1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "daemon/common.h"
#include "database/KolmogorovSmirnovDist.h"
#define MAX_POINTS 10000
int enable_metric_correlations = CONFIG_BOOLEAN_YES;
int metric_correlations_version = 1;
WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2;
typedef struct weights_stats {
NETDATA_DOUBLE max_base_high_ratio;
size_t db_points;
size_t result_points;
size_t db_queries;
size_t db_points_per_tier[RRD_STORAGE_TIERS];
size_t binary_searches;
} WEIGHTS_STATS;
// ----------------------------------------------------------------------------
// parse and render metric correlations methods
static struct {
const char *name;
WEIGHTS_METHOD value;
} weights_methods[] = {
{ "ks2" , WEIGHTS_METHOD_MC_KS2}
, { "volume" , WEIGHTS_METHOD_MC_VOLUME}
, { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE}
, { NULL , 0 }
};
WEIGHTS_METHOD weights_string_to_method(const char *method) {
for(int i = 0; weights_methods[i].name ;i++)
if(strcmp(method, weights_methods[i].name) == 0)
return weights_methods[i].value;
return default_metric_correlations_method;
}
const char *weights_method_to_string(WEIGHTS_METHOD method) {
for(int i = 0; weights_methods[i].name ;i++)
if(weights_methods[i].value == method)
return weights_methods[i].name;
return "unknown";
}
// ----------------------------------------------------------------------------
// The results per dimension are aggregated into a dictionary
typedef enum {
RESULT_IS_BASE_HIGH_RATIO = (1 << 0),
RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1),
} RESULT_FLAGS;
struct register_result {
RESULT_FLAGS flags;
RRDCONTEXT_ACQUIRED *rca;
RRDINSTANCE_ACQUIRED *ria;
RRDMETRIC_ACQUIRED *rma;
NETDATA_DOUBLE value;
};
static DICTIONARY *register_result_init() {
DICTIONARY *results = dictionary_create(DICT_OPTION_SINGLE_THREADED);
return results;
}
static void register_result_destroy(DICTIONARY *results) {
dictionary_destroy(results);
}
static void register_result(DICTIONARY *results,
RRDCONTEXT_ACQUIRED *rca,
RRDINSTANCE_ACQUIRED *ria,
RRDMETRIC_ACQUIRED *rma,
NETDATA_DOUBLE value,
RESULT_FLAGS flags,
WEIGHTS_STATS *stats,
bool register_zero) {
if(!netdata_double_isnumber(value)) return;
// make it positive
NETDATA_DOUBLE v = fabsndd(value);
// no need to store zero scored values
if(unlikely(fpclassify(v) == FP_ZERO && !register_zero))
return;
// keep track of the max of the baseline / highlight ratio
if(flags & RESULT_IS_BASE_HIGH_RATIO && v > stats->max_base_high_ratio)
stats->max_base_high_ratio = v;
struct register_result t = {
.flags = flags,
.rca = rca,
.ria = ria,
.rma = rma,
.value = v
};
// we can use the pointer address or RMA as a unique key for each metric
char buf[20 + 1];
ssize_t len = snprintfz(buf, 20, "%p", rma);
dictionary_set_advanced(results, buf, len + 1, &t, sizeof(struct register_result), NULL);
}
// ----------------------------------------------------------------------------
// Generation of JSON output for the results
static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb,
time_t after, time_t before,
time_t baseline_after, time_t baseline_before,
size_t points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions __maybe_unused, usec_t duration,
WEIGHTS_STATS *stats) {
buffer_sprintf(wb, "{\n"
"\t\"after\": %lld,\n"
"\t\"before\": %lld,\n"
"\t\"duration\": %lld,\n"
"\t\"points\": %zu,\n",
(long long)after,
(long long)before,
(long long)(before - after),
points
);
if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME)
buffer_sprintf(wb, ""
"\t\"baseline_after\": %lld,\n"
"\t\"baseline_before\": %lld,\n"
"\t\"baseline_duration\": %lld,\n"
"\t\"baseline_points\": %zu,\n",
(long long)baseline_after,
(long long)baseline_before,
(long long)(baseline_before - baseline_after),
points << shifts
);
buffer_sprintf(wb, ""
"\t\"statistics\": {\n"
"\t\t\"query_time_ms\": %f,\n"
"\t\t\"db_queries\": %zu,\n"
"\t\t\"query_result_points\": %zu,\n"
"\t\t\"binary_searches\": %zu,\n"
"\t\t\"db_points_read\": %zu,\n"
"\t\t\"db_points_per_tier\": [ ",
(double)duration / (double)USEC_PER_MS,
stats->db_queries,
stats->result_points,
stats->binary_searches,
stats->db_points
);
for(size_t tier = 0; tier < storage_tiers ;tier++)
buffer_sprintf(wb, "%s%zu", tier?", ":"", stats->db_points_per_tier[tier]);
buffer_sprintf(wb, " ]\n"
"\t},\n"
"\t\"group\": \"%s\",\n"
"\t\"method\": \"%s\",\n"
"\t\"options\": \"",
web_client_api_request_v1_data_group_to_string(group),
weights_method_to_string(method)
);
web_client_api_request_v1_data_options_to_buffer(wb, options);
}
static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb,
time_t after, time_t before,
time_t baseline_after, time_t baseline_before,
size_t points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions, usec_t duration,
WEIGHTS_STATS *stats) {
results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
points, method, group, options, shifts, examined_dimensions, duration, stats);
buffer_strcat(wb, "\",\n\t\"correlated_charts\": {\n");
size_t charts = 0, chart_dims = 0, total_dimensions = 0;
struct register_result *t;
RRDINSTANCE_ACQUIRED *last_ria = NULL; // never access this - we use it only for comparison
dfe_start_read(results, t) {
if(t->ria != last_ria) {
last_ria = t->ria;
if(charts) buffer_strcat(wb, "\n\t\t\t}\n\t\t},\n");
buffer_strcat(wb, "\t\t\"");
buffer_strcat(wb, rrdinstance_acquired_id(t->ria));
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\"context\": \"");
buffer_strcat(wb, rrdcontext_acquired_id(t->rca));
buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n");
charts++;
chart_dims = 0;
}
if (chart_dims) buffer_sprintf(wb, ",\n");
buffer_sprintf(wb, "\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value);
chart_dims++;
total_dimensions++;
}
dfe_done(t);
// close dimensions and chart
if (total_dimensions)
buffer_strcat(wb, "\n\t\t\t}\n\t\t}\n");
// close correlated_charts
buffer_sprintf(wb, "\t},\n"
"\t\"correlated_dimensions\": %zu,\n"
"\t\"total_dimensions_count\": %zu\n"
"}\n",
total_dimensions,
examined_dimensions
);
return total_dimensions;
}
static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb,
time_t after, time_t before,
time_t baseline_after, time_t baseline_before,
size_t points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions, usec_t duration,
WEIGHTS_STATS *stats) {
results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
points, method, group, options, shifts, examined_dimensions, duration, stats);
buffer_strcat(wb, "\",\n\t\"contexts\": {\n");
size_t contexts = 0, charts = 0, total_dimensions = 0, context_dims = 0, chart_dims = 0;
NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0;
struct register_result *t;
RRDCONTEXT_ACQUIRED *last_rca = NULL;
RRDINSTANCE_ACQUIRED *last_ria = NULL;
dfe_start_read(results, t) {
if(t->rca != last_rca) {
last_rca = t->rca;
if(contexts)
buffer_sprintf(wb, "\n"
"\t\t\t\t\t},\n"
"\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t\t\t}\n\t\t\t},\n"
"\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t},\n"
, charts_total_weight / (double)chart_dims
, contexts_total_weight / (double)context_dims);
buffer_strcat(wb, "\t\t\"");
buffer_strcat(wb, rrdcontext_acquired_id(t->rca));
buffer_strcat(wb, "\": {\n\t\t\t\"charts\":{\n");
contexts++;
charts = 0;
context_dims = 0;
contexts_total_weight = 0.0;
last_ria = NULL;
}
if(t->ria != last_ria) {
last_ria = t->ria;
if(charts)
buffer_sprintf(wb, "\n"
"\t\t\t\t\t},\n"
"\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t\t\t},\n"
, charts_total_weight / (double)chart_dims);
buffer_strcat(wb, "\t\t\t\t\"");
buffer_strcat(wb, rrdinstance_acquired_id(t->ria));
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\t\t\"dimensions\": {\n");
charts++;
chart_dims = 0;
charts_total_weight = 0.0;
}
if (chart_dims) buffer_sprintf(wb, ",\n");
buffer_sprintf(wb, "\t\t\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, rrdmetric_acquired_name(t->rma), t->value);
charts_total_weight += t->value;
contexts_total_weight += t->value;
chart_dims++;
context_dims++;
total_dimensions++;
}
dfe_done(t);
// close dimensions and chart
if (total_dimensions)
buffer_sprintf(wb, "\n"
"\t\t\t\t\t},\n"
"\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t\t\t}\n"
"\t\t\t},\n"
"\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n"
"\t\t}\n"
, charts_total_weight / (double)chart_dims
, contexts_total_weight / (double)context_dims);
// close correlated_charts
buffer_sprintf(wb, "\t},\n"
"\t\"weighted_dimensions\": %zu,\n"
"\t\"total_dimensions_count\": %zu\n"
"}\n",
total_dimensions,
examined_dimensions
);
return total_dimensions;
}
// ----------------------------------------------------------------------------
// KS2 algorithm functions
typedef long int DIFFS_NUMBERS;
#define DOUBLE_TO_INT_MULTIPLIER 100000
static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) {
// binary search to find the index the smallest index
// of the first value in the array that is greater than K
int right = size;
while(left < right) {
int middle = (int)(((unsigned int)(left + right)) >> 1);
if(arr[middle] > K)
right = middle;
else
left = middle + 1;
}
return left;
}
int compare_diffs(const void *left, const void *right) {
DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left;
DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right;
// https://stackoverflow.com/a/3886497/1114110
return (lt > rt) - (lt < rt);
}
static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) {
NETDATA_DOUBLE *last = &arr[size - 1];
size_t added = 0;
while(last > arr) {
NETDATA_DOUBLE second = *last--;
NETDATA_DOUBLE first = *last;
*diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER);
added++;
}
return added;
}
static double ks_2samp(
DIFFS_NUMBERS baseline_diffs[], int base_size,
DIFFS_NUMBERS highlight_diffs[], int high_size,
uint32_t base_shifts) {
qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs);
qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs);
// Now we should be calculating this:
//
// For each number in the diffs arrays, we should find the index of the
// number bigger than them in both arrays and calculate the % of this index
// vs the total array size. Once we have the 2 percentages, we should find
// the min and max across the delta of all of them.
//
// It should look like this:
//
// base_pcent = binary_search_bigger_than(...) / base_size;
// high_pcent = binary_search_bigger_than(...) / high_size;
// delta = base_pcent - high_pcent;
// if(delta < min) min = delta;
// if(delta > max) max = delta;
//
// This would require a lot of multiplications and divisions.
//
// To speed it up, we do the binary search to find the index of each number
// but, then we divide the base index by the power of two number (shifts) it
// is bigger than high index. So the 2 indexes are now comparable.
// We also keep track of the original indexes with min and max, to properly
// calculate their percentages once the loops finish.
// initialize min and max using the first number of baseline_diffs
DIFFS_NUMBERS K = baseline_diffs[0];
int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K);
int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
int delta = base_idx - (high_idx << base_shifts);
int min = delta, max = delta;
int base_min_idx = base_idx;
int base_max_idx = base_idx;
int high_min_idx = high_idx;
int high_max_idx = high_idx;
// do the baseline_diffs starting from 1 (we did position 0 above)
for(int i = 1; i < base_size; i++) {
K = baseline_diffs[i];
base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted
high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
delta = base_idx - (high_idx << base_shifts);
if(delta < min) {
min = delta;
base_min_idx = base_idx;
high_min_idx = high_idx;
}
else if(delta > max) {
max = delta;
base_max_idx = base_idx;
high_max_idx = high_idx;
}
}
// do the highlight_diffs starting from 0
for(int i = 0; i < high_size; i++) {
K = highlight_diffs[i];
base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K);
high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted
delta = base_idx - (high_idx << base_shifts);
if(delta < min) {
min = delta;
base_min_idx = base_idx;
high_min_idx = high_idx;
}
else if(delta > max) {
max = delta;
base_max_idx = base_idx;
high_max_idx = high_idx;
}
}
// now we have the min, max and their indexes
// properly calculate min and max as dmin and dmax
double dbase_size = (double)base_size;
double dhigh_size = (double)high_size;
double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size);
double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size);
dmin = -dmin;
if(islessequal(dmin, 0.0)) dmin = 0.0;
else if(isgreaterequal(dmin, 1.0)) dmin = 1.0;
double d;
if(isgreaterequal(dmin, dmax)) d = dmin;
else d = dmax;
double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size));
// under these conditions, KSfbar() crashes
if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d)))
return NAN;
return KSfbar((int)en, d);
}
static double kstwo(
NETDATA_DOUBLE baseline[], int baseline_points,
NETDATA_DOUBLE highlight[], int highlight_points,
uint32_t base_shifts) {
// -1 in size, since the calculate_pairs_diffs() returns one less point
DIFFS_NUMBERS baseline_diffs[baseline_points - 1];
DIFFS_NUMBERS highlight_diffs[highlight_points - 1];
int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points);
int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points);
if(unlikely(!base_size || !high_size))
return NAN;
if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) {
error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries");
return NAN;
}
return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts);
}
NETDATA_DOUBLE *rrd2rrdr_ks2(
ONEWAYALLOC *owa, RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
time_t after, time_t before, size_t points, RRDR_OPTIONS options,
RRDR_GROUPING group_method, const char *group_options, size_t tier,
WEIGHTS_STATS *stats,
size_t *entries
) {
NETDATA_DOUBLE *ret = NULL;
QUERY_TARGET_REQUEST qtr = {
.host = host,
.rca = rca,
.ria = ria,
.rma = rma,
.after = after,
.before = before,
.points = points,
.options = options,
.group_method = group_method,
.group_options = group_options,
.tier = tier,
.query_source = QUERY_SOURCE_API_WEIGHTS,
.priority = STORAGE_PRIORITY_NORMAL,
};
RRDR *r = rrd2rrdr(owa, query_target_create(&qtr));
if(!r)
goto cleanup;
stats->db_queries++;
stats->result_points += r->internal.result_points_generated;
stats->db_points += r->internal.db_points_read;
for(size_t tr = 0; tr < storage_tiers ; tr++)
stats->db_points_per_tier[tr] += r->internal.tier_points_read[tr];
if(r->d != 1) {
error("WEIGHTS: on query '%s' expected 1 dimension in RRDR but got %zu", r->internal.qt->id, r->d);
goto cleanup;
}
if(unlikely(r->od[0] & RRDR_DIMENSION_HIDDEN))
goto cleanup;
if(unlikely(!(r->od[0] & RRDR_DIMENSION_NONZERO)))
goto cleanup;
if(rrdr_rows(r) < 2)
goto cleanup;
*entries = rrdr_rows(r);
ret = onewayalloc_mallocz(owa, sizeof(NETDATA_DOUBLE) * rrdr_rows(r));
// copy the points of the dimension to a contiguous array
// there is no need to check for empty values, since empty values are already zero
// https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43
memcpy(ret, r->v, rrdr_rows(r) * sizeof(NETDATA_DOUBLE));
cleanup:
rrdr_free(owa, r);
return ret;
}
static void rrdset_metric_correlations_ks2(
RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
DICTIONARY *results,
time_t baseline_after, time_t baseline_before,
time_t after, time_t before,
size_t points, RRDR_OPTIONS options,
RRDR_GROUPING group_method, const char *group_options, size_t tier,
uint32_t shifts,
WEIGHTS_STATS *stats, bool register_zero
) {
options |= RRDR_OPTION_NATURAL_POINTS;
ONEWAYALLOC *owa = onewayalloc_create(16 * 1024);
size_t high_points = 0;
NETDATA_DOUBLE *highlight = rrd2rrdr_ks2(
owa, host, rca, ria, rma, after, before, points,
options, group_method, group_options, tier, stats, &high_points);
if(!highlight)
goto cleanup;
size_t base_points = 0;
NETDATA_DOUBLE *baseline = rrd2rrdr_ks2(
owa, host, rca, ria, rma, baseline_after, baseline_before, high_points << shifts,
options, group_method, group_options, tier, stats, &base_points);
if(!baseline)
goto cleanup;
stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1);
double prob = kstwo(baseline, (int)base_points, highlight, (int)high_points, shifts);
if(!isnan(prob) && !isinf(prob)) {
// these conditions should never happen, but still let's check
if(unlikely(prob < 0.0)) {
error("Metric correlations: kstwo() returned a negative number: %f", prob);
prob = -prob;
}
if(unlikely(prob > 1.0)) {
error("Metric correlations: kstwo() returned a number above 1.0: %f", prob);
prob = 1.0;
}
// to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated
// so, we flip the result of kstwo()
register_result(results, rca, ria, rma, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, stats, register_zero);
}
cleanup:
onewayalloc_destroy(owa);
}
// ----------------------------------------------------------------------------
// VOLUME algorithm functions
static void merge_query_value_to_stats(QUERY_VALUE *qv, WEIGHTS_STATS *stats) {
stats->db_queries++;
stats->result_points += qv->result_points;
stats->db_points += qv->points_read;
for(size_t tier = 0; tier < storage_tiers ; tier++)
stats->db_points_per_tier[tier] += qv->storage_points_per_tier[tier];
}
static void rrdset_metric_correlations_volume(
RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
DICTIONARY *results,
time_t baseline_after, time_t baseline_before,
time_t after, time_t before,
RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
size_t tier,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS;
QUERY_VALUE baseline_average = rrdmetric2value(host, rca, ria, rma, baseline_after, baseline_before,
options, group_method, group_options, tier, 0,
QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
merge_query_value_to_stats(&baseline_average, stats);
if(!netdata_double_isnumber(baseline_average.value)) {
// this means no data for the baseline window, but we may have data for the highlighted one - assume zero
baseline_average.value = 0.0;
}
QUERY_VALUE highlight_average = rrdmetric2value(host, rca, ria, rma, after, before,
options, group_method, group_options, tier, 0,
QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
merge_query_value_to_stats(&highlight_average, stats);
if(!netdata_double_isnumber(highlight_average.value))
return;
if(baseline_average.value == highlight_average.value) {
// they are the same - let's move on
return;
}
char highlight_countif_options[50 + 1];
snprintfz(highlight_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average.value < baseline_average.value ? "<" : ">", baseline_average.value);
QUERY_VALUE highlight_countif = rrdmetric2value(host, rca, ria, rma, after, before,
options, RRDR_GROUPING_COUNTIF, highlight_countif_options, tier, 0,
QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
merge_query_value_to_stats(&highlight_countif, stats);
if(!netdata_double_isnumber(highlight_countif.value)) {
info("WEIGHTS: highlighted countif query failed, but highlighted average worked - strange...");
return;
}
// this represents the percentage of time
// the highlighted window was above/below the baseline window
// (above or below depending on their averages)
highlight_countif.value = highlight_countif.value / 100.0; // countif returns 0 - 100.0
RESULT_FLAGS flags;
NETDATA_DOUBLE pcent = NAN;
if(isgreater(baseline_average.value, 0.0) || isless(baseline_average.value, 0.0)) {
flags = RESULT_IS_BASE_HIGH_RATIO;
pcent = (highlight_average.value - baseline_average.value) / baseline_average.value * highlight_countif.value;
}
else {
flags = RESULT_IS_PERCENTAGE_OF_TIME;
pcent = highlight_countif.value;
}
register_result(results, rca, ria, rma, pcent, flags, stats, register_zero);
}
// ----------------------------------------------------------------------------
// ANOMALY RATE algorithm functions
static void rrdset_weights_anomaly_rate(
RRDHOST *host,
RRDCONTEXT_ACQUIRED *rca, RRDINSTANCE_ACQUIRED *ria, RRDMETRIC_ACQUIRED *rma,
DICTIONARY *results,
time_t after, time_t before,
RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
size_t tier,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ANOMALY_BIT | RRDR_OPTION_NATURAL_POINTS;
QUERY_VALUE qv = rrdmetric2value(host, rca, ria, rma, after, before,
options, group_method, group_options, tier, 0,
QUERY_SOURCE_API_WEIGHTS, STORAGE_PRIORITY_NORMAL);
merge_query_value_to_stats(&qv, stats);
if(netdata_double_isnumber(qv.value))
register_result(results, rca, ria, rma, qv.value, 0, stats, register_zero);
}
// ----------------------------------------------------------------------------
int compare_netdata_doubles(const void *left, const void *right) {
NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left;
NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right;
// https://stackoverflow.com/a/3886497/1114110
return (lt > rt) - (lt < rt);
}
static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) {
// binary search to find the index the smallest index
// of the first value in the array that is greater than K
int right = size;
while(left < right) {
int middle = (int)(((unsigned int)(left + right)) >> 1);
if(arr[middle] > K)
right = middle;
else
left = middle + 1;
}
return left;
}
// ----------------------------------------------------------------------------
// spread the results evenly according to their value
static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) {
struct register_result *t;
// count the dimensions
size_t dimensions = dictionary_entries(results);
if(!dimensions) return 0;
if(stats->max_base_high_ratio == 0.0)
stats->max_base_high_ratio = 1.0;
// create an array of the right size and copy all the values in it
NETDATA_DOUBLE slots[dimensions];
dimensions = 0;
dfe_start_read(results, t) {
if(t->flags & (RESULT_IS_PERCENTAGE_OF_TIME))
t->value = t->value * stats->max_base_high_ratio;
slots[dimensions++] = t->value;
}
dfe_done(t);
// sort the array with the values of all dimensions
qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles);
// skip the duplicates in the sorted array
NETDATA_DOUBLE last_value = NAN;
size_t unique_values = 0;
for(size_t i = 0; i < dimensions ;i++) {
if(likely(slots[i] != last_value))
slots[unique_values++] = last_value = slots[i];
}
// this cannot happen, but coverity thinks otherwise...
if(!unique_values)
unique_values = dimensions;
// calculate the weight of each slot, using the number of unique values
NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values;
dfe_start_read(results, t) {
int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value);
NETDATA_DOUBLE v = slot * slot_weight;
if(unlikely(v > 1.0)) v = 1.0;
v = 1.0 - v;
t->value = v;
}
dfe_done(t);
return dimensions;
}
// ----------------------------------------------------------------------------
// The main function
int web_api_v1_weights(
RRDHOST *host, BUFFER *wb, WEIGHTS_METHOD method, WEIGHTS_FORMAT format,
RRDR_GROUPING group, const char *group_options,
time_t baseline_after, time_t baseline_before,
time_t after, time_t before,
size_t points, RRDR_OPTIONS options, SIMPLE_PATTERN *contexts, size_t tier, size_t timeout) {
WEIGHTS_STATS stats = {};
DICTIONARY *results = register_result_init();
DICTIONARY *metrics = NULL;
char *error = NULL;
int resp = HTTP_RESP_OK;
// if the user didn't give a timeout
// assume 60 seconds
if(!timeout)
timeout = 60 * MSEC_PER_SEC;
// if the timeout is less than 1 second
// make it at least 1 second
if(timeout < (long)(1 * MSEC_PER_SEC))
timeout = 1 * MSEC_PER_SEC;
usec_t timeout_usec = timeout * USEC_PER_MS;
usec_t started_usec = now_realtime_usec();
if(!rrdr_relative_window_to_absolute(&after, &before))
buffer_no_cacheable(wb);
if (before <= after) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Invalid selected time-range.";
goto cleanup;
}
uint32_t shifts = 0;
if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
if(!points) points = 500;
if(baseline_before <= API_RELATIVE_TIME_MAX)
baseline_before += after;
rrdr_relative_window_to_absolute(&baseline_after, &baseline_before);
if (baseline_before <= baseline_after) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Invalid baseline time-range.";
goto cleanup;
}
// baseline should be a power of two multiple of highlight
long long base_delta = baseline_before - baseline_after;
long long high_delta = before - after;
uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta);
// check if the multiplier is a power of two
// https://stackoverflow.com/a/600306/1114110
if((multiplier & (multiplier - 1)) != 0) {
// it is not power of two
// let's find the closest power of two
// https://stackoverflow.com/a/466242/1114110
multiplier--;
multiplier |= multiplier >> 1;
multiplier |= multiplier >> 2;
multiplier |= multiplier >> 4;
multiplier |= multiplier >> 8;
multiplier |= multiplier >> 16;
multiplier++;
}
// convert the multiplier to the number of shifts
// we need to do, to divide baseline numbers to match
// the highlight ones
while(multiplier > 1) {
shifts++;
multiplier = multiplier >> 1;
}
// if the baseline size will not comply to MAX_POINTS
// lower the window of the baseline
while(shifts && (points << shifts) > MAX_POINTS)
shifts--;
// if the baseline size still does not comply to MAX_POINTS
// lower the resolution of the highlight and the baseline
while((points << shifts) > MAX_POINTS)
points = points >> 1;
if(points < 15) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Too few points available, at least 15 are needed.";
goto cleanup;
}
// adjust the baseline to be multiplier times bigger than the highlight
baseline_after = baseline_before - (high_delta << shifts);
}
size_t examined_dimensions = 0;
bool register_zero = true;
if(options & RRDR_OPTION_NONZERO) {
register_zero = false;
options &= ~RRDR_OPTION_NONZERO;
}
metrics = rrdcontext_all_metrics_to_dict(host, contexts);
struct metric_entry *me;
// for every metric_entry in the dictionary
dfe_start_read(metrics, me) {
usec_t now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout_usec) {
error = "timed out";
resp = HTTP_RESP_GATEWAY_TIMEOUT;
goto cleanup;
}
examined_dimensions++;
switch(method) {
case WEIGHTS_METHOD_ANOMALY_RATE:
options |= RRDR_OPTION_ANOMALY_BIT;
rrdset_weights_anomaly_rate(
host,
me->rca, me->ria, me->rma,
results,
after, before,
options, group, group_options, tier,
&stats, register_zero
);
break;
case WEIGHTS_METHOD_MC_VOLUME:
rrdset_metric_correlations_volume(
host,
me->rca, me->ria, me->rma,
results,
baseline_after, baseline_before,
after, before,
options, group, group_options, tier,
&stats, register_zero
);
break;
default:
case WEIGHTS_METHOD_MC_KS2:
rrdset_metric_correlations_ks2(
host,
me->rca, me->ria, me->rma,
results,
baseline_after, baseline_before,
after, before, points,
options, group, group_options, tier, shifts,
&stats, register_zero
);
break;
}
}
dfe_done(me);
if(!register_zero)
options |= RRDR_OPTION_NONZERO;
if(!(options & RRDR_OPTION_RETURN_RAW))
spread_results_evenly(results, &stats);
usec_t ended_usec = now_realtime_usec();
// generate the json output we need
buffer_flush(wb);
size_t added_dimensions = 0;
switch(format) {
case WEIGHTS_FORMAT_CHARTS:
added_dimensions =
registered_results_to_json_charts(
results, wb,
after, before,
baseline_after, baseline_before,
points, method, group, options, shifts,
examined_dimensions,
ended_usec - started_usec, &stats);
break;
default:
case WEIGHTS_FORMAT_CONTEXTS:
added_dimensions =
registered_results_to_json_contexts(
results, wb,
after, before,
baseline_after, baseline_before,
points, method, group, options, shifts,
examined_dimensions,
ended_usec - started_usec, &stats);
break;
}
if(!added_dimensions) {
error = "no results produced.";
resp = HTTP_RESP_NOT_FOUND;
}
cleanup:
if(metrics) dictionary_destroy(metrics);
if(results) register_result_destroy(results);
if(error) {
buffer_flush(wb);
buffer_sprintf(wb, "{\"error\": \"%s\" }", error);
}
return resp;
}
// ----------------------------------------------------------------------------
// unittest
/*
Unit tests against the output of this:
https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import scipy as sp
from scipy import stats
data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ])
data2 = np.array([365, -123, 0])
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
data_all = np.concatenate([data1, data2])
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
print(data_all)
print("\ndata1", data1, cdf1)
print("\ndata2", data2, cdf2)
cddiffs = cdf1 - cdf2
print("\ncddiffs", cddiffs)
minS = np.clip(-np.min(cddiffs), 0, 1)
maxS = np.max(cddiffs)
print("\nmin", minS)
print("max", maxS)
m, n = sorted([float(n1), float(n2)], reverse=True)
en = m * n / (m + n)
d = max(minS, maxS)
prob = stats.distributions.kstwo.sf(d, np.round(en))
print("\nprob", prob)
*/
static int double_expect(double v, const char *str, const char *descr) {
char buf[100 + 1];
snprintfz(buf, 100, "%0.6f", v);
int ret = strcmp(buf, str) ? 1 : 0;
fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf);
return ret;
}
static int mc_unittest1(void) {
int bs = 3, hs = 3;
DIFFS_NUMBERS base[3] = { 1, 2, 3 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 0);
return double_expect(prob, "0.222222", "3x3");
}
static int mc_unittest2(void) {
int bs = 6, hs = 3;
DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 1);
return double_expect(prob, "0.500000", "6x3");
}
static int mc_unittest3(void) {
int bs = 12, hs = 3;
DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 2);
return double_expect(prob, "0.347222", "12x3");
}
static int mc_unittest4(void) {
int bs = 12, hs = 3;
DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 };
DIFFS_NUMBERS high[3] = { 365, -123, 0 };
double prob = ks_2samp(base, bs, high, hs, 2);
return double_expect(prob, "0.777778", "12x3");
}
int mc_unittest(void) {
int errors = 0;
errors += mc_unittest1();
errors += mc_unittest2();
errors += mc_unittest3();
errors += mc_unittest4();
return errors;
}
|