freez(data);
    return avg;
}

// --------------------------------------------------------------------------------------------------------------------

// http://stackoverflow.com/a/15150143/4525767
NETDATA_DOUBLE running_median_estimate(const NETDATA_DOUBLE *series, size_t entries) {
    NETDATA_DOUBLE median = 0.0f;
    NETDATA_DOUBLE average = 0.0f;
    size_t i;

    for(i = 0; i < entries ; i++) {
        NETDATA_DOUBLE value = series[i];
        if(unlikely(!netdata_double_isnumber(value))) continue;

        average += ( value - average ) * 0.1f; // rough running average.
        median += copysignndd( average * 0.01, value - median );
    }

    return median;
}

// --------------------------------------------------------------------------------------------------------------------

NETDATA_DOUBLE standard_deviation(const NETDATA_DOUBLE *series, size_t entries) {
    if(unlikely(entries == 0)) return NAN;
    if(unlikely(entries == 1)) return series[0];

    const NETDATA_DOUBLE *value, *end = &series[entries];
    size_t count;
    NETDATA_DOUBLE sum;

    for(count = 0, sum = 0, value = series ; value < end ;value++) {
        if(likely(netdata_double_isnumber(*value))) {
            count++;
            sum += *value;
        }
    }

    if(unlikely(count == 0)) return NAN;
    if(unlikely(count == 1)) return sum;

    NETDATA_DOUBLE average = sum / (NETDATA_DOUBLE)count;

    for(count = 0, sum = 0, value = series ; value < end ;value++) {
        if(netdata_double_isnumber(*value)) {
            count++;
            sum += powndd(*value - average, 2);
        }
    }

    if(unlikely(count == 0)) return NAN;
    if(unlikely(count == 1)) return average;

    NETDATA_DOUBLE variance = sum / (NETDATA_DOUBLE)(count); // remove -1 from count to have a population stddev
    NETDATA_DOUBLE stddev = sqrtndd(variance);
    return stddev;
}

// --------------------------------------------------------------------------------------------------------------------

NETDATA_DOUBLE single_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) {
    if(unlikely(entries == 0))
        return NAN;

    if(unlikely(isnan(alpha)))
        alpha = default_single_exponential_smoothing_alpha;

    const NETDATA_DOUBLE *value = series, *end = &series[entries];
    NETDATA_DOUBLE level = (1.0 - alpha) * (*value);

    for(value++ ; value < end; value++) {
        if(likely(netdata_double_isnumber(*value)))
            level = alpha * (*value) + (1.0 - alpha) * level;
    }

    return level;
}

NETDATA_DOUBLE single_exponential_smoothing_reverse(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) {
    if(unlikely(entries == 0))
        return NAN;

    if(unlikely(isnan(alpha)))
        alpha = default_single_exponential_smoothing_alpha;

    const NETDATA_DOUBLE *value = &series[entries -1];
    NETDATA_DOUBLE level = (1.0 - alpha) * (*value);

    for(value++ ; value >= series; value--) {
        if(likely(netdata_double_isnumber(*value)))
            level = alpha * (*value) + (1.0 - alpha) * level;
    }

    return level;
}

// --------------------------------------------------------------------------------------------------------------------

// http://grisha.org/blog/2016/02/16/triple-exponential-smoothing-forecasting-part-ii/
NETDATA_DOUBLE double_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries,
    NETDATA_DOUBLE alpha,
    NETDATA_DOUBLE beta,
    NETDATA_DOUBLE *forecast) {
    if(unlikely(entries == 0))
        return NAN;

    NETDATA_DOUBLE level, trend;

    if(unlikely(isnan(alpha)))
        alpha = 0.3;

    if(unlikely(isnan(beta)))
        beta = 0.05;

    level = series[0];

    if(likely(entries > 1))
        trend = series[1] - series[0];
    else
        trend = 0;

    const NETDATA_DOUBLE *value = series;
    for(value++ ; value >= series; value--) {
        if(likely(netdata_double_isnumber(*value))) {
            NETDATA_DOUBLE last_level = level;
            level = alpha * *value + (1.0 - alpha) * (level + trend);
            trend = beta * (level - last_level) + (1.0 - beta) * trend;

        }
    }

    if(forecast)
        *forecast = level + trend;

    return level;
}

// --------------------------------------------------------------------------------------------------------------------

/*
 * Based on th R implementation
 *
 * a: level component
 * b: trend component
 * s: seasonal component
 *
 * Additive:
 *
 *   Yhat[t+h] = a[t] + h * b[t] + s[t + 1 + (h - 1) mod p],
 *   a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])
 *   b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
 *   s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
 *
 * Multiplicative:
 *
 *   Yhat[t+h] = (a[t] + h * b[t]) * s[t + 1 + (h - 1) mod p],
 *   a[t] = α (Y[t] / s[t-p]) + (1-α) (a[t-1] + b[t-1])
 *   b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
 *   s[t] = γ (Y[t] / a[t]) + (1-γ) s[t-p]
 */
static int __HoltWinters(
        const NETDATA_DOUBLE *series,
        int          entries,      // start_time + h

    NETDATA_DOUBLE alpha,        // alpha parameter of Holt-Winters Filter.
    NETDATA_DOUBLE
        beta,         // beta  parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing.
    NETDATA_DOUBLE
        gamma,        // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted.

        const int *seasonal,
        const int *period,
        const NETDATA_DOUBLE *a,      // Start value for level (a[0]).
        const NETDATA_DOUBLE *b,      // Start value for trend (b[0]).
    NETDATA_DOUBLE *s,            // Vector of start values for the seasonal component (s_1[0] ... s_p[0])

        /* return values */
    NETDATA_DOUBLE *SSE,          // The final sum of squared errors achieved in optimizing
    NETDATA_DOUBLE *level,        // Estimated values for the level component (size entries - t + 2)
    NETDATA_DOUBLE *trend,        // Estimated values for the trend component (size entries - t + 2)
    NETDATA_DOUBLE *season        // Estimated values for the seasonal component (size entries - t + 2)
)
{
    if(unlikely(entries < 4))
        return 0;

    int start_time = 2;

    NETDATA_DOUBLE res = 0, xhat = 0, stmp = 0;
    int i, i0, s0;

    /* copy start values to the beginning of the vectors */
    level[0] = *a;
    if(beta > 0) trend[0] = *b;
    if(gamma > 0) memcpy(season, s, *period * sizeof(NETDATA_DOUBLE));

    for(i = start_time - 1; i < entries; i++) {
        /* indices for period i */
        i0 = i - start_time + 2;
        s0 = i0 + *period - 1;

        /* forecast *for* period i */
        xhat = level[i0 - 1] + (beta > 0 ? trend[i0 - 1] : 0);
        stmp = gamma > 0 ? season[s0 - *period] : (*seasonal != 1);
        if (*seasonal == 1)
            xhat += stmp;
        else
            xhat *= stmp;

        /* Sum of Squared Errors */
        res   = series[i] - xhat;
        *SSE += res * res;

        /* estimate of level *in* period i */
        if (*seasonal == 1)
            level[i0] = alpha       * (series[i] - stmp)
                        + (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
        else
            level[i0] = alpha       * (series[i] / stmp)
                        + (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);

        /* estimate of trend *in* period i */
        if (beta > 0)
            trend[i0] = beta        * (level[i0] - level[i0 - 1])
                        + (1 - beta)  * trend[i0 - 1];

        /* estimate of seasonal component *in* period i */
        if (gamma > 0) {
            if (*seasonal == 1)
                season[s0] = gamma       * (series[i] - level[i0])
                             + (1 - gamma) * stmp;
            else
                season[s0] = gamma       * (series[i] / level[i0])
                             + (1 - gamma) * stmp;
        }
    }

    return 1;
}

NETDATA_DOUBLE holtwinters(const NETDATA_DOUBLE *series, size_t entries,
    NETDATA_DOUBLE alpha,
    NETDATA_DOUBLE beta,
    NETDATA_DOUBLE gamma,
    NETDATA_DOUBLE *forecast) {
    if(unlikely(isnan(alpha)))
        alpha = 0.3;

    if(unlikely(isnan(beta)))
        beta = 0.05;

    if(unlikely(isnan(gamma)))
        gamma = 0;

    int seasonal = 0;
    int period = 0;
    NETDATA_DOUBLE a0 = series[0];
    NETDATA_DOUBLE b0 = 0;
    NETDATA_DOUBLE s[] = {};

    NETDATA_DOUBLE errors = 0.0;
    size_t nb_computations = entries;
    NETDATA_DOUBLE *estimated_level  = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
    NETDATA_DOUBLE *estimated_trend  = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
    NETDATA_DOUBLE *estimated_season = callocz(nb_computations, sizeof(NETDATA_DOUBLE));

    int ret = __HoltWinters(
            series,
            (int)entries,
            alpha,
            beta,
            gamma,
            &seasonal,
            &period,
            &a0,
            &b0,
            s,
            &errors,
            estimated_level,
            estimated_trend,
            estimated_season
    );

    NETDATA_DOUBLE value = estimated_level[nb_computations - 1];

    if(forecast)
        *forecast = 0.0;

    freez(estimated_level);
    freez(estimated_trend);
    freez(estimated_season);

    if(!ret)
        return 0.0;

    return value;
}