// SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include "nvme-print.h" #include "util/json.h" #include "nvme.h" #include "common.h" #define ERROR_MSG_LEN 100 #define NAME_LEN 128 #define BUF_LEN 320 #define VAL_LEN 4096 #define BYTE_TO_BIT(byte) ((byte) * 8) #define MS_TO_SEC(time) ((time) / 1000) #define MS500_TO_MS(time) ((time) * 500) #define MS500_TO_SEC(time) (MS_TO_SEC(MS500_TO_MS(time))) #define array_add_obj json_array_add_value_object #define array_add_str json_array_add_value_string #define obj_add_array json_object_add_value_array #define obj_add_int json_object_add_value_int #define obj_add_obj json_object_add_value_object #define obj_add_str json_object_add_value_string #define obj_add_uint json_object_add_value_uint #define obj_add_uint128 json_object_add_value_uint128 #define obj_add_uint64 json_object_add_value_uint64 static const uint8_t zero_uuid[16] = { 0 }; static struct print_ops json_print_ops; static struct json_object *json_r; static void json_feature_show_fields(enum nvme_features_id fid, unsigned int result, unsigned char *buf); static void d_json(unsigned char *buf, int len, int width, int group, struct json_object *array) { int i; char ascii[32 + 1] = { 0 }; assert(width < sizeof(ascii)); for (i = 0; i < len; i++) { ascii[i % width] = (buf[i] >= '!' && buf[i] <= '~') ? buf[i] : '.'; if (!((i + 1) % width)) { array_add_str(array, ascii); memset(ascii, 0, sizeof(ascii)); } } if (strlen(ascii)) { ascii[i % width + 1] = '\0'; array_add_str(array, ascii); } } static void obj_d(struct json_object *o, const char *k, unsigned char *buf, int len, int width, int group) { struct json_object *data = json_create_array(); d_json(buf, len, width, group, data); obj_add_array(o, k, data); } static void obj_add_uint_x(struct json_object *o, const char *k, __u32 v) { char str[STR_LEN]; sprintf(str, "%x", v); obj_add_str(o, k, str); } static void obj_add_uint_0x(struct json_object *o, const char *k, __u32 v) { char str[STR_LEN]; sprintf(str, "0x%x", v); obj_add_str(o, k, str); } static void obj_add_uint_0nx(struct json_object *o, const char *k, __u32 v, int width) { char str[STR_LEN]; sprintf(str, "0x%02x", v); obj_add_str(o, k, str); } static void obj_add_uint_02x(struct json_object *o, const char *k, __u32 v) { obj_add_uint_0nx(o, k, v, 2); } static void obj_add_uint_nx(struct json_object *o, const char *k, __u32 v) { char str[STR_LEN]; sprintf(str, "%#x", v); obj_add_str(o, k, str); } static void obj_add_nprix64(struct json_object *o, const char *k, uint64_t v) { char str[STR_LEN]; sprintf(str, "%#"PRIx64"", v); obj_add_str(o, k, str); } static void obj_add_prix64(struct json_object *o, const char *k, uint64_t v) { char str[STR_LEN]; sprintf(str, "%"PRIx64"", v); obj_add_str(o, k, str); } static void obj_add_int_secs(struct json_object *o, const char *k, int v) { char str[STR_LEN]; sprintf(str, "%d secs", v); obj_add_str(o, k, str); } static void obj_add_result(struct json_object *o, const char *v, ...) { va_list ap; va_start(ap, v); char *value; if (vasprintf(&value, v, ap) < 0) value = NULL; if (value) obj_add_str(o, "Result", value); else obj_add_str(o, "Result", "Could not allocate string"); va_end(ap); free(value); } static void obj_add_key(struct json_object *o, const char *k, const char *v, ...) { va_list ap; va_start(ap, v); char *value; if (vasprintf(&value, v, ap) < 0) value = NULL; if (value) obj_add_str(o, k, value); else obj_add_str(o, k, "Could not allocate string"); va_end(ap); free(value); } static struct json_object *obj_create_array_obj(struct json_object *o, const char *k) { struct json_object *array = json_create_array(); struct json_object *obj = json_create_object(); obj_add_array(o, k, array); array_add_obj(array, obj); return obj; } static struct json_object *obj_create(const char *k) { struct json_object *array; struct json_object *obj = json_create_object(); if (json_r) { array = json_create_array(); obj_add_array(json_r, k, array); array_add_obj(array, obj); } return obj; } static void json_print(struct json_object *r) { json_print_object(r, NULL); printf("\n"); json_free_object(r); } static void obj_print(struct json_object *o) { if (!json_r) json_print(o); } static bool human(void) { return json_print_ops.flags & VERBOSE; } static void json_id_iocs(struct nvme_id_iocs *iocs) { struct json_object *r = json_create_object(); char json_str[STR_LEN]; __u16 i; for (i = 0; i < ARRAY_SIZE(iocs->iocsc); i++) { if (iocs->iocsc[i]) { sprintf(json_str, "I/O Command Set Combination[%u]", i); obj_add_uint64(r, json_str, le64_to_cpu(iocs->iocsc[i])); } } json_print(r); } static void json_nvme_id_ns(struct nvme_id_ns *ns, unsigned int nsid, unsigned int lba_index, bool cap_only) { char nguid_buf[2 * sizeof(ns->nguid) + 1], eui64_buf[2 * sizeof(ns->eui64) + 1]; char *nguid = nguid_buf, *eui64 = eui64_buf; struct json_object *r = json_create_object(); struct json_object *lbafs = json_create_array(); struct json_object *vs = json_create_array(); int i; nvme_uint128_t nvmcap = le128_to_cpu(ns->nvmcap); if (!cap_only) { obj_add_uint64(r, "nsze", le64_to_cpu(ns->nsze)); obj_add_uint64(r, "ncap", le64_to_cpu(ns->ncap)); obj_add_uint64(r, "nuse", le64_to_cpu(ns->nuse)); obj_add_int(r, "nsfeat", ns->nsfeat); } obj_add_int(r, "nlbaf", ns->nlbaf); if (!cap_only) obj_add_int(r, "flbas", ns->flbas); obj_add_int(r, "mc", ns->mc); obj_add_int(r, "dpc", ns->dpc); if (!cap_only) { obj_add_int(r, "dps", ns->dps); obj_add_int(r, "nmic", ns->nmic); obj_add_int(r, "rescap", ns->rescap); obj_add_int(r, "fpi", ns->fpi); obj_add_int(r, "dlfeat", ns->dlfeat); obj_add_int(r, "nawun", le16_to_cpu(ns->nawun)); obj_add_int(r, "nawupf", le16_to_cpu(ns->nawupf)); obj_add_int(r, "nacwu", le16_to_cpu(ns->nacwu)); obj_add_int(r, "nabsn", le16_to_cpu(ns->nabsn)); obj_add_int(r, "nabo", le16_to_cpu(ns->nabo)); obj_add_int(r, "nabspf", le16_to_cpu(ns->nabspf)); obj_add_int(r, "noiob", le16_to_cpu(ns->noiob)); obj_add_uint128(r, "nvmcap", nvmcap); obj_add_int(r, "nsattr", ns->nsattr); obj_add_int(r, "nvmsetid", le16_to_cpu(ns->nvmsetid)); if (ns->nsfeat & 0x30) { obj_add_int(r, "npwg", le16_to_cpu(ns->npwg)); obj_add_int(r, "npwa", le16_to_cpu(ns->npwa)); if (ns->nsfeat & 0x10) obj_add_int(r, "npdg", le16_to_cpu(ns->npdg)); obj_add_int(r, "npda", le16_to_cpu(ns->npda)); obj_add_int(r, "nows", le16_to_cpu(ns->nows)); } obj_add_int(r, "mssrl", le16_to_cpu(ns->mssrl)); obj_add_uint(r, "mcl", le32_to_cpu(ns->mcl)); obj_add_int(r, "msrc", ns->msrc); } obj_add_int(r, "nulbaf", ns->nulbaf); if (!cap_only) { obj_add_uint(r, "anagrpid", le32_to_cpu(ns->anagrpid)); obj_add_int(r, "endgid", le16_to_cpu(ns->endgid)); memset(eui64, 0, sizeof(eui64_buf)); for (i = 0; i < sizeof(ns->eui64); i++) eui64 += sprintf(eui64, "%02x", ns->eui64[i]); memset(nguid, 0, sizeof(nguid_buf)); for (i = 0; i < sizeof(ns->nguid); i++) nguid += sprintf(nguid, "%02x", ns->nguid[i]); obj_add_str(r, "eui64", eui64_buf); obj_add_str(r, "nguid", nguid_buf); } obj_add_array(r, "lbafs", lbafs); for (i = 0; i <= ns->nlbaf; i++) { struct json_object *lbaf = json_create_object(); obj_add_int(lbaf, "ms", le16_to_cpu(ns->lbaf[i].ms)); obj_add_int(lbaf, "ds", ns->lbaf[i].ds); obj_add_int(lbaf, "rp", ns->lbaf[i].rp); array_add_obj(lbafs, lbaf); } d_json(ns->vs, strnlen((const char *)ns->vs, sizeof(ns->vs)), 16, 1, vs); obj_add_array(r, "vs", vs); json_print(r); } void json_nvme_id_ctrl(struct nvme_id_ctrl *ctrl, void (*vs)(__u8 *vs, struct json_object *r)) { struct json_object *r = json_create_object(); struct json_object *psds = json_create_array(); nvme_uint128_t tnvmcap = le128_to_cpu(ctrl->tnvmcap); nvme_uint128_t unvmcap = le128_to_cpu(ctrl->unvmcap); nvme_uint128_t megcap = le128_to_cpu(ctrl->megcap); nvme_uint128_t maxdna = le128_to_cpu(ctrl->maxdna); char sn[sizeof(ctrl->sn) + 1], mn[sizeof(ctrl->mn) + 1], fr[sizeof(ctrl->fr) + 1], subnqn[sizeof(ctrl->subnqn) + 1]; __u32 ieee = ctrl->ieee[2] << 16 | ctrl->ieee[1] << 8 | ctrl->ieee[0]; int i; snprintf(sn, sizeof(sn), "%-.*s", (int)sizeof(ctrl->sn), ctrl->sn); snprintf(mn, sizeof(mn), "%-.*s", (int)sizeof(ctrl->mn), ctrl->mn); snprintf(fr, sizeof(fr), "%-.*s", (int)sizeof(ctrl->fr), ctrl->fr); snprintf(subnqn, sizeof(subnqn), "%-.*s", (int)sizeof(ctrl->subnqn), ctrl->subnqn); obj_add_int(r, "vid", le16_to_cpu(ctrl->vid)); obj_add_int(r, "ssvid", le16_to_cpu(ctrl->ssvid)); obj_add_str(r, "sn", sn); obj_add_str(r, "mn", mn); obj_add_str(r, "fr", fr); obj_add_int(r, "rab", ctrl->rab); obj_add_int(r, "ieee", ieee); obj_add_int(r, "cmic", ctrl->cmic); obj_add_int(r, "mdts", ctrl->mdts); obj_add_int(r, "cntlid", le16_to_cpu(ctrl->cntlid)); obj_add_uint(r, "ver", le32_to_cpu(ctrl->ver)); obj_add_uint(r, "rtd3r", le32_to_cpu(ctrl->rtd3r)); obj_add_uint(r, "rtd3e", le32_to_cpu(ctrl->rtd3e)); obj_add_uint(r, "oaes", le32_to_cpu(ctrl->oaes)); obj_add_uint(r, "ctratt", le32_to_cpu(ctrl->ctratt)); obj_add_int(r, "rrls", le16_to_cpu(ctrl->rrls)); obj_add_int(r, "cntrltype", ctrl->cntrltype); obj_add_str(r, "fguid", util_uuid_to_string(ctrl->fguid)); obj_add_int(r, "crdt1", le16_to_cpu(ctrl->crdt1)); obj_add_int(r, "crdt2", le16_to_cpu(ctrl->crdt2)); obj_add_int(r, "crdt3", le16_to_cpu(ctrl->crdt3)); obj_add_int(r, "nvmsr", ctrl->nvmsr); obj_add_int(r, "vwci", ctrl->vwci); obj_add_int(r, "mec", ctrl->mec); obj_add_int(r, "oacs", le16_to_cpu(ctrl->oacs)); obj_add_int(r, "acl", ctrl->acl); obj_add_int(r, "aerl", ctrl->aerl); obj_add_int(r, "frmw", ctrl->frmw); obj_add_int(r, "lpa", ctrl->lpa); obj_add_int(r, "elpe", ctrl->elpe); obj_add_int(r, "npss", ctrl->npss); obj_add_int(r, "avscc", ctrl->avscc); obj_add_int(r, "apsta", ctrl->apsta); obj_add_int(r, "wctemp", le16_to_cpu(ctrl->wctemp)); obj_add_int(r, "cctemp", le16_to_cpu(ctrl->cctemp)); obj_add_int(r, "mtfa", le16_to_cpu(ctrl->mtfa)); obj_add_uint(r, "hmpre", le32_to_cpu(ctrl->hmpre)); obj_add_uint(r, "hmmin", le32_to_cpu(ctrl->hmmin)); obj_add_uint128(r, "tnvmcap", tnvmcap); obj_add_uint128(r, "unvmcap", unvmcap); obj_add_uint(r, "rpmbs", le32_to_cpu(ctrl->rpmbs)); obj_add_int(r, "edstt", le16_to_cpu(ctrl->edstt)); obj_add_int(r, "dsto", ctrl->dsto); obj_add_int(r, "fwug", ctrl->fwug); obj_add_int(r, "kas", le16_to_cpu(ctrl->kas)); obj_add_int(r, "hctma", le16_to_cpu(ctrl->hctma)); obj_add_int(r, "mntmt", le16_to_cpu(ctrl->mntmt)); obj_add_int(r, "mxtmt", le16_to_cpu(ctrl->mxtmt)); obj_add_uint(r, "sanicap", le32_to_cpu(ctrl->sanicap)); obj_add_uint(r, "hmminds", le32_to_cpu(ctrl->hmminds)); obj_add_int(r, "hmmaxd", le16_to_cpu(ctrl->hmmaxd)); obj_add_int(r, "nsetidmax", le16_to_cpu(ctrl->nsetidmax)); obj_add_int(r, "endgidmax", le16_to_cpu(ctrl->endgidmax)); obj_add_int(r, "anatt", ctrl->anatt); obj_add_int(r, "anacap", ctrl->anacap); obj_add_uint(r, "anagrpmax", le32_to_cpu(ctrl->anagrpmax)); obj_add_uint(r, "nanagrpid", le32_to_cpu(ctrl->nanagrpid)); obj_add_uint(r, "pels", le32_to_cpu(ctrl->pels)); obj_add_int(r, "domainid", le16_to_cpu(ctrl->domainid)); obj_add_uint128(r, "megcap", megcap); obj_add_int(r, "sqes", ctrl->sqes); obj_add_int(r, "cqes", ctrl->cqes); obj_add_int(r, "maxcmd", le16_to_cpu(ctrl->maxcmd)); obj_add_uint(r, "nn", le32_to_cpu(ctrl->nn)); obj_add_int(r, "oncs", le16_to_cpu(ctrl->oncs)); obj_add_int(r, "fuses", le16_to_cpu(ctrl->fuses)); obj_add_int(r, "fna", ctrl->fna); obj_add_int(r, "vwc", ctrl->vwc); obj_add_int(r, "awun", le16_to_cpu(ctrl->awun)); obj_add_int(r, "awupf", le16_to_cpu(ctrl->awupf)); obj_add_int(r, "icsvscc", ctrl->icsvscc); obj_add_int(r, "nwpc", ctrl->nwpc); obj_add_int(r, "acwu", le16_to_cpu(ctrl->acwu)); obj_add_int(r, "ocfs", le16_to_cpu(ctrl->ocfs)); obj_add_uint(r, "sgls", le32_to_cpu(ctrl->sgls)); obj_add_uint(r, "mnan", le32_to_cpu(ctrl->mnan)); obj_add_uint128(r, "maxdna", maxdna); obj_add_uint(r, "maxcna", le32_to_cpu(ctrl->maxcna)); obj_add_uint(r, "oaqd", le32_to_cpu(ctrl->oaqd)); if (strlen(subnqn)) obj_add_str(r, "subnqn", subnqn); obj_add_uint(r, "ioccsz", le32_to_cpu(ctrl->ioccsz)); obj_add_uint(r, "iorcsz", le32_to_cpu(ctrl->iorcsz)); obj_add_int(r, "icdoff", le16_to_cpu(ctrl->icdoff)); obj_add_int(r, "fcatt", ctrl->fcatt); obj_add_int(r, "msdbd", ctrl->msdbd); obj_add_int(r, "ofcs", le16_to_cpu(ctrl->ofcs)); obj_add_array(r, "psds", psds); for (i = 0; i <= ctrl->npss; i++) { struct json_object *psd = json_create_object(); obj_add_int(psd, "max_power", le16_to_cpu(ctrl->psd[i].mp)); obj_add_int(psd, "max_power_scale", ctrl->psd[i].flags & 0x1); obj_add_int(psd, "non-operational_state", (ctrl->psd[i].flags & 2) >> 1); obj_add_uint(psd, "entry_lat", le32_to_cpu(ctrl->psd[i].enlat)); obj_add_uint(psd, "exit_lat", le32_to_cpu(ctrl->psd[i].exlat)); obj_add_int(psd, "read_tput", ctrl->psd[i].rrt); obj_add_int(psd, "read_lat", ctrl->psd[i].rrl); obj_add_int(psd, "write_tput", ctrl->psd[i].rwt); obj_add_int(psd, "write_lat", ctrl->psd[i].rwl); obj_add_int(psd, "idle_power", le16_to_cpu(ctrl->psd[i].idlp)); obj_add_int(psd, "idle_scale", nvme_psd_power_scale(ctrl->psd[i].ips)); obj_add_int(psd, "active_power", le16_to_cpu(ctrl->psd[i].actp)); obj_add_int(psd, "active_power_work", ctrl->psd[i].apws & 7); obj_add_int(psd, "active_scale", nvme_psd_power_scale(ctrl->psd[i].apws)); array_add_obj(psds, psd); } if (vs) vs(ctrl->vs, r); json_print(r); } static void json_error_log(struct nvme_error_log_page *err_log, int entries, const char *devname) { struct json_object *r = json_create_object(); struct json_object *errors = json_create_array(); int i; obj_add_array(r, "errors", errors); for (i = 0; i < entries; i++) { struct json_object *error = json_create_object(); obj_add_uint64(error, "error_count", le64_to_cpu(err_log[i].error_count)); obj_add_int(error, "sqid", le16_to_cpu(err_log[i].sqid)); obj_add_int(error, "cmdid", le16_to_cpu(err_log[i].cmdid)); obj_add_int(error, "status_field", le16_to_cpu(err_log[i].status_field >> 0x1)); obj_add_int(error, "phase_tag", le16_to_cpu(err_log[i].status_field & 0x1)); obj_add_int(error, "parm_error_location", le16_to_cpu(err_log[i].parm_error_location)); obj_add_uint64(error, "lba", le64_to_cpu(err_log[i].lba)); obj_add_uint(error, "nsid", le32_to_cpu(err_log[i].nsid)); obj_add_int(error, "vs", err_log[i].vs); obj_add_int(error, "trtype", err_log[i].trtype); obj_add_uint64(error, "cs", le64_to_cpu(err_log[i].cs)); obj_add_int(error, "trtype_spec_info", le16_to_cpu(err_log[i].trtype_spec_info)); array_add_obj(errors, error); } json_print(r); } void json_nvme_resv_report(struct nvme_resv_status *status, int bytes, bool eds) { struct json_object *r = json_create_object(); struct json_object *rcs = json_create_array(); int i, j, entries; int regctl = status->regctl[0] | (status->regctl[1] << 8); obj_add_uint(r, "gen", le32_to_cpu(status->gen)); obj_add_int(r, "rtype", status->rtype); obj_add_int(r, "regctl", regctl); obj_add_int(r, "ptpls", status->ptpls); /* check Extended Data Structure bit */ if (!eds) { /* * if status buffer was too small, don't loop past the end of * the buffer */ entries = (bytes - 24) / 24; if (entries < regctl) regctl = entries; obj_add_array(r, "regctls", rcs); for (i = 0; i < regctl; i++) { struct json_object *rc = json_create_object(); obj_add_int(rc, "cntlid", le16_to_cpu(status->regctl_ds[i].cntlid)); obj_add_int(rc, "rcsts", status->regctl_ds[i].rcsts); obj_add_uint64(rc, "hostid", le64_to_cpu(status->regctl_ds[i].hostid)); obj_add_uint64(rc, "rkey", le64_to_cpu(status->regctl_ds[i].rkey)); array_add_obj(rcs, rc); } } else { char hostid[33]; /* if status buffer was too small, don't loop past the end of the buffer */ entries = (bytes - 64) / 64; if (entries < regctl) regctl = entries; obj_add_array(r, "regctlext", rcs); for (i = 0; i < regctl; i++) { struct json_object *rc = json_create_object(); obj_add_int(rc, "cntlid", le16_to_cpu(status->regctl_eds[i].cntlid)); obj_add_int(rc, "rcsts", status->regctl_eds[i].rcsts); obj_add_uint64(rc, "rkey", le64_to_cpu(status->regctl_eds[i].rkey)); for (j = 0; j < 16; j++) sprintf(hostid + j * 2, "%02x", status->regctl_eds[i].hostid[j]); obj_add_str(rc, "hostid", hostid); array_add_obj(rcs, rc); } } json_print(r); } void json_fw_log(struct nvme_firmware_slot *fw_log, const char *devname) { struct json_object *r = json_create_object(); struct json_object *fwsi = json_create_object(); char fmt[21]; char str[32]; int i; __le64 *frs; obj_add_int(fwsi, "Active Firmware Slot (afi)", fw_log->afi); for (i = 0; i < 7; i++) { if (fw_log->frs[i][0]) { snprintf(fmt, sizeof(fmt), "Firmware Rev Slot %d", i + 1); frs = (__le64 *)&fw_log->frs[i]; snprintf(str, sizeof(str), "%"PRIu64" (%s)", le64_to_cpu(*frs), util_fw_to_string(fw_log->frs[i])); obj_add_str(fwsi, fmt, str); } } obj_add_obj(r, devname, fwsi); json_print(r); } void json_changed_ns_list_log(struct nvme_ns_list *log, const char *devname) { struct json_object *r = json_create_object(); struct json_object *nsi = json_create_object(); char fmt[32]; char str[32]; __u32 nsid; int i; if (log->ns[0] == cpu_to_le32(0xffffffff)) return; obj_add_str(r, "Changed Namespace List Log", devname); for (i = 0; i < NVME_ID_NS_LIST_MAX; i++) { nsid = le32_to_cpu(log->ns[i]); if (nsid == 0) break; snprintf(fmt, sizeof(fmt), "[%4u]", i + 1); snprintf(str, sizeof(str), "%#x", nsid); obj_add_str(nsi, fmt, str); } obj_add_obj(r, devname, nsi); json_print(r); } static void json_endurance_log(struct nvme_endurance_group_log *endurance_group, __u16 group_id, const char *devname) { struct json_object *r = json_create_object(); nvme_uint128_t endurance_estimate = le128_to_cpu(endurance_group->endurance_estimate); nvme_uint128_t data_units_read = le128_to_cpu(endurance_group->data_units_read); nvme_uint128_t data_units_written = le128_to_cpu(endurance_group->data_units_written); nvme_uint128_t media_units_written = le128_to_cpu(endurance_group->media_units_written); nvme_uint128_t host_read_cmds = le128_to_cpu(endurance_group->host_read_cmds); nvme_uint128_t host_write_cmds = le128_to_cpu(endurance_group->host_write_cmds); nvme_uint128_t media_data_integrity_err = le128_to_cpu(endurance_group->media_data_integrity_err); nvme_uint128_t num_err_info_log_entries = le128_to_cpu(endurance_group->num_err_info_log_entries); nvme_uint128_t total_end_grp_cap = le128_to_cpu(endurance_group->total_end_grp_cap); nvme_uint128_t unalloc_end_grp_cap = le128_to_cpu(endurance_group->unalloc_end_grp_cap); obj_add_int(r, "critical_warning", endurance_group->critical_warning); obj_add_int(r, "endurance_group_features", endurance_group->endurance_group_features); obj_add_int(r, "avl_spare", endurance_group->avl_spare); obj_add_int(r, "avl_spare_threshold", endurance_group->avl_spare_threshold); obj_add_int(r, "percent_used", endurance_group->percent_used); obj_add_int(r, "domain_identifier", endurance_group->domain_identifier); obj_add_uint128(r, "endurance_estimate", endurance_estimate); obj_add_uint128(r, "data_units_read", data_units_read); obj_add_uint128(r, "data_units_written", data_units_written); obj_add_uint128(r, "media_units_written", media_units_written); obj_add_uint128(r, "host_read_cmds", host_read_cmds); obj_add_uint128(r, "host_write_cmds", host_write_cmds); obj_add_uint128(r, "media_data_integrity_err", media_data_integrity_err); obj_add_uint128(r, "num_err_info_log_entries", num_err_info_log_entries); obj_add_uint128(r, "total_end_grp_cap", total_end_grp_cap); obj_add_uint128(r, "unalloc_end_grp_cap", unalloc_end_grp_cap); json_print(r); } static void json_smart_log(struct nvme_smart_log *smart, unsigned int nsid, const char *devname) { struct json_object *r = json_create_object(); int c; char key[21]; unsigned int temperature = ((smart->temperature[1] << 8) | smart->temperature[0]); nvme_uint128_t data_units_read = le128_to_cpu(smart->data_units_read); nvme_uint128_t data_units_written = le128_to_cpu(smart->data_units_written); nvme_uint128_t host_read_commands = le128_to_cpu(smart->host_reads); nvme_uint128_t host_write_commands = le128_to_cpu(smart->host_writes); nvme_uint128_t controller_busy_time = le128_to_cpu(smart->ctrl_busy_time); nvme_uint128_t power_cycles = le128_to_cpu(smart->power_cycles); nvme_uint128_t power_on_hours = le128_to_cpu(smart->power_on_hours); nvme_uint128_t unsafe_shutdowns = le128_to_cpu(smart->unsafe_shutdowns); nvme_uint128_t media_errors = le128_to_cpu(smart->media_errors); nvme_uint128_t num_err_log_entries = le128_to_cpu(smart->num_err_log_entries); if (human()) { struct json_object *crt = json_create_object(); obj_add_int(crt, "value", smart->critical_warning); obj_add_int(crt, "available_spare", smart->critical_warning & 1); obj_add_int(crt, "temp_threshold", (smart->critical_warning & 2) >> 1); obj_add_int(crt, "reliability_degraded", (smart->critical_warning & 4) >> 2); obj_add_int(crt, "ro", (smart->critical_warning & 8) >> 3); obj_add_int(crt, "vmbu_failed", (smart->critical_warning & 0x10) >> 4); obj_add_int(crt, "pmr_ro", (smart->critical_warning & 0x20) >> 5); obj_add_obj(r, "critical_warning", crt); } else { obj_add_int(r, "critical_warning", smart->critical_warning); } obj_add_int(r, "temperature", temperature); obj_add_int(r, "avail_spare", smart->avail_spare); obj_add_int(r, "spare_thresh", smart->spare_thresh); obj_add_int(r, "percent_used", smart->percent_used); obj_add_int(r, "endurance_grp_critical_warning_summary", smart->endu_grp_crit_warn_sumry); obj_add_uint128(r, "data_units_read", data_units_read); obj_add_uint128(r, "data_units_written", data_units_written); obj_add_uint128(r, "host_read_commands", host_read_commands); obj_add_uint128(r, "host_write_commands", host_write_commands); obj_add_uint128(r, "controller_busy_time", controller_busy_time); obj_add_uint128(r, "power_cycles", power_cycles); obj_add_uint128(r, "power_on_hours", power_on_hours); obj_add_uint128(r, "unsafe_shutdowns", unsafe_shutdowns); obj_add_uint128(r, "media_errors", media_errors); obj_add_uint128(r, "num_err_log_entries", num_err_log_entries); obj_add_uint(r, "warning_temp_time", le32_to_cpu(smart->warning_temp_time)); obj_add_uint(r, "critical_comp_time", le32_to_cpu(smart->critical_comp_time)); for (c = 0; c < 8; c++) { __s32 temp = le16_to_cpu(smart->temp_sensor[c]); if (temp == 0) continue; sprintf(key, "temperature_sensor_%d", c + 1); obj_add_int(r, key, temp); } obj_add_uint(r, "thm_temp1_trans_count", le32_to_cpu(smart->thm_temp1_trans_count)); obj_add_uint(r, "thm_temp2_trans_count", le32_to_cpu(smart->thm_temp2_trans_count)); obj_add_uint(r, "thm_temp1_total_time", le32_to_cpu(smart->thm_temp1_total_time)); obj_add_uint(r, "thm_temp2_total_time", le32_to_cpu(smart->thm_temp2_total_time)); json_print(r); } static void json_ana_log(struct nvme_ana_log *ana_log, const char *devname, size_t len) { int offset = sizeof(struct nvme_ana_log); struct nvme_ana_log *hdr = ana_log; struct nvme_ana_group_desc *ana_desc; struct json_object *desc_list = json_create_array(); struct json_object *ns_list; struct json_object *desc; struct json_object *nsid; struct json_object *r = json_create_object(); size_t nsid_buf_size; void *base = ana_log; __u32 nr_nsids; int i, j; obj_add_str(r, "Asymmetric Namespace Access Log for NVMe device", devname); obj_add_uint64(r, "chgcnt", le64_to_cpu(hdr->chgcnt)); obj_add_uint(r, "ngrps", le16_to_cpu(hdr->ngrps)); for (i = 0; i < le16_to_cpu(ana_log->ngrps); i++) { desc = json_create_object(); ana_desc = base + offset; nr_nsids = le32_to_cpu(ana_desc->nnsids); nsid_buf_size = nr_nsids * sizeof(__le32); offset += sizeof(*ana_desc); obj_add_uint(desc, "grpid", le32_to_cpu(ana_desc->grpid)); obj_add_uint(desc, "nnsids", le32_to_cpu(ana_desc->nnsids)); obj_add_uint64(desc, "chgcnt", le64_to_cpu(ana_desc->chgcnt)); obj_add_str(desc, "state", nvme_ana_state_to_string(ana_desc->state)); ns_list = json_create_array(); for (j = 0; j < le32_to_cpu(ana_desc->nnsids); j++) { nsid = json_create_object(); obj_add_uint(nsid, "nsid", le32_to_cpu(ana_desc->nsids[j])); array_add_obj(ns_list, nsid); } obj_add_array(desc, "NSIDS", ns_list); offset += nsid_buf_size; array_add_obj(desc_list, desc); } obj_add_array(r, "ANA DESC LIST ", desc_list); json_print(r); } static void json_select_result(enum nvme_features_id fid, __u32 result) { struct json_object *r = json_r ? json_r : json_create_object(); char json_str[STR_LEN]; struct json_object *feature = json_create_array(); if (result & 0x1) array_add_str(feature, "saveable"); if (result & 0x2) array_add_str(feature, "per-namespace"); if (result & 0x4) array_add_str(feature, "changeable"); sprintf(json_str, "Feature: %#0*x: select", fid ? 4 : 2, fid); obj_add_array(r, json_str, feature); obj_print(r); } static void json_self_test_log(struct nvme_self_test_log *self_test, __u8 dst_entries, __u32 size, const char *devname) { struct json_object *valid_attrs; struct json_object *r = json_create_object(); struct json_object *valid = json_create_array(); int i; __u32 num_entries = min(dst_entries, NVME_LOG_ST_MAX_RESULTS); obj_add_int(r, "Current Device Self-Test Operation", self_test->current_operation); obj_add_int(r, "Current Device Self-Test Completion", self_test->completion); for (i = 0; i < num_entries; i++) { valid_attrs = json_create_object(); obj_add_int(valid_attrs, "Self test result", self_test->result[i].dsts & 0xf); if ((self_test->result[i].dsts & 0xf) == 0xf) goto add; obj_add_int(valid_attrs, "Self test code", self_test->result[i].dsts >> 4); obj_add_int(valid_attrs, "Segment number", self_test->result[i].seg); obj_add_int(valid_attrs, "Valid Diagnostic Information", self_test->result[i].vdi); obj_add_uint64(valid_attrs, "Power on hours", le64_to_cpu(self_test->result[i].poh)); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_NSID) obj_add_uint(valid_attrs, "Namespace Identifier", le32_to_cpu(self_test->result[i].nsid)); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_FLBA) obj_add_uint64(valid_attrs, "Failing LBA", le64_to_cpu(self_test->result[i].flba)); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_SCT) obj_add_int(valid_attrs, "Status Code Type", self_test->result[i].sct); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_SC) obj_add_int(valid_attrs, "Status Code", self_test->result[i].sc); obj_add_int(valid_attrs, "Vendor Specific", self_test->result[i].vs[1] << 8 | self_test->result[i].vs[0]); add: array_add_obj(valid, valid_attrs); } obj_add_array(r, "List of Valid Reports", valid); json_print(r); } static void json_registers_cap(struct nvme_bar_cap *cap, struct json_object *r) { char json_str[STR_LEN]; struct json_object *cssa = json_create_array(); struct json_object *csso = json_create_object(); struct json_object *amsa = json_create_array(); struct json_object *amso = json_create_object(); sprintf(json_str, "%"PRIx64"", *(uint64_t *)cap); obj_add_str(r, "cap", json_str); obj_add_str(r, "Controller Ready With Media Support (CRWMS)", cap->crwms ? "Supported" : "Not supported"); obj_add_str(r, "Controller Ready Independent of Media Support (CRIMS)", cap->crims ? "Supported" : "Not supported"); obj_add_str(r, "NVM Subsystem Shutdown Supported (NSSS)", cap->nsss ? "Supported" : "Not supported"); obj_add_str(r, "Controller Memory Buffer Supported (CMBS):", cap->cmbs ? "Supported" : "Not supported"); obj_add_str(r, "Persistent Memory Region Supported (PMRS)", cap->pmrs ? "Supported" : "Not supported"); sprintf(json_str, "%u bytes", 1 << (12 + cap->mpsmax)); obj_add_str(r, "Memory Page Size Maximum (MPSMAX)", json_str); sprintf(json_str, "%u bytes", 1 << (12 + cap->mpsmin)); obj_add_str(r, "Memory Page Size Minimum (MPSMIN)", json_str); obj_add_str(r, "Controller Power Scope (CPS)", !cap->cps ? "Not Reported" : cap->cps == 1 ? "Controller scope" : cap->cps == 2 ? "Domain scope" : "NVM subsystem scope"); obj_add_str(r, "Boot Partition Support (BPS)", cap->bps ? "Yes" : "No"); obj_add_array(r, "Command Sets Supported (CSS)", cssa); obj_add_str(csso, "NVM command set", cap->css & 1 ? "Supported" : "Not supported"); obj_add_str(csso, "One or more I/O Command Sets", cap->css & 0x40 ? "Supported" : "Not supported"); obj_add_str(csso, cap->css & 0x80 ? "Only Admin Command Set" : "I/O Command Set", "Supported"); array_add_obj(cssa, csso); obj_add_str(r, "NVM Subsystem Reset Supported (NSSRS)", cap->nssrs ? "Yes" : "No"); sprintf(json_str, "%u bytes", 1 << (2 + cap->dstrd)); obj_add_str(r, "Doorbell Stride (DSTRD)", json_str); sprintf(json_str, "%u ms", MS500_TO_MS(cap->to)); obj_add_str(r, "Timeout (TO)", json_str); obj_add_array(r, "Arbitration Mechanism Supported (AMS)", amsa); obj_add_str(amso, "Weighted Round Robin with Urgent Priority Class", cap->ams & 2 ? "Supported" : "Not supported"); array_add_obj(amsa, amso); obj_add_str(r, "Contiguous Queues Required (CQR)", cap->cqr ? "Yes" : "No"); obj_add_uint(r, "Maximum Queue Entries Supported (MQES)", cap->mqes + 1); } static void json_registers_version(__u32 vs, struct json_object *r) { char json_str[STR_LEN]; sprintf(json_str, "%x", vs); obj_add_str(r, "Version", json_str); sprintf(json_str, "%d.%d.%d", NVME_MAJOR(vs), NVME_MINOR(vs), NVME_TERTIARY(vs)); obj_add_str(r, "NVMe specification", json_str); } static void json_registers_intms(__u32 intms, struct json_object *r) { obj_add_uint_x(r, "intms", intms); obj_add_uint_x(r, "Interrupt Vector Mask Set (IVMS)", intms); } static void json_registers_intmc(__u32 intmc, struct json_object *r) { obj_add_uint_x(r, "intmc", intmc); obj_add_uint_x(r, "Interrupt Vector Mask Set (IVMC)", intmc); } static void json_registers_cc_ams(__u8 ams, struct json_object *r) { char json_str[STR_LEN]; switch (ams) { case NVME_CC_AMS_RR: sprintf(json_str, "Round Robin"); break; case NVME_CC_AMS_WRRU: sprintf(json_str, "Weighted Round Robin with Urgent Priority Class"); break; case NVME_CC_AMS_VS: sprintf(json_str, "Vendor Specific"); break; default: sprintf(json_str, "%s", "Reserved"); break; } obj_add_str(r, "Arbitration Mechanism Selected (AMS)", json_str); } static void json_registers_cc_shn(__u8 shn, struct json_object *r) { char json_str[STR_LEN]; switch (shn) { case NVME_CC_SHN_NONE: sprintf(json_str, "No notification; no effect"); break; case NVME_CC_SHN_NORMAL: sprintf(json_str, "Normal shutdown notification"); break; case NVME_CC_SHN_ABRUPT: sprintf(json_str, "Abrupt shutdown notification"); break; default: sprintf(json_str, "%s", "Reserved"); break; } obj_add_str(r, "Shutdown Notification (SHN)", json_str); } static void json_registers_cc(__u32 cc, struct json_object *r) { char json_str[STR_LEN]; sprintf(json_str, "%x", cc); obj_add_str(r, "cc", json_str); obj_add_str(r, "Controller Ready Independent of Media Enable (CRIME)", NVME_CC_CRIME(cc) ? "Enabled" : "Disabled"); sprintf(json_str, "%u bytes", POWER_OF_TWO(NVME_CC_IOCQES(cc))); obj_add_str(r, "I/O Completion Queue Entry Size (IOCQES): ", json_str); sprintf(json_str, "%u bytes", POWER_OF_TWO(NVME_CC_IOSQES(cc))); obj_add_str(r, "I/O Submission Queue Entry Size (IOSQES)", json_str); json_registers_cc_shn(NVME_CC_SHN(cc), r); json_registers_cc_ams(NVME_CC_AMS(cc), r); sprintf(json_str, "%u bytes", POWER_OF_TWO(12 + NVME_CC_MPS(cc))); obj_add_str(r, "Memory Page Size (MPS)", json_str); obj_add_str(r, "I/O Command Set Selected (CSS)", NVME_CC_CSS(cc) == NVME_CC_CSS_NVM ? "NVM Command Set" : NVME_CC_CSS(cc) == NVME_CC_CSS_CSI ? "All supported I/O Command Sets" : NVME_CC_CSS(cc) == NVME_CC_CSS_ADMIN ? "Admin Command Set only" : "Reserved"); obj_add_str(r, "Enable (EN)", NVME_CC_EN(cc) ? "Yes" : "No"); } static void json_registers_csts_shst(__u8 shst, struct json_object *r) { char json_str[STR_LEN]; switch (shst) { case NVME_CSTS_SHST_NORMAL: sprintf(json_str, "Normal operation (no shutdown has been requested)"); break; case NVME_CSTS_SHST_OCCUR: sprintf(json_str, "Shutdown processing occurring"); break; case NVME_CSTS_SHST_CMPLT: sprintf(json_str, "Shutdown processing complete"); break; default: sprintf(json_str, "%s", "Reserved"); break; } obj_add_str(r, "Shutdown Status (SHST)", json_str); } static void json_registers_csts(__u32 csts, struct json_object *r) { obj_add_uint_x(r, "csts", csts); obj_add_str(r, "Shutdown Type (ST)", NVME_CSTS_ST(csts) ? "Subsystem" : "Controller"); obj_add_str(r, "Processing Paused (PP)", NVME_CSTS_PP(csts) ? "Yes" : "No"); obj_add_str(r, "NVM Subsystem Reset Occurred (NSSRO)", NVME_CSTS_NSSRO(csts) ? "Yes" : "No"); json_registers_csts_shst(NVME_CSTS_SHST(csts), r); obj_add_str(r, "Controller Fatal Status (CFS)", NVME_CSTS_CFS(csts) ? "True" : "False"); obj_add_str(r, "Ready (RDY)", NVME_CSTS_RDY(csts) ? "Yes" : "No"); } static void json_registers_nssr(__u32 nssr, struct json_object *r) { obj_add_uint_x(r, "nssr", nssr); obj_add_uint(r, "NVM Subsystem Reset Control (NSSRC)", nssr); } static void json_registers_nssd(__u32 nssd, struct json_object *r) { obj_add_uint_nx(r, "NVM Subsystem Shutdown Control (NSSC)", nssd); } static void json_registers_crto(__u32 crto, struct json_object *r) { obj_add_uint_x(r, "crto", crto); obj_add_int_secs(r, "CRIMT", MS500_TO_SEC(NVME_CRTO_CRIMT(crto))); obj_add_int_secs(r, "CRWMT", MS500_TO_SEC(NVME_CRTO_CRWMT(crto))); } static void json_registers_aqa(uint32_t aqa, struct json_object *r) { obj_add_uint_x(r, "aqa", aqa); obj_add_uint(r, "Admin Completion Queue Size (ACQS)", NVME_AQA_ACQS(aqa) + 1); obj_add_uint(r, "Admin Submission Queue Size (ASQS)", NVME_AQA_ASQS(aqa) + 1); } static void json_registers_asq(uint64_t asq, struct json_object *r) { obj_add_prix64(r, "asq", asq); obj_add_prix64(r, "Admin Submission Queue Base (ASQB)", asq); } static void json_registers_acq(uint64_t acq, struct json_object *r) { obj_add_prix64(r, "acq", acq); obj_add_prix64(r, "Admin Completion Queue Base (ACQB)", acq); } static void json_registers_cmbloc(uint32_t cmbloc, bool support, struct json_object *r) { obj_add_uint_x(r, "cmbloc", cmbloc); if (!support) { obj_add_result(r, "Controller Memory Buffer feature is not supported"); return; } obj_add_uint_0x(r, "Offset (OFST) (See cmbsz.szu for granularity)", (cmbloc & 0xfffff000) >> 12); obj_add_int(r, "CMB Queue Dword Alignment (CQDA)", (cmbloc & 0x100) >> 8); obj_add_str(r, "CMB Data Metadata Mixed Memory Support (CDMMMS)", (cmbloc & 0x00000080) >> 7 ? "Not enforced" : "Enforced"); obj_add_str(r, "CMB Data Pointer and Command Independent Locations Support (CDPCILS)", (cmbloc & 0x00000040) >> 6 ? "Not enforced" : "Enforced"); obj_add_str(r, "CMB Data Pointer Mixed Locations Support (CDPMLS)", (cmbloc & 0x00000020) >> 5 ? "Not enforced" : "Enforced"); obj_add_str(r, "CMB Queue Physically Discontiguous Support (CQPDS)", (cmbloc & 0x00000010) >> 4 ? "Not enforced" : "Enforced"); obj_add_str(r, "CMB Queue Mixed Memory Support (CQMMS)", (cmbloc & 0x00000008) >> 3 ? "Not enforced" : "Enforced"); obj_add_uint_0x(r, "Base Indicator Register (BIR)", (cmbloc & 0x00000007)); } static void json_registers_cmbsz(uint32_t cmbsz, struct json_object *r) { obj_add_uint_x(r, "cmbsz", cmbsz); if (!cmbsz) { obj_add_result(r, "Controller Memory Buffer feature is not supported"); return; } obj_add_uint(r, "Size (SZ)", (cmbsz & 0xfffff000) >> 12); obj_add_str(r, "Size Units (SZU)", nvme_register_szu_to_string((cmbsz & 0xf00) >> 8)); obj_add_str(r, "Write Data Support (WDS)", cmbsz & 0x10 ? "Supported" : "Not supported"); obj_add_str(r, "Read Data Support (RDS)", cmbsz & 8 ? "Supported" : "Not supported"); obj_add_str(r, "PRP SGL List Support (LISTS)", cmbsz & 4 ? "Supported" : "Not supported"); obj_add_str(r, "Completion Queue Support (CQS)", cmbsz & 2 ? "Supported" : "Not supported"); obj_add_str(r, "Submission Queue Support (SQS)", cmbsz & 1 ? "Supported" : "Not supported"); } static void json_registers_bpinfo_brs(__u8 brs, struct json_object *r) { char json_str[STR_LEN]; switch (brs) { case 0: sprintf(json_str, "No Boot Partition read operation requested"); break; case 1: sprintf(json_str, "Boot Partition read in progress"); break; case 2: sprintf(json_str, "Boot Partition read completed successfully"); break; case 3: sprintf(json_str, "Error completing Boot Partition read"); break; default: sprintf(json_str, "%s", "Invalid"); break; } obj_add_str(r, "Boot Read Status (BRS)", json_str); } static void json_registers_bpinfo(uint32_t bpinfo, struct json_object *r) { obj_add_uint_x(r, "bpinfo", bpinfo); obj_add_uint(r, "Active Boot Partition ID (ABPID)", (bpinfo & 0x80000000) >> 31); json_registers_bpinfo_brs((bpinfo & 0x3000000) >> 24, r); obj_add_uint(r, "Boot Partition Size (BPSZ)", bpinfo & 0x7fff); } static void json_registers_bprsel(uint32_t bprsel, struct json_object *r) { obj_add_uint_x(r, "bprsel", bprsel); obj_add_uint(r, "Boot Partition Identifier (BPID)", (bprsel & 0x80000000) >> 31); obj_add_uint_x(r, "Boot Partition Read Offset (BPROF)", (bprsel & 0x3ffffc00) >> 10); obj_add_uint_x(r, "Boot Partition Read Size (BPRSZ)", bprsel & 0x3ff); } static void json_registers_bpmbl(uint64_t bpmbl, struct json_object *r) { obj_add_prix64(r, "bpmbl", bpmbl); obj_add_prix64(r, "Boot Partition Memory Buffer Base Address (BMBBA)", bpmbl); } static void json_registers_cmbmsc(uint64_t cmbmsc, struct json_object *r) { obj_add_prix64(r, "cmbmsc", cmbmsc); obj_add_prix64(r, "Controller Base Address (CBA)", (cmbmsc & 0xfffffffffffff000) >> 12); obj_add_prix64(r, "Controller Memory Space Enable (CMSE)", (cmbmsc & 2) >> 1); obj_add_str(r, "Capabilities Registers Enabled (CRE)", cmbmsc & 1 ? "Enabled" : "Not enabled"); } static void json_registers_cmbsts(uint32_t cmbsts, struct json_object *r) { obj_add_uint_x(r, "cmbsts", cmbsts); obj_add_uint_x(r, "Controller Base Address Invalid (CBAI)", cmbsts & 1); } static void json_registers_pmrcap(uint32_t pmrcap, struct json_object *r) { obj_add_uint_x(r, "pmrcap", pmrcap); obj_add_str(r, "Controller Memory Space Supported (CMSS)", NVME_PMRCAP_CMSS(pmrcap) ? "Supported" : "Not supported"); obj_add_uint_x(r, "Persistent Memory Region Timeout (PMRTO)", NVME_PMRCAP_PMRTO(pmrcap)); obj_add_uint_x(r, "Persistent Memory Region Write Barrier Mechanisms (PMRWBM)", NVME_PMRCAP_PMRWBM(pmrcap)); obj_add_str(r, "Persistent Memory Region Time Units (PMRTU)", NVME_PMRCAP_PMRTU(pmrcap) ? "minutes" : "500 milliseconds"); obj_add_uint_x(r, "Base Indicator Register (BIR)", NVME_PMRCAP_BIR(pmrcap)); obj_add_str(r, "Write Data Support (WDS)", NVME_PMRCAP_WDS(pmrcap) ? "Supported" : "Not supported"); obj_add_str(r, "Read Data Support (RDS)", NVME_PMRCAP_RDS(pmrcap) ? "Supported" : "Not supported"); } static void json_registers_pmrctl(uint32_t pmrctl, struct json_object *r) { obj_add_uint_x(r, "pmrctl", pmrctl); obj_add_str(r, "Enable (EN)", NVME_PMRCTL_EN(pmrctl) ? "Ready" : "Disabled"); } static void json_registers_pmrsts(uint32_t pmrsts, bool ready, struct json_object *r) { obj_add_uint_x(r, "pmrsts", pmrsts); obj_add_uint_x(r, "Controller Base Address Invalid (CBAI)", NVME_PMRSTS_CBAI(pmrsts)); obj_add_str(r, "Health Status (HSTS)", nvme_register_pmr_hsts_to_string(NVME_PMRSTS_HSTS(pmrsts))); obj_add_str(r, "Not Ready (NRDY)", !NVME_PMRSTS_NRDY(pmrsts) && ready ? "Ready" : "Not ready"); obj_add_uint_x(r, "Error (ERR)", NVME_PMRSTS_ERR(pmrsts)); } static void json_registers_pmrebs(uint32_t pmrebs, struct json_object *r) { obj_add_uint_x(r, "pmrebs", pmrebs); obj_add_uint_x(r, "PMR Elasticity Buffer Size Base (PMRWBZ)", NVME_PMREBS_PMRWBZ(pmrebs)); obj_add_str(r, "Read Bypass Behavior", NVME_PMREBS_RBB(pmrebs) ? "Shall" : "May"); obj_add_str(r, "PMR Elasticity Buffer Size Units (PMRSZU)", nvme_register_unit_to_string(NVME_PMREBS_PMRSZU(pmrebs))); } static void json_registers_pmrswtp(uint32_t pmrswtp, struct json_object *r) { obj_add_uint_x(r, "pmrswtp", pmrswtp); obj_add_uint_x(r, "PMR Sustained Write Throughput (PMRSWTV)", NVME_PMRSWTP_PMRSWTV(pmrswtp)); obj_add_key(r, "PMR Sustained Write Throughput Units (PMRSWTU)", "%s/second", nvme_register_unit_to_string(NVME_PMRSWTP_PMRSWTU(pmrswtp))); } static void json_registers_pmrmscl(uint32_t pmrmscl, struct json_object *r) { obj_add_uint_nx(r, "pmrmscl", pmrmscl); obj_add_uint_nx(r, "Controller Base Address (CBA)", (uint32_t)NVME_PMRMSC_CBA(pmrmscl)); obj_add_uint_nx(r, "Controller Memory Space Enable (CMSE)", NVME_PMRMSC_CMSE(pmrmscl)); } static void json_registers_pmrmscu(uint32_t pmrmscu, struct json_object *r) { obj_add_uint_nx(r, "pmrmscu", pmrmscu); obj_add_uint_nx(r, "Controller Base Address (CBA)", pmrmscu); } static void json_registers_unknown(int offset, uint64_t value64, struct json_object *r) { obj_add_uint_02x(r, "unknown property", offset); obj_add_str(r, "name", nvme_register_to_string(offset)); obj_add_prix64(r, "value", value64); } static void json_single_property_human(int offset, uint64_t value64, struct json_object *r) { uint32_t value32 = (uint32_t)value64; switch (offset) { case NVME_REG_CAP: json_registers_cap((struct nvme_bar_cap *)&value64, r); break; case NVME_REG_VS: json_registers_version(value32, r); break; case NVME_REG_CC: json_registers_cc(value32, r); break; case NVME_REG_CSTS: json_registers_csts(value32, r); break; case NVME_REG_NSSR: json_registers_nssr(value32, r); break; case NVME_REG_NSSD: json_registers_nssd(value32, r); break; case NVME_REG_CRTO: json_registers_crto(value32, r); break; default: json_registers_unknown(offset, value64, r); break; } } static void json_single_property(int offset, uint64_t value64) { struct json_object *r = json_create_object(); char json_str[STR_LEN]; uint32_t value32 = (uint32_t)value64; if (human()) { json_single_property_human(offset, value64, r); } else { sprintf(json_str, "0x%02x", offset); obj_add_str(r, "property", json_str); obj_add_str(r, "name", nvme_register_to_string(offset)); if (nvme_is_64bit_reg(offset)) sprintf(json_str, "%"PRIx64"", value64); else sprintf(json_str, "%x", value32); obj_add_str(r, "value", json_str); } json_print(r); } struct json_object *json_effects_log(enum nvme_csi csi, struct nvme_cmd_effects_log *effects_log) { struct json_object *r = json_create_object(); struct json_object *acs = json_create_object(); struct json_object *iocs = json_create_object(); unsigned int opcode; char key[128]; __u32 effect; obj_add_uint(r, "command_set_identifier", csi); for (opcode = 0; opcode < 256; opcode++) { effect = le32_to_cpu(effects_log->acs[opcode]); if (effect & NVME_CMD_EFFECTS_CSUPP) { sprintf(key, "ACS_%u (%s)", opcode, nvme_cmd_to_string(1, opcode)); obj_add_uint(acs, key, effect); } } obj_add_obj(r, "admin_cmd_set", acs); for (opcode = 0; opcode < 256; opcode++) { effect = le32_to_cpu(effects_log->iocs[opcode]); if (effect & NVME_CMD_EFFECTS_CSUPP) { sprintf(key, "IOCS_%u (%s)", opcode, nvme_cmd_to_string(0, opcode)); obj_add_uint(iocs, key, effect); } } obj_add_obj(r, "io_cmd_set", iocs); return r; } static void json_effects_log_list(struct list_head *list) { struct json_object *r = json_create_array(); nvme_effects_log_node_t *node = NULL; list_for_each(list, node, node) { struct json_object *json_page = json_effects_log(node->csi, &node->effects); array_add_obj(r, json_page); } json_print(r); } static void json_sanitize_log(struct nvme_sanitize_log_page *sanitize_log, const char *devname) { struct json_object *r = json_create_object(); struct json_object *dev = json_create_object(); struct json_object *sstat = json_create_object(); const char *status_str; char str[128]; __u16 status = le16_to_cpu(sanitize_log->sstat); obj_add_int(dev, "sprog", le16_to_cpu(sanitize_log->sprog)); obj_add_int(sstat, "global_erased", (status & NVME_SANITIZE_SSTAT_GLOBAL_DATA_ERASED) >> 8); obj_add_int(sstat, "no_cmplted_passes", (status >> NVME_SANITIZE_SSTAT_COMPLETED_PASSES_SHIFT) & NVME_SANITIZE_SSTAT_COMPLETED_PASSES_MASK); status_str = nvme_sstat_status_to_string(status); sprintf(str, "(%d) %s", status & NVME_SANITIZE_SSTAT_STATUS_MASK, status_str); obj_add_str(sstat, "status", str); obj_add_obj(dev, "sstat", sstat); obj_add_uint(dev, "cdw10_info", le32_to_cpu(sanitize_log->scdw10)); obj_add_uint(dev, "time_over_write", le32_to_cpu(sanitize_log->eto)); obj_add_uint(dev, "time_block_erase", le32_to_cpu(sanitize_log->etbe)); obj_add_uint(dev, "time_crypto_erase", le32_to_cpu(sanitize_log->etce)); obj_add_uint(dev, "time_over_write_no_dealloc", le32_to_cpu(sanitize_log->etond)); obj_add_uint(dev, "time_block_erase_no_dealloc", le32_to_cpu(sanitize_log->etbend)); obj_add_uint(dev, "time_crypto_erase_no_dealloc", le32_to_cpu(sanitize_log->etcend)); obj_add_obj(r, devname, dev); json_print(r); } static void json_predictable_latency_per_nvmset( struct nvme_nvmset_predictable_lat_log *plpns_log, __u16 nvmset_id, const char *devname) { struct json_object *r = json_create_object(); obj_add_uint(r, "nvmset_id", le16_to_cpu(nvmset_id)); obj_add_uint(r, "status", plpns_log->status); obj_add_uint(r, "event_type", le16_to_cpu(plpns_log->event_type)); obj_add_uint64(r, "dtwin_reads_typical", le64_to_cpu(plpns_log->dtwin_rt)); obj_add_uint64(r, "dtwin_writes_typical", le64_to_cpu(plpns_log->dtwin_wt)); obj_add_uint64(r, "dtwin_time_maximum", le64_to_cpu(plpns_log->dtwin_tmax)); obj_add_uint64(r, "ndwin_time_minimum_high", le64_to_cpu(plpns_log->ndwin_tmin_hi)); obj_add_uint64(r, "ndwin_time_minimum_low", le64_to_cpu(plpns_log->ndwin_tmin_lo)); obj_add_uint64(r, "dtwin_reads_estimate", le64_to_cpu(plpns_log->dtwin_re)); obj_add_uint64(r, "dtwin_writes_estimate", le64_to_cpu(plpns_log->dtwin_we)); obj_add_uint64(r, "dtwin_time_estimate", le64_to_cpu(plpns_log->dtwin_te)); json_print(r); } static void json_predictable_latency_event_agg_log( struct nvme_aggregate_predictable_lat_event *pea_log, __u64 log_entries, __u32 size, const char *devname) { struct json_object *r = json_create_object(); struct json_object *valid_attrs; struct json_object *valid = json_create_array(); __u64 num_entries = le64_to_cpu(pea_log->num_entries); __u64 num_iter = min(num_entries, log_entries); obj_add_uint64(r, "num_entries_avail", num_entries); for (int i = 0; i < num_iter; i++) { valid_attrs = json_create_object(); obj_add_uint(valid_attrs, "entry", le16_to_cpu(pea_log->entries[i])); array_add_obj(valid, valid_attrs); } obj_add_array(r, "list_of_entries", valid); json_print(r); } static void json_add_bitmap(int i, __u8 seb, struct json_object *r) { char evt_str[50]; char key[128]; for (int bit = 0; bit < CHAR_BIT; bit++) { if (nvme_pel_event_to_string(bit + i * CHAR_BIT)) { sprintf(key, "bitmap_%x", (bit + i * CHAR_BIT)); if ((seb >> bit) & 0x1) snprintf(evt_str, sizeof(evt_str), "Support %s", nvme_pel_event_to_string(bit + i * CHAR_BIT)); obj_add_str(r, key, evt_str); } } } static void json_pevent_log_head(struct nvme_persistent_event_log *pevent_log_head, struct json_object *r) { int i; char sn[sizeof(pevent_log_head->sn) + 1]; char mn[sizeof(pevent_log_head->mn) + 1]; char subnqn[sizeof(pevent_log_head->subnqn) + 1]; snprintf(sn, sizeof(sn), "%-.*s", (int)sizeof(pevent_log_head->sn), pevent_log_head->sn); snprintf(mn, sizeof(mn), "%-.*s", (int)sizeof(pevent_log_head->mn), pevent_log_head->mn); snprintf(subnqn, sizeof(subnqn), "%-.*s", (int)sizeof(pevent_log_head->subnqn), pevent_log_head->subnqn); obj_add_uint(r, "log_id", pevent_log_head->lid); obj_add_uint(r, "total_num_of_events", le32_to_cpu(pevent_log_head->tnev)); obj_add_uint64(r, "total_log_len", le64_to_cpu(pevent_log_head->tll)); obj_add_uint(r, "log_revision", pevent_log_head->rv); obj_add_uint(r, "log_header_len", le16_to_cpu(pevent_log_head->lhl)); obj_add_uint64(r, "timestamp", le64_to_cpu(pevent_log_head->ts)); obj_add_uint128(r, "power_on_hours", le128_to_cpu(pevent_log_head->poh)); obj_add_uint64(r, "power_cycle_count", le64_to_cpu(pevent_log_head->pcc)); obj_add_uint(r, "pci_vid", le16_to_cpu(pevent_log_head->vid)); obj_add_uint(r, "pci_ssvid", le16_to_cpu(pevent_log_head->ssvid)); obj_add_str(r, "sn", sn); obj_add_str(r, "mn", mn); obj_add_str(r, "subnqn", subnqn); obj_add_uint(r, "gen_number", le16_to_cpu(pevent_log_head->gen_number)); obj_add_uint(r, "rci", le32_to_cpu(pevent_log_head->rci)); for (i = 0; i < ARRAY_SIZE(pevent_log_head->seb); i++) { if (!pevent_log_head->seb[i]) continue; json_add_bitmap(i, pevent_log_head->seb[i], r); } } static void json_pel_smart_health(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { char key[128]; struct nvme_smart_log *smart_event = pevent_log_info + offset; unsigned int temperature = (smart_event->temperature[1] << 8) | smart_event->temperature[0]; nvme_uint128_t data_units_read = le128_to_cpu(smart_event->data_units_read); nvme_uint128_t data_units_written = le128_to_cpu(smart_event->data_units_written); nvme_uint128_t host_read_commands = le128_to_cpu(smart_event->host_reads); nvme_uint128_t host_write_commands = le128_to_cpu(smart_event->host_writes); nvme_uint128_t controller_busy_time = le128_to_cpu(smart_event->ctrl_busy_time); nvme_uint128_t power_cycles = le128_to_cpu(smart_event->power_cycles); nvme_uint128_t power_on_hours = le128_to_cpu(smart_event->power_on_hours); nvme_uint128_t unsafe_shutdowns = le128_to_cpu(smart_event->unsafe_shutdowns); nvme_uint128_t media_errors = le128_to_cpu(smart_event->media_errors); nvme_uint128_t num_err_log_entries = le128_to_cpu(smart_event->num_err_log_entries); int c; __s32 temp; obj_add_int(valid_attrs, "critical_warning", smart_event->critical_warning); obj_add_int(valid_attrs, "temperature", temperature); obj_add_int(valid_attrs, "avail_spare", smart_event->avail_spare); obj_add_int(valid_attrs, "spare_thresh", smart_event->spare_thresh); obj_add_int(valid_attrs, "percent_used", smart_event->percent_used); obj_add_int(valid_attrs, "endurance_grp_critical_warning_summary", smart_event->endu_grp_crit_warn_sumry); obj_add_uint128(valid_attrs, "data_units_read", data_units_read); obj_add_uint128(valid_attrs, "data_units_written", data_units_written); obj_add_uint128(valid_attrs, "host_read_commands", host_read_commands); obj_add_uint128(valid_attrs, "host_write_commands", host_write_commands); obj_add_uint128(valid_attrs, "controller_busy_time", controller_busy_time); obj_add_uint128(valid_attrs, "power_cycles", power_cycles); obj_add_uint128(valid_attrs, "power_on_hours", power_on_hours); obj_add_uint128(valid_attrs, "unsafe_shutdowns", unsafe_shutdowns); obj_add_uint128(valid_attrs, "media_errors", media_errors); obj_add_uint128(valid_attrs, "num_err_log_entries", num_err_log_entries); obj_add_uint(valid_attrs, "warning_temp_time", le32_to_cpu(smart_event->warning_temp_time)); obj_add_uint(valid_attrs, "critical_comp_time", le32_to_cpu(smart_event->critical_comp_time)); for (c = 0; c < 8; c++) { temp = le16_to_cpu(smart_event->temp_sensor[c]); if (!temp) continue; sprintf(key, "temperature_sensor_%d", c + 1); obj_add_int(valid_attrs, key, temp); } obj_add_uint(valid_attrs, "thm_temp1_trans_count", le32_to_cpu(smart_event->thm_temp1_trans_count)); obj_add_uint(valid_attrs, "thm_temp2_trans_count", le32_to_cpu(smart_event->thm_temp2_trans_count)); obj_add_uint(valid_attrs, "thm_temp1_total_time", le32_to_cpu(smart_event->thm_temp1_total_time)); obj_add_uint(valid_attrs, "thm_temp2_total_time", le32_to_cpu(smart_event->thm_temp2_total_time)); } static void json_pel_fw_commit(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { char fw_str[50]; struct nvme_fw_commit_event *fw_commit_event = pevent_log_info + offset; snprintf(fw_str, sizeof(fw_str), "%"PRIu64" (%s)", le64_to_cpu(fw_commit_event->old_fw_rev), util_fw_to_string((char *)&fw_commit_event->old_fw_rev)); obj_add_str(valid_attrs, "old_fw_rev", fw_str); snprintf(fw_str, sizeof(fw_str), "%"PRIu64" (%s)", le64_to_cpu(fw_commit_event->new_fw_rev), util_fw_to_string((char *)&fw_commit_event->new_fw_rev)); obj_add_str(valid_attrs, "new_fw_rev", fw_str); obj_add_uint(valid_attrs, "fw_commit_action", fw_commit_event->fw_commit_action); obj_add_uint(valid_attrs, "fw_slot", fw_commit_event->fw_slot); obj_add_uint(valid_attrs, "sct_fw", fw_commit_event->sct_fw); obj_add_uint(valid_attrs, "sc_fw", fw_commit_event->sc_fw); obj_add_uint(valid_attrs, "vu_assign_fw_commit_rc", le16_to_cpu(fw_commit_event->vndr_assign_fw_commit_rc)); } static void json_pel_timestamp(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_time_stamp_change_event *ts_change_event = pevent_log_info + offset; obj_add_uint64(valid_attrs, "prev_ts", le64_to_cpu(ts_change_event->previous_timestamp)); obj_add_uint64(valid_attrs, "ml_secs_since_reset", le64_to_cpu(ts_change_event->ml_secs_since_reset)); } static void json_pel_power_on_reset(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs, __le16 vsil, __le16 el) { __u64 *fw_rev; char fw_str[50]; struct nvme_power_on_reset_info_list *por_event; __u32 por_info_len = le16_to_cpu(el) - le16_to_cpu(vsil) - sizeof(*fw_rev); __u32 por_info_list = por_info_len / sizeof(*por_event); int i; fw_rev = pevent_log_info + offset; snprintf(fw_str, sizeof(fw_str), "%"PRIu64" (%s)", le64_to_cpu(*fw_rev), util_fw_to_string((char *)fw_rev)); obj_add_str(valid_attrs, "fw_rev", fw_str); for (i = 0; i < por_info_list; i++) { por_event = pevent_log_info + offset + sizeof(*fw_rev) + i * sizeof(*por_event); obj_add_uint(valid_attrs, "ctrl_id", le16_to_cpu(por_event->cid)); obj_add_uint(valid_attrs, "fw_act", por_event->fw_act); obj_add_uint(valid_attrs, "op_in_prog", por_event->op_in_prog); obj_add_uint(valid_attrs, "ctrl_power_cycle", le32_to_cpu(por_event->ctrl_power_cycle)); obj_add_uint64(valid_attrs, "power_on_ml_secs", le64_to_cpu(por_event->power_on_ml_seconds)); obj_add_uint64(valid_attrs, "ctrl_time_stamp", le64_to_cpu(por_event->ctrl_time_stamp)); } } static void json_pel_nss_hw_error(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_nss_hw_err_event *nss_hw_err_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "nss_hw_err_code", le16_to_cpu(nss_hw_err_event->nss_hw_err_event_code)); } static void json_pel_change_ns(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_change_ns_event *ns_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "nsmgt_cdw10", le32_to_cpu(ns_event->nsmgt_cdw10)); obj_add_uint64(valid_attrs, "nsze", le64_to_cpu(ns_event->nsze)); obj_add_uint64(valid_attrs, "nscap", le64_to_cpu(ns_event->nscap)); obj_add_uint(valid_attrs, "flbas", ns_event->flbas); obj_add_uint(valid_attrs, "dps", ns_event->dps); obj_add_uint(valid_attrs, "nmic", ns_event->nmic); obj_add_uint(valid_attrs, "ana_grp_id", le32_to_cpu(ns_event->ana_grp_id)); obj_add_uint(valid_attrs, "nvmset_id", le16_to_cpu(ns_event->nvmset_id)); obj_add_uint(valid_attrs, "nsid", le32_to_cpu(ns_event->nsid)); } static void json_pel_format_start(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_format_nvm_start_event *format_start_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "nsid", le32_to_cpu(format_start_event->nsid)); obj_add_uint(valid_attrs, "fna", format_start_event->fna); obj_add_uint(valid_attrs, "format_nvm_cdw10", le32_to_cpu(format_start_event->format_nvm_cdw10)); } static void json_pel_format_completion(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_format_nvm_compln_event *format_cmpln_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "nsid", le32_to_cpu(format_cmpln_event->nsid)); obj_add_uint(valid_attrs, "smallest_fpi", format_cmpln_event->smallest_fpi); obj_add_uint(valid_attrs, "format_nvm_status", format_cmpln_event->format_nvm_status); obj_add_uint(valid_attrs, "compln_info", le16_to_cpu(format_cmpln_event->compln_info)); obj_add_uint(valid_attrs, "status_field", le32_to_cpu(format_cmpln_event->status_field)); } static void json_pel_sanitize_start(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_sanitize_start_event *sanitize_start_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "SANICAP", le32_to_cpu(sanitize_start_event->sani_cap)); obj_add_uint(valid_attrs, "sani_cdw10", le32_to_cpu(sanitize_start_event->sani_cdw10)); obj_add_uint(valid_attrs, "sani_cdw11", le32_to_cpu(sanitize_start_event->sani_cdw11)); } static void json_pel_sanitize_completion(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_sanitize_compln_event *sanitize_cmpln_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "sani_prog", le16_to_cpu(sanitize_cmpln_event->sani_prog)); obj_add_uint(valid_attrs, "sani_status", le16_to_cpu(sanitize_cmpln_event->sani_status)); obj_add_uint(valid_attrs, "cmpln_info", le16_to_cpu(sanitize_cmpln_event->cmpln_info)); } static void json_pel_set_feature(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_set_feature_event *set_feat_event = pevent_log_info + offset; int fid = NVME_GET(le32_to_cpu(set_feat_event->cdw_mem[0]), FEATURES_CDW10_FID); int cdw11 = le32_to_cpu(set_feat_event->cdw_mem[1]); int dword_cnt = NVME_SET_FEAT_EVENT_DW_COUNT(set_feat_event->layout); unsigned char *mem_buf; obj_add_uint_02x(valid_attrs, "feature", fid); obj_add_str(valid_attrs, "name", nvme_feature_to_string(fid)); obj_add_uint_0nx(valid_attrs, "value", cdw11, 8); if (NVME_SET_FEAT_EVENT_MB_COUNT(set_feat_event->layout)) { mem_buf = (unsigned char *)(set_feat_event + 4 + dword_cnt * 4); json_feature_show_fields(fid, cdw11, mem_buf); } } static void json_pel_telemetry_crt(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { obj_d(valid_attrs, "create", pevent_log_info + offset, 512, 16, 1); } static void json_pel_thermal_excursion(void *pevent_log_info, __u32 offset, struct json_object *valid_attrs) { struct nvme_thermal_exc_event *thermal_exc_event = pevent_log_info + offset; obj_add_uint(valid_attrs, "over_temp", thermal_exc_event->over_temp); obj_add_uint(valid_attrs, "threshold", thermal_exc_event->threshold); } static void json_pevent_entry(void *pevent_log_info, __u8 action, __u32 size, const char *devname, __u32 offset, struct json_object *valid) { int i; struct nvme_persistent_event_log *pevent_log_head = pevent_log_info; struct nvme_persistent_event_entry *pevent_entry_head; struct json_object *valid_attrs; for (i = 0; i < le32_to_cpu(pevent_log_head->tnev); i++) { if (offset + sizeof(*pevent_entry_head) >= size) break; pevent_entry_head = pevent_log_info + offset; if (offset + pevent_entry_head->ehl + 3 + le16_to_cpu(pevent_entry_head->el) >= size) break; valid_attrs = json_create_object(); obj_add_uint(valid_attrs, "event_number", i); obj_add_str(valid_attrs, "event_type", nvme_pel_event_to_string(pevent_entry_head->etype)); obj_add_uint(valid_attrs, "event_type_rev", pevent_entry_head->etype_rev); obj_add_uint(valid_attrs, "event_header_len", pevent_entry_head->ehl); obj_add_uint(valid_attrs, "event_header_additional_info", pevent_entry_head->ehai); obj_add_uint(valid_attrs, "ctrl_id", le16_to_cpu(pevent_entry_head->cntlid)); obj_add_uint64(valid_attrs, "event_time_stamp", le64_to_cpu(pevent_entry_head->ets)); obj_add_uint(valid_attrs, "port_id", le16_to_cpu(pevent_entry_head->pelpid)); obj_add_uint(valid_attrs, "vu_info_len", le16_to_cpu(pevent_entry_head->vsil)); obj_add_uint(valid_attrs, "event_len", le16_to_cpu(pevent_entry_head->el)); offset += pevent_entry_head->ehl + 3; switch (pevent_entry_head->etype) { case NVME_PEL_SMART_HEALTH_EVENT: json_pel_smart_health(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_FW_COMMIT_EVENT: json_pel_fw_commit(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_TIMESTAMP_EVENT: json_pel_timestamp(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_POWER_ON_RESET_EVENT: json_pel_power_on_reset(pevent_log_info, offset, valid_attrs, pevent_entry_head->el, pevent_entry_head->vsil); break; case NVME_PEL_NSS_HW_ERROR_EVENT: json_pel_nss_hw_error(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_CHANGE_NS_EVENT: json_pel_change_ns(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_FORMAT_START_EVENT: json_pel_format_start(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_FORMAT_COMPLETION_EVENT: json_pel_format_completion(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_SANITIZE_START_EVENT: json_pel_sanitize_start(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_SANITIZE_COMPLETION_EVENT: json_pel_sanitize_completion(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_SET_FEATURE_EVENT: json_pel_set_feature(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_TELEMETRY_CRT: json_pel_telemetry_crt(pevent_log_info, offset, valid_attrs); break; case NVME_PEL_THERMAL_EXCURSION_EVENT: json_pel_thermal_excursion(pevent_log_info, offset, valid_attrs); break; default: break; } array_add_obj(valid, valid_attrs); offset += le16_to_cpu(pevent_entry_head->el); } } static void json_persistent_event_log(void *pevent_log_info, __u8 action, __u32 size, const char *devname) { struct json_object *r = json_create_object(); struct json_object *valid = json_create_array(); __u32 offset = sizeof(struct nvme_persistent_event_log); if (size >= offset) { json_pevent_log_head(pevent_log_info, r); json_pevent_entry(pevent_log_info, action, size, devname, offset, valid); obj_add_array(r, "list_of_event_entries", valid); } else { obj_add_result(r, "No log data can be shown with this log len at least " \ "512 bytes is required or can be 0 to read the complete "\ "log page after context established"); } json_print(r); } static void json_endurance_group_event_agg_log( struct nvme_aggregate_predictable_lat_event *endurance_log, __u64 log_entries, __u32 size, const char *devname) { struct json_object *r = json_create_object(); struct json_object *valid_attrs; struct json_object *valid = json_create_array(); obj_add_uint64(r, "num_entries_avail", le64_to_cpu(endurance_log->num_entries)); for (int i = 0; i < log_entries; i++) { valid_attrs = json_create_object(); obj_add_uint(valid_attrs, "entry", le16_to_cpu(endurance_log->entries[i])); array_add_obj(valid, valid_attrs); } obj_add_array(r, "list_of_entries", valid); json_print(r); } static void json_lba_status(struct nvme_lba_status *list, unsigned long len) { struct json_object *r = json_create_object(); int idx; struct nvme_lba_status_desc *e; struct json_object *lsde; char json_str[STR_LEN]; obj_add_uint(r, "Number of LBA Status Descriptors (NLSD)", le32_to_cpu(list->nlsd)); obj_add_uint(r, "Completion Condition (CMPC)", list->cmpc); switch (list->cmpc) { case 1: obj_add_str(r, "cmpc-definition", "Completed due to transferring the amount of data specified in the MNDW field"); break; case 2: obj_add_str(r, "cmpc-definition", "Completed due to having performed the action specified in the Action Type field over the number of logical blocks specified in the Range Length field"); break; default: break; } for (idx = 0; idx < list->nlsd; idx++) { lsde = json_create_array(); sprintf(json_str, "LSD entry %d", idx); obj_add_array(r, json_str, lsde); e = &list->descs[idx]; sprintf(json_str, "0x%016"PRIx64"", le64_to_cpu(e->dslba)); obj_add_str(lsde, "DSLBA", json_str); sprintf(json_str, "0x%08x", le32_to_cpu(e->nlb)); obj_add_str(lsde, "NLB", json_str); sprintf(json_str, "0x%02x", e->status); obj_add_str(lsde, "status", json_str); } json_print(r); } static void json_lba_status_log(void *lba_status, __u32 size, const char *devname) { struct json_object *r = json_create_object(); struct json_object *desc; struct json_object *element; struct json_object *desc_list; struct json_object *elements_list = json_create_array(); struct nvme_lba_status_log *hdr = lba_status; struct nvme_lbas_ns_element *ns_element; struct nvme_lba_rd *range_desc; int offset = sizeof(*hdr); __u32 num_lba_desc; __u32 num_elements = le32_to_cpu(hdr->nlslne); int ele; int i; obj_add_uint(r, "lslplen", le32_to_cpu(hdr->lslplen)); obj_add_uint(r, "nlslne", num_elements); obj_add_uint(r, "estulb", le32_to_cpu(hdr->estulb)); obj_add_uint(r, "lsgc", le16_to_cpu(hdr->lsgc)); for (ele = 0; ele < num_elements; ele++) { ns_element = lba_status + offset; element = json_create_object(); obj_add_uint(element, "neid", le32_to_cpu(ns_element->neid)); num_lba_desc = le32_to_cpu(ns_element->nlrd); obj_add_uint(element, "nlrd", num_lba_desc); obj_add_uint(element, "ratype", ns_element->ratype); offset += sizeof(*ns_element); desc_list = json_create_array(); if (num_lba_desc != 0xffffffff) { for (i = 0; i < num_lba_desc; i++) { range_desc = lba_status + offset; desc = json_create_object(); obj_add_uint64(desc, "rslba", le64_to_cpu(range_desc->rslba)); obj_add_uint(desc, "rnlb", le32_to_cpu(range_desc->rnlb)); offset += sizeof(*range_desc); array_add_obj(desc_list, desc); } } else { obj_add_result(r, "Number of LBA Range Descriptors (NLRD) set to %#x for NS element %d", num_lba_desc, ele); } obj_add_array(element, "descs", desc_list); array_add_obj(elements_list, element); } obj_add_array(r, "ns_elements", elements_list); json_print(r); } static void json_resv_notif_log(struct nvme_resv_notification_log *resv, const char *devname) { struct json_object *r = json_create_object(); obj_add_uint64(r, "count", le64_to_cpu(resv->lpc)); obj_add_uint(r, "rn_log_type", resv->rnlpt); obj_add_uint(r, "num_logs", resv->nalp); obj_add_uint(r, "NSID", le32_to_cpu(resv->nsid)); json_print(r); } static void json_fid_support_effects_log( struct nvme_fid_supported_effects_log *fid_log, const char *devname) { struct json_object *r = json_create_object(); struct json_object *fids; struct json_object *fids_list = json_create_array(); unsigned int fid; char key[128]; __u32 fid_support; for (fid = 0; fid < NVME_LOG_FID_SUPPORTED_EFFECTS_MAX; fid++) { fid_support = le32_to_cpu(fid_log->fid_support[fid]); if (fid_support & NVME_FID_SUPPORTED_EFFECTS_FSUPP) { fids = json_create_object(); sprintf(key, "fid_%u", fid); obj_add_uint(fids, key, fid_support); array_add_obj(fids_list, fids); } } obj_add_obj(r, "fid_support", fids_list); json_print(r); } static void json_mi_cmd_support_effects_log( struct nvme_mi_cmd_supported_effects_log *mi_cmd_log, const char *devname) { struct json_object *r = json_create_object(); struct json_object *mi_cmds; struct json_object *mi_cmds_list = json_create_array(); unsigned int mi_cmd; char key[128]; __u32 mi_cmd_support; for (mi_cmd = 0; mi_cmd < NVME_LOG_MI_CMD_SUPPORTED_EFFECTS_MAX; mi_cmd++) { mi_cmd_support = le32_to_cpu(mi_cmd_log->mi_cmd_support[mi_cmd]); if (mi_cmd_support & NVME_MI_CMD_SUPPORTED_EFFECTS_CSUPP) { mi_cmds = json_create_object(); sprintf(key, "mi_cmd_%u", mi_cmd); obj_add_uint(mi_cmds, key, mi_cmd_support); array_add_obj(mi_cmds_list, mi_cmds); } } obj_add_obj(r, "mi_command_support", mi_cmds_list); json_print(r); } static void json_boot_part_log(void *bp_log, const char *devname, __u32 size) { struct nvme_boot_partition *hdr = bp_log; struct json_object *r = json_create_object(); obj_add_uint(r, "count", hdr->lid); obj_add_uint(r, "abpid", NVME_BOOT_PARTITION_INFO_ABPID(le32_to_cpu(hdr->bpinfo))); obj_add_uint(r, "bpsz", NVME_BOOT_PARTITION_INFO_BPSZ(le32_to_cpu(hdr->bpinfo))); json_print(r); } /* Printable Eye string is allocated and returned, caller must free */ static char *json_eom_printable_eye(struct nvme_eom_lane_desc *lane, struct json_object *r) { char *eye = (char *)lane->eye_desc; char *printable = malloc(lane->nrows * lane->ncols + lane->ncols); char *printable_start = printable; int i, j; if (!printable) goto exit; for (i = 0; i < lane->nrows; i++) { for (j = 0; j < lane->ncols; j++, printable++) sprintf(printable, "%c", eye[i * lane->ncols + j]); sprintf(printable++, "\n"); } obj_add_str(r, "printable_eye", printable_start); exit: return printable_start; } static void json_phy_rx_eom_descs(struct nvme_phy_rx_eom_log *log, struct json_object *r, char **allocated_eyes) { void *p = log->descs; uint16_t num_descs = le16_to_cpu(log->nd); int i; struct json_object *descs = json_create_array(); obj_add_array(r, "descs", descs); for (i = 0; i < num_descs; i++) { struct nvme_eom_lane_desc *desc = p; struct json_object *jdesc = json_create_object(); obj_add_uint(jdesc, "lid", desc->mstatus); obj_add_uint(jdesc, "lane", desc->lane); obj_add_uint(jdesc, "eye", desc->eye); obj_add_uint(jdesc, "top", le16_to_cpu(desc->top)); obj_add_uint(jdesc, "bottom", le16_to_cpu(desc->bottom)); obj_add_uint(jdesc, "left", le16_to_cpu(desc->left)); obj_add_uint(jdesc, "right", le16_to_cpu(desc->right)); obj_add_uint(jdesc, "nrows", le16_to_cpu(desc->nrows)); obj_add_uint(jdesc, "ncols", le16_to_cpu(desc->ncols)); obj_add_uint(jdesc, "edlen", le16_to_cpu(desc->edlen)); if (NVME_EOM_ODP_PEFP(log->odp)) allocated_eyes[i] = json_eom_printable_eye(desc, r); /* Eye Data field is vendor specific, doesn't map to JSON */ array_add_obj(descs, jdesc); p += log->dsize; } } static void json_phy_rx_eom_log(struct nvme_phy_rx_eom_log *log, __u16 controller) { char **allocated_eyes = NULL; int i; struct json_object *r = json_create_object(); obj_add_uint(r, "lid", log->lid); obj_add_uint(r, "eomip", log->eomip); obj_add_uint(r, "hsize", le16_to_cpu(log->hsize)); obj_add_uint(r, "rsize", le32_to_cpu(log->rsize)); obj_add_uint(r, "eomdgn", log->eomdgn); obj_add_uint(r, "lr", log->lr); obj_add_uint(r, "lanes", log->lanes); obj_add_uint(r, "epl", log->epl); obj_add_uint(r, "lspfc", log->lspfc); obj_add_uint(r, "li", log->li); obj_add_uint(r, "lsic", le16_to_cpu(log->lsic)); obj_add_uint(r, "dsize", le32_to_cpu(log->dsize)); obj_add_uint(r, "nd", le16_to_cpu(log->nd)); obj_add_uint(r, "maxtb", le16_to_cpu(log->maxtb)); obj_add_uint(r, "maxlr", le16_to_cpu(log->maxlr)); obj_add_uint(r, "etgood", le16_to_cpu(log->etgood)); obj_add_uint(r, "etbetter", le16_to_cpu(log->etbetter)); obj_add_uint(r, "etbest", le16_to_cpu(log->etbest)); if (log->eomip == NVME_PHY_RX_EOM_COMPLETED) { /* Save Printable Eye strings allocated to free later */ allocated_eyes = malloc(log->nd * sizeof(char *)); if (allocated_eyes) json_phy_rx_eom_descs(log, r, allocated_eyes); } if (allocated_eyes) { for (i = 0; i < log->nd; i++) { /* Free any Printable Eye strings allocated */ if (allocated_eyes[i]) free(allocated_eyes[i]); } free(allocated_eyes); } json_print(r); } static void json_media_unit_stat_log(struct nvme_media_unit_stat_log *mus) { struct json_object *r = json_create_object(); struct json_object *entries = json_create_array(); struct json_object *entry; int i; obj_add_uint(r, "nmu", le16_to_cpu(mus->nmu)); obj_add_uint(r, "cchans", le16_to_cpu(mus->cchans)); obj_add_uint(r, "sel_config", le16_to_cpu(mus->sel_config)); for (i = 0; i < mus->nmu; i++) { entry = json_create_object(); obj_add_uint(entry, "muid", le16_to_cpu(mus->mus_desc[i].muid)); obj_add_uint(entry, "domainid", le16_to_cpu(mus->mus_desc[i].domainid)); obj_add_uint(entry, "endgid", le16_to_cpu(mus->mus_desc[i].endgid)); obj_add_uint(entry, "nvmsetid", le16_to_cpu(mus->mus_desc[i].nvmsetid)); obj_add_uint(entry, "cap_adj_fctr", le16_to_cpu(mus->mus_desc[i].cap_adj_fctr)); obj_add_uint(entry, "avl_spare", mus->mus_desc[i].avl_spare); obj_add_uint(entry, "percent_used", mus->mus_desc[i].percent_used); obj_add_uint(entry, "mucs", mus->mus_desc[i].mucs); obj_add_uint(entry, "cio", mus->mus_desc[i].cio); array_add_obj(entries, entry); } obj_add_array(r, "mus_list", entries); json_print(r); } static void json_supported_cap_config_log( struct nvme_supported_cap_config_list_log *cap_log) { struct json_object *r = json_create_object(); struct json_object *cap_list = json_create_array(); struct json_object *capacity; struct json_object *end_list; struct json_object *set_list; struct json_object *set; struct json_object *chan_list; struct json_object *channel; struct json_object *media_list; struct json_object *media; struct json_object *endurance; struct nvme_end_grp_chan_desc *chan_desc; int i, j, k, l, m, egcn, egsets, egchans, chmus; int sccn = cap_log->sccn; obj_add_uint(r, "sccn", cap_log->sccn); for (i = 0; i < sccn; i++) { capacity = json_create_object(); obj_add_uint(capacity, "cap_config_id", le16_to_cpu(cap_log->cap_config_desc[i].cap_config_id)); obj_add_uint(capacity, "domainid", le16_to_cpu(cap_log->cap_config_desc[i].domainid)); obj_add_uint(capacity, "egcn", le16_to_cpu(cap_log->cap_config_desc[i].egcn)); end_list = json_create_array(); egcn = le16_to_cpu(cap_log->cap_config_desc[i].egcn); for (j = 0; j < egcn; j++) { endurance = json_create_object(); obj_add_uint(endurance, "endgid", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].endgid)); obj_add_uint(endurance, "cap_adj_factor", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].cap_adj_factor)); obj_add_uint128(endurance, "tegcap", le128_to_cpu(cap_log->cap_config_desc[i].egcd[j].tegcap)); obj_add_uint128(endurance, "segcap", le128_to_cpu(cap_log->cap_config_desc[i].egcd[j].segcap)); obj_add_uint(endurance, "egsets", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].egsets)); egsets = le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].egsets); set_list = json_create_array(); for (k = 0; k < egsets; k++) { set = json_create_object(); obj_add_uint(set, "nvmsetid", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].nvmsetid[k])); array_add_obj(set_list, set); } chan_desc = (struct nvme_end_grp_chan_desc *) &cap_log->cap_config_desc[i].egcd[j].nvmsetid[egsets]; egchans = le16_to_cpu(chan_desc->egchans); obj_add_uint(endurance, "egchans", le16_to_cpu(chan_desc->egchans)); chan_list = json_create_array(); for (l = 0; l < egchans; l++) { channel = json_create_object(); obj_add_uint(channel, "chanid", le16_to_cpu(chan_desc->chan_config_desc[l].chanid)); obj_add_uint(channel, "chmus", le16_to_cpu(chan_desc->chan_config_desc[l].chmus)); chmus = le16_to_cpu(chan_desc->chan_config_desc[l].chmus); media_list = json_create_array(); for (m = 0; m < chmus; m++) { media = json_create_object(); obj_add_uint(media, "chanid", le16_to_cpu(chan_desc->chan_config_desc[l].mu_config_desc[m].muid)); obj_add_uint(media, "chmus", le16_to_cpu(chan_desc->chan_config_desc[l].mu_config_desc[m].mudl)); array_add_obj(media_list, media); } obj_add_array(channel, "Media Descriptor", media_list); array_add_obj(chan_list, channel); } obj_add_array(endurance, "Channel Descriptor", chan_list); obj_add_array(endurance, "NVM Set IDs", set_list); array_add_obj(end_list, endurance); } obj_add_array(capacity, "Endurance Descriptor", end_list); array_add_obj(cap_list, capacity); } obj_add_array(r, "Capacity Descriptor", cap_list); json_print(r); } static void json_nvme_fdp_configs(struct nvme_fdp_config_log *log, size_t len) { struct json_object *r, *obj_configs; uint16_t n; void *p = log->configs; r = json_create_object(); obj_configs = json_create_array(); n = le16_to_cpu(log->n); obj_add_uint(r, "n", n); for (int i = 0; i < n + 1; i++) { struct nvme_fdp_config_desc *config = p; struct json_object *obj_config = json_create_object(); struct json_object *obj_ruhs = json_create_array(); obj_add_uint(obj_config, "fdpa", config->fdpa); obj_add_uint(obj_config, "vss", config->vss); obj_add_uint(obj_config, "nrg", le32_to_cpu(config->nrg)); obj_add_uint(obj_config, "nruh", le16_to_cpu(config->nruh)); obj_add_uint(obj_config, "nnss", le32_to_cpu(config->nnss)); obj_add_uint64(obj_config, "runs", le64_to_cpu(config->runs)); obj_add_uint(obj_config, "erutl", le32_to_cpu(config->erutl)); for (int j = 0; j < le16_to_cpu(config->nruh); j++) { struct nvme_fdp_ruh_desc *ruh = &config->ruhs[j]; struct json_object *obj_ruh = json_create_object(); obj_add_uint(obj_ruh, "ruht", ruh->ruht); array_add_obj(obj_ruhs, obj_ruh); } array_add_obj(obj_configs, obj_config); p += config->size; } obj_add_array(r, "configs", obj_configs); json_print(r); } static void json_nvme_fdp_usage(struct nvme_fdp_ruhu_log *log, size_t len) { struct json_object *r, *obj_ruhus; uint16_t nruh; r = json_create_object(); obj_ruhus = json_create_array(); nruh = le16_to_cpu(log->nruh); obj_add_uint(r, "nruh", nruh); for (int i = 0; i < nruh; i++) { struct nvme_fdp_ruhu_desc *ruhu = &log->ruhus[i]; struct json_object *obj_ruhu = json_create_object(); obj_add_uint(obj_ruhu, "ruha", ruhu->ruha); array_add_obj(obj_ruhus, obj_ruhu); } obj_add_array(r, "ruhus", obj_ruhus); json_print(r); } static void json_nvme_fdp_stats(struct nvme_fdp_stats_log *log) { struct json_object *r = json_create_object(); obj_add_uint128(r, "hbmw", le128_to_cpu(log->hbmw)); obj_add_uint128(r, "mbmw", le128_to_cpu(log->mbmw)); obj_add_uint128(r, "mbe", le128_to_cpu(log->mbe)); json_print(r); } static void json_nvme_fdp_events(struct nvme_fdp_events_log *log) { struct json_object *r, *obj_events; uint32_t n; r = json_create_object(); obj_events = json_create_array(); n = le32_to_cpu(log->n); obj_add_uint(r, "n", n); for (unsigned int i = 0; i < n; i++) { struct nvme_fdp_event *event = &log->events[i]; struct json_object *obj_event = json_create_object(); obj_add_uint(obj_event, "type", event->type); obj_add_uint(obj_event, "fdpef", event->flags); obj_add_uint(obj_event, "pid", le16_to_cpu(event->pid)); obj_add_uint64(obj_event, "timestamp", le64_to_cpu(*(uint64_t *)&event->ts)); obj_add_uint(obj_event, "nsid", le32_to_cpu(event->nsid)); if (event->type == NVME_FDP_EVENT_REALLOC) { struct nvme_fdp_event_realloc *mr; mr = (struct nvme_fdp_event_realloc *)&event->type_specific; obj_add_uint(obj_event, "nlbam", le16_to_cpu(mr->nlbam)); if (mr->flags & NVME_FDP_EVENT_REALLOC_F_LBAV) obj_add_uint64(obj_event, "lba", le64_to_cpu(mr->lba)); } array_add_obj(obj_events, obj_event); } obj_add_array(r, "events", obj_events); json_print(r); } static void json_nvme_fdp_ruh_status(struct nvme_fdp_ruh_status *status, size_t len) { struct json_object *r, *obj_ruhss; uint16_t nruhsd; r = json_create_object(); obj_ruhss = json_create_array(); nruhsd = le16_to_cpu(status->nruhsd); obj_add_uint(r, "nruhsd", nruhsd); for (unsigned int i = 0; i < nruhsd; i++) { struct nvme_fdp_ruh_status_desc *ruhs = &status->ruhss[i]; struct json_object *obj_ruhs = json_create_object(); obj_add_uint(obj_ruhs, "pid", le16_to_cpu(ruhs->pid)); obj_add_uint(obj_ruhs, "ruhid", le16_to_cpu(ruhs->ruhid)); obj_add_uint(obj_ruhs, "earutr", le32_to_cpu(ruhs->earutr)); obj_add_uint64(obj_ruhs, "ruamw", le64_to_cpu(ruhs->ruamw)); array_add_obj(obj_ruhss, obj_ruhs); } obj_add_array(r, "ruhss", obj_ruhss); json_print(r); } static unsigned int json_print_nvme_subsystem_multipath(nvme_subsystem_t s, json_object *paths) { nvme_ns_t n; nvme_path_t p; unsigned int i = 0; n = nvme_subsystem_first_ns(s); if (!n) return 0; nvme_namespace_for_each_path(n, p) { struct json_object *path_attrs; nvme_ctrl_t c = nvme_path_get_ctrl(p); path_attrs = json_create_object(); obj_add_str(path_attrs, "Name", nvme_ctrl_get_name(c)); obj_add_str(path_attrs, "Transport", nvme_ctrl_get_transport(c)); obj_add_str(path_attrs, "Address", nvme_ctrl_get_address(c)); obj_add_str(path_attrs, "State", nvme_ctrl_get_state(c)); obj_add_str(path_attrs, "ANAState", nvme_path_get_ana_state(p)); array_add_obj(paths, path_attrs); i++; } return i; } static void json_print_nvme_subsystem_ctrls(nvme_subsystem_t s, json_object *paths) { nvme_ctrl_t c; nvme_subsystem_for_each_ctrl(s, c) { struct json_object *path_attrs; path_attrs = json_create_object(); obj_add_str(path_attrs, "Name", nvme_ctrl_get_name(c)); obj_add_str(path_attrs, "Transport", nvme_ctrl_get_transport(c)); obj_add_str(path_attrs, "Address", nvme_ctrl_get_address(c)); obj_add_str(path_attrs, "State", nvme_ctrl_get_state(c)); array_add_obj(paths, path_attrs); } } static void json_print_nvme_subsystem_list(nvme_root_t r, bool show_ana) { struct json_object *host_attrs, *subsystem_attrs; struct json_object *subsystems, *paths; struct json_object *a = json_create_array(); nvme_host_t h; nvme_for_each_host(r, h) { nvme_subsystem_t s; const char *hostid; host_attrs = json_create_object(); obj_add_str(host_attrs, "HostNQN", nvme_host_get_hostnqn(h)); hostid = nvme_host_get_hostid(h); if (hostid) obj_add_str(host_attrs, "HostID", hostid); subsystems = json_create_array(); nvme_for_each_subsystem(h, s) { subsystem_attrs = json_create_object(); obj_add_str(subsystem_attrs, "Name", nvme_subsystem_get_name(s)); obj_add_str(subsystem_attrs, "NQN", nvme_subsystem_get_nqn(s)); obj_add_str(subsystem_attrs, "IOPolicy", nvme_subsystem_get_iopolicy(s)); array_add_obj(subsystems, subsystem_attrs); paths = json_create_array(); if (!show_ana || !json_print_nvme_subsystem_multipath(s, paths)) json_print_nvme_subsystem_ctrls(s, paths); obj_add_array(subsystem_attrs, "Paths", paths); } obj_add_array(host_attrs, "Subsystems", subsystems); array_add_obj(a, host_attrs); } json_print(a); } static void json_ctrl_registers_cap(void *bar, struct json_object *r) { uint64_t cap = mmio_read64(bar + NVME_REG_CAP); if (human()) json_registers_cap((struct nvme_bar_cap *)&cap, obj_create_array_obj(r, "cap")); else obj_add_uint64(r, "cap", cap); } static void json_ctrl_registers_vs(void *bar, struct json_object *r) { uint32_t vs = mmio_read32(bar + NVME_REG_VS); if (human()) json_registers_version(vs, obj_create_array_obj(r, "vs")); else obj_add_int(r, "vs", vs); } static void json_ctrl_registers_intms(void *bar, struct json_object *r) { uint32_t intms = mmio_read32(bar + NVME_REG_INTMS); if (human()) json_registers_intms(intms, obj_create_array_obj(r, "intms")); else obj_add_int(r, "intms", intms); } static void json_ctrl_registers_intmc(void *bar, struct json_object *r) { uint32_t intmc = mmio_read32(bar + NVME_REG_INTMC); if (human()) json_registers_intmc(intmc, obj_create_array_obj(r, "intmc")); else obj_add_int(r, "intmc", intmc); } static void json_ctrl_registers_cc(void *bar, struct json_object *r) { uint32_t cc = mmio_read32(bar + NVME_REG_CC); if (human()) json_registers_cc(cc, obj_create_array_obj(r, "cc")); else obj_add_int(r, "cc", cc); } static void json_ctrl_registers_csts(void *bar, struct json_object *r) { uint32_t csts = mmio_read32(bar + NVME_REG_CSTS); if (human()) json_registers_csts(csts, obj_create_array_obj(r, "csts")); else obj_add_int(r, "csts", csts); } static void json_ctrl_registers_nssr(void *bar, struct json_object *r) { uint32_t nssr = mmio_read32(bar + NVME_REG_NSSR); if (human()) json_registers_nssr(nssr, obj_create_array_obj(r, "nssr")); else obj_add_int(r, "nssr", nssr); } static void json_ctrl_registers_nssd(void *bar, struct json_object *r) { uint32_t nssd = mmio_read32(bar + NVME_REG_NSSD); if (human()) json_registers_nssd(nssd, obj_create_array_obj(r, "nssd")); else obj_add_int(r, "nssd", nssd); } static void json_ctrl_registers_crto(void *bar, struct json_object *r) { uint32_t crto = mmio_read32(bar + NVME_REG_CRTO); if (human()) json_registers_crto(crto, obj_create_array_obj(r, "crto")); else obj_add_int(r, "crto", crto); } static void json_ctrl_registers_aqa(void *bar, struct json_object *r) { uint32_t aqa = mmio_read32(bar + NVME_REG_AQA); if (human()) json_registers_aqa(aqa, obj_create_array_obj(r, "aqa")); else obj_add_int(r, "aqa", aqa); } static void json_ctrl_registers_asq(void *bar, struct json_object *r) { uint64_t asq = mmio_read64(bar + NVME_REG_ASQ); if (human()) json_registers_asq(asq, obj_create_array_obj(r, "asq")); else obj_add_uint64(r, "asq", asq); } static void json_ctrl_registers_acq(void *bar, struct json_object *r) { uint64_t acq = mmio_read64(bar + NVME_REG_ACQ); if (human()) json_registers_acq(acq, obj_create_array_obj(r, "acq")); else obj_add_uint64(r, "acq", acq); } static void json_ctrl_registers_cmbloc(void *bar, struct json_object *r) { uint32_t cmbloc = mmio_read32(bar + NVME_REG_CMBLOC); uint32_t cmbsz; bool support; if (human()) { cmbsz = mmio_read32(bar + NVME_REG_CMBSZ); support = nvme_registers_cmbloc_support(cmbsz); json_registers_cmbloc(cmbloc, support, obj_create_array_obj(r, "cmbloc")); } else { obj_add_int(r, "cmbloc", cmbloc); } } static void json_ctrl_registers_cmbsz(void *bar, struct json_object *r) { uint32_t cmbsz = mmio_read32(bar + NVME_REG_CMBSZ); if (human()) json_registers_cmbsz(cmbsz, obj_create_array_obj(r, "cmbsz")); else obj_add_int(r, "cmbsz", cmbsz); } static void json_ctrl_registers_bpinfo(void *bar, struct json_object *r) { uint32_t bpinfo = mmio_read32(bar + NVME_REG_BPINFO); if (human()) json_registers_bpinfo(bpinfo, obj_create_array_obj(r, "bpinfo")); else obj_add_int(r, "bpinfo", bpinfo); } static void json_ctrl_registers_bprsel(void *bar, struct json_object *r) { uint32_t bprsel = mmio_read32(bar + NVME_REG_BPRSEL); if (human()) json_registers_bprsel(bprsel, obj_create_array_obj(r, "bprsel")); else obj_add_int(r, "bprsel", bprsel); } static void json_ctrl_registers_bpmbl(void *bar, struct json_object *r) { uint64_t bpmbl = mmio_read64(bar + NVME_REG_BPMBL); if (human()) json_registers_bpmbl(bpmbl, obj_create_array_obj(r, "bpmbl")); else obj_add_uint64(r, "bpmbl", bpmbl); } static void json_ctrl_registers_cmbmsc(void *bar, struct json_object *r) { uint64_t cmbmsc = mmio_read64(bar + NVME_REG_CMBMSC); if (human()) json_registers_cmbmsc(cmbmsc, obj_create_array_obj(r, "cmbmsc")); else obj_add_uint64(r, "cmbmsc", cmbmsc); } static void json_ctrl_registers_cmbsts(void *bar, struct json_object *r) { uint32_t cmbsts = mmio_read32(bar + NVME_REG_CMBSTS); if (human()) json_registers_cmbsts(cmbsts, obj_create_array_obj(r, "cmbsts")); else obj_add_int(r, "cmbsts", cmbsts); } static void json_ctrl_registers_pmrcap(void *bar, struct json_object *r) { uint32_t pmrcap = mmio_read32(bar + NVME_REG_PMRCAP); if (human()) json_registers_pmrcap(pmrcap, obj_create_array_obj(r, "pmrcap")); else obj_add_int(r, "pmrcap", pmrcap); } static void json_ctrl_registers_pmrctl(void *bar, struct json_object *r) { uint32_t pmrctl = mmio_read32(bar + NVME_REG_PMRCTL); if (human()) json_registers_pmrctl(pmrctl, obj_create_array_obj(r, "pmrctl")); else obj_add_int(r, "pmrctl", pmrctl); } static void json_ctrl_registers_pmrsts(void *bar, struct json_object *r) { uint32_t pmrsts = mmio_read32(bar + NVME_REG_PMRSTS); uint32_t pmrctl; bool ready; if (human()) { pmrctl = mmio_read32(bar + NVME_REG_PMRCTL); ready = nvme_registers_pmrctl_ready(pmrctl); json_registers_pmrsts(pmrsts, ready, obj_create_array_obj(r, "pmrsts")); } else { obj_add_int(r, "pmrsts", pmrsts); } } static void json_ctrl_registers_pmrebs(void *bar, struct json_object *r) { uint32_t pmrebs = mmio_read32(bar + NVME_REG_PMREBS); if (human()) json_registers_pmrebs(pmrebs, obj_create_array_obj(r, "pmrebs")); else obj_add_int(r, "pmrebs", pmrebs); } static void json_ctrl_registers_pmrswtp(void *bar, struct json_object *r) { uint32_t pmrswtp = mmio_read32(bar + NVME_REG_PMRSWTP); if (human()) json_registers_pmrswtp(pmrswtp, obj_create_array_obj(r, "pmrswtp")); else obj_add_int(r, "pmrswtp", pmrswtp); } static void json_ctrl_registers_pmrmscl(void *bar, struct json_object *r) { uint32_t pmrmscl = mmio_read32(bar + NVME_REG_PMRMSCL); if (human()) json_registers_pmrmscl(pmrmscl, obj_create_array_obj(r, "pmrmscl")); else obj_add_uint(r, "pmrmscl", pmrmscl); } static void json_ctrl_registers_pmrmscu(void *bar, struct json_object *r) { uint32_t pmrmscu = mmio_read32(bar + NVME_REG_PMRMSCU); if (human()) json_registers_pmrmscu(pmrmscu, obj_create_array_obj(r, "pmrmscu")); else obj_add_uint(r, "pmrmscu", pmrmscu); } static void json_ctrl_registers(void *bar, bool fabrics) { struct json_object *r = json_create_object(); json_ctrl_registers_cap(bar, r); json_ctrl_registers_vs(bar, r); json_ctrl_registers_intms(bar, r); json_ctrl_registers_intmc(bar, r); json_ctrl_registers_cc(bar, r); json_ctrl_registers_csts(bar, r); json_ctrl_registers_nssr(bar, r); json_ctrl_registers_nssd(bar, r); json_ctrl_registers_crto(bar, r); json_ctrl_registers_aqa(bar, r); json_ctrl_registers_asq(bar, r); json_ctrl_registers_acq(bar, r); json_ctrl_registers_cmbloc(bar, r); json_ctrl_registers_cmbsz(bar, r); json_ctrl_registers_bpinfo(bar, r); json_ctrl_registers_bprsel(bar, r); json_ctrl_registers_bpmbl(bar, r); json_ctrl_registers_cmbmsc(bar, r); json_ctrl_registers_cmbsts(bar, r); json_ctrl_registers_pmrcap(bar, r); json_ctrl_registers_pmrctl(bar, r); json_ctrl_registers_pmrsts(bar, r); json_ctrl_registers_pmrebs(bar, r); json_ctrl_registers_pmrswtp(bar, r); json_ctrl_registers_pmrmscl(bar, r); json_ctrl_registers_pmrmscu(bar, r); json_print(r); } static void json_registers_cmbebs(__u32 cmbebs, struct json_object *r) { char buffer[BUF_LEN]; obj_add_uint_nx(r, "cmbebs", cmbebs); obj_add_uint_nx(r, "CMB Elasticity Buffer Size Base (CMBWBZ)", cmbebs >> 8); sprintf(buffer, "%s", cmbebs & 0x10 ? "shall" : "may"); obj_add_str(r, "Read Bypass Behavior", buffer); obj_add_str(r, "CMB Elasticity Buffer Size Units (CMBSZU)", nvme_register_unit_to_string(cmbebs & 0xf)); } static void json_registers_cmbswtp(__u32 cmbswtp, struct json_object *r) { char str[STR_LEN]; obj_add_uint_nx(r, "cmbswtp", cmbswtp); obj_add_uint_nx(r, "CMB Sustained Write Throughput (CMBSWTV)", cmbswtp >> 8); sprintf(str, "%s", nvme_register_unit_to_string(cmbswtp & 0xf)); obj_add_str(r, "CMB Sustained Write Throughput Units (CMBSWTU)", str); } static void json_ctrl_register_human(int offset, uint64_t value, struct json_object *r) { char buffer[BUF_LEN]; struct json_object *array_obj = NULL; switch (offset) { case NVME_REG_CAP: array_obj = obj_create_array_obj(r, "cap"); break; case NVME_REG_VS: array_obj = obj_create_array_obj(r, "vs"); break; case NVME_REG_INTMS: obj_add_nprix64(r, "Interrupt Vector Mask Set (IVMS)", value); break; case NVME_REG_INTMC: obj_add_nprix64(r, "Interrupt Vector Mask Clear (IVMC)", value); break; case NVME_REG_CC: array_obj = obj_create_array_obj(r, "cc"); break; case NVME_REG_CSTS: array_obj = obj_create_array_obj(r, "csts"); break; case NVME_REG_NSSR: obj_add_uint64(r, "NVM Subsystem Reset Control (NSSRC)", value); break; case NVME_REG_AQA: json_registers_aqa(value, obj_create_array_obj(r, "aqa")); break; case NVME_REG_ASQ: obj_add_nprix64(r, "Admin Submission Queue Base (ASQB)", value); break; case NVME_REG_ACQ: obj_add_nprix64(r, "Admin Completion Queue Base (ACQB)", value); break; case NVME_REG_CMBLOC: json_registers_cmbloc(value, true, obj_create_array_obj(r, "cmbloc")); break; case NVME_REG_CMBSZ: json_registers_cmbsz(value, obj_create_array_obj(r, "cmbsz")); break; case NVME_REG_BPINFO: json_registers_bpinfo(value, obj_create_array_obj(r, "bpinfo")); break; case NVME_REG_BPRSEL: json_registers_bprsel(value, obj_create_array_obj(r, "bprsel")); break; case NVME_REG_BPMBL: json_registers_bpmbl(value, obj_create_array_obj(r, "bpmbl")); break; case NVME_REG_CMBMSC: json_registers_cmbmsc(value, obj_create_array_obj(r, "cmbmsc")); break; case NVME_REG_CMBSTS: json_registers_cmbsts(value, obj_create_array_obj(r, "cmbsts")); break; case NVME_REG_CMBEBS: json_registers_cmbebs(value, obj_create_array_obj(r, "cmbebs")); break; case NVME_REG_CMBSWTP: json_registers_cmbswtp(value, obj_create_array_obj(r, "cmbswtp")); break; case NVME_REG_NSSD: json_registers_nssd(value, obj_create_array_obj(r, "nssd")); break; case NVME_REG_CRTO: array_obj = obj_create_array_obj(r, "crto"); break; case NVME_REG_PMRCAP: json_registers_pmrcap(value, obj_create_array_obj(r, "pmrcap")); break; case NVME_REG_PMRCTL: json_registers_pmrctl(value, obj_create_array_obj(r, "pmrctl")); break; case NVME_REG_PMRSTS: json_registers_pmrsts(value, true, obj_create_array_obj(r, "pmrsts")); break; case NVME_REG_PMREBS: json_registers_pmrebs(value, obj_create_array_obj(r, "pmrebs")); break; case NVME_REG_PMRSWTP: json_registers_pmrswtp(value, obj_create_array_obj(r, "pmrswtp")); break; case NVME_REG_PMRMSCL: json_registers_pmrmscl(value, obj_create_array_obj(r, "pmrmscl")); break; case NVME_REG_PMRMSCU: json_registers_pmrmscu(value, obj_create_array_obj(r, "pmrmscu")); break; default: sprintf(buffer, "%#04x (%s)", offset, nvme_register_to_string(offset)); obj_add_str(r, "register", buffer); obj_add_nprix64(r, "value", value); break; } if (array_obj) json_single_property_human(offset, value, array_obj); } static void json_ctrl_register(int offset, uint64_t value) { bool human = json_print_ops.flags & VERBOSE; struct json_object *r; char json_str[STR_LEN]; sprintf(json_str, "register: %#04x", offset); r = obj_create(json_str); if (human) { obj_add_uint64(r, nvme_register_to_string(offset), value); json_ctrl_register_human(offset, value, r); } else { obj_add_str(r, "name", nvme_register_symbol_to_string(offset)); obj_add_uint64(r, "value", value); } } static void json_nvme_cmd_set_independent_id_ns(struct nvme_id_independent_id_ns *ns, unsigned int nsid) { struct json_object *r = json_create_object(); obj_add_int(r, "nsfeat", ns->nsfeat); obj_add_int(r, "nmic", ns->nmic); obj_add_int(r, "rescap", ns->rescap); obj_add_int(r, "fpi", ns->fpi); obj_add_uint(r, "anagrpid", le32_to_cpu(ns->anagrpid)); obj_add_int(r, "nsattr", ns->nsattr); obj_add_int(r, "nvmsetid", le16_to_cpu(ns->nvmsetid)); obj_add_int(r, "endgid", le16_to_cpu(ns->endgid)); obj_add_int(r, "nstat", ns->nstat); json_print(r); } static void json_nvme_id_ns_descs(void *data, unsigned int nsid) { /* large enough to hold uuid str (37) or nguid str (32) + zero byte */ char json_str[STR_LEN]; char *json_str_p; union { __u8 eui64[NVME_NIDT_EUI64_LEN]; __u8 nguid[NVME_NIDT_NGUID_LEN]; __u8 uuid[NVME_UUID_LEN]; __u8 csi; } desc; struct json_object *r = json_create_object(); struct json_object *json_array = NULL; off_t off; int pos, len = 0; int i; for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { struct nvme_ns_id_desc *cur = data + pos; const char *nidt_name = NULL; if (cur->nidl == 0) break; memset(json_str, 0, sizeof(json_str)); json_str_p = json_str; off = pos + sizeof(*cur); switch (cur->nidt) { case NVME_NIDT_EUI64: memcpy(desc.eui64, data + off, sizeof(desc.eui64)); for (i = 0; i < sizeof(desc.eui64); i++) json_str_p += sprintf(json_str_p, "%02x", desc.eui64[i]); len = sizeof(desc.eui64); nidt_name = "eui64"; break; case NVME_NIDT_NGUID: memcpy(desc.nguid, data + off, sizeof(desc.nguid)); for (i = 0; i < sizeof(desc.nguid); i++) json_str_p += sprintf(json_str_p, "%02x", desc.nguid[i]); len = sizeof(desc.nguid); nidt_name = "nguid"; break; case NVME_NIDT_UUID: memcpy(desc.uuid, data + off, sizeof(desc.uuid)); nvme_uuid_to_string(desc.uuid, json_str); len = sizeof(desc.uuid); nidt_name = "uuid"; break; case NVME_NIDT_CSI: memcpy(&desc.csi, data + off, sizeof(desc.csi)); sprintf(json_str_p, "%#x", desc.csi); len += sizeof(desc.csi); nidt_name = "csi"; break; default: /* Skip unknown types */ len = cur->nidl; break; } if (nidt_name) { struct json_object *elem = json_create_object(); obj_add_int(elem, "loc", pos); obj_add_int(elem, "nidt", (int)cur->nidt); obj_add_int(elem, "nidl", (int)cur->nidl); obj_add_str(elem, "Type", nidt_name); obj_add_str(elem, nidt_name, json_str); if (!json_array) json_array = json_create_array(); array_add_obj(json_array, elem); } len += sizeof(*cur); } if (json_array) obj_add_array(r, "ns-descs", json_array); json_print(r); } static void json_nvme_id_ctrl_nvm(struct nvme_id_ctrl_nvm *ctrl_nvm) { struct json_object *r = json_create_object(); obj_add_uint(r, "vsl", ctrl_nvm->vsl); obj_add_uint(r, "wzsl", ctrl_nvm->wzsl); obj_add_uint(r, "wusl", ctrl_nvm->wusl); obj_add_uint(r, "dmrl", ctrl_nvm->dmrl); obj_add_uint(r, "dmrsl", le32_to_cpu(ctrl_nvm->dmrsl)); obj_add_uint64(r, "dmsl", le64_to_cpu(ctrl_nvm->dmsl)); json_print(r); } static void json_nvme_nvm_id_ns(struct nvme_nvm_id_ns *nvm_ns, unsigned int nsid, struct nvme_id_ns *ns, unsigned int lba_index, bool cap_only) { struct json_object *r = json_create_object(); struct json_object *elbafs = json_create_array(); int i; if (!cap_only) obj_add_uint64(r, "lbstm", le64_to_cpu(nvm_ns->lbstm)); obj_add_int(r, "pic", nvm_ns->pic); obj_add_int(r, "pifa", nvm_ns->pifa); obj_add_array(r, "elbafs", elbafs); for (i = 0; i <= ns->nlbaf + ns->nulbaf; i++) { struct json_object *elbaf = json_create_object(); unsigned int elbaf_val = le32_to_cpu(nvm_ns->elbaf[i]); obj_add_uint(elbaf, "sts", elbaf_val & 0x7F); obj_add_uint(elbaf, "pif", (elbaf_val >> 7) & 0x3); obj_add_uint(elbaf, "qpif", (elbaf_val >> 9) & 0xF); array_add_obj(elbafs, elbaf); } if (ns->nsfeat & 0x20) obj_add_int(r, "npdgl", le32_to_cpu(nvm_ns->npdgl)); json_print(r); } static void json_nvme_zns_id_ctrl(struct nvme_zns_id_ctrl *ctrl) { struct json_object *r = json_create_object(); obj_add_int(r, "zasl", ctrl->zasl); json_print(r); } static void json_nvme_zns_id_ns(struct nvme_zns_id_ns *ns, struct nvme_id_ns *id_ns) { struct json_object *r = json_create_object(); struct json_object *lbafs = json_create_array(); int i; obj_add_int(r, "zoc", le16_to_cpu(ns->zoc)); obj_add_int(r, "ozcs", le16_to_cpu(ns->ozcs)); obj_add_uint(r, "mar", le32_to_cpu(ns->mar)); obj_add_uint(r, "mor", le32_to_cpu(ns->mor)); obj_add_uint(r, "rrl", le32_to_cpu(ns->rrl)); obj_add_uint(r, "frl", le32_to_cpu(ns->frl)); obj_add_uint(r, "rrl1", le32_to_cpu(ns->rrl1)); obj_add_uint(r, "rrl2", le32_to_cpu(ns->rrl2)); obj_add_uint(r, "rrl3", le32_to_cpu(ns->rrl3)); obj_add_uint(r, "frl1", le32_to_cpu(ns->frl1)); obj_add_uint(r, "frl2", le32_to_cpu(ns->frl2)); obj_add_uint(r, "frl3", le32_to_cpu(ns->frl3)); obj_add_uint(r, "numzrwa", le32_to_cpu(ns->numzrwa)); obj_add_int(r, "zrwafg", le16_to_cpu(ns->zrwafg)); obj_add_int(r, "zrwasz", le16_to_cpu(ns->zrwasz)); obj_add_int(r, "zrwacap", ns->zrwacap); obj_add_array(r, "lbafe", lbafs); for (i = 0; i <= id_ns->nlbaf; i++) { struct json_object *lbaf = json_create_object(); obj_add_uint64(lbaf, "zsze", le64_to_cpu(ns->lbafe[i].zsze)); obj_add_int(lbaf, "zdes", ns->lbafe[i].zdes); array_add_obj(lbafs, lbaf); } json_print(r); } static void json_nvme_list_ns(struct nvme_ns_list *ns_list) { struct json_object *r = json_create_object(); struct json_object *valid_attrs; struct json_object *valid = json_create_array(); int i; for (i = 0; i < 1024; i++) { if (ns_list->ns[i]) { valid_attrs = json_create_object(); obj_add_uint(valid_attrs, "nsid", le32_to_cpu(ns_list->ns[i])); array_add_obj(valid, valid_attrs); } } obj_add_array(r, "nsid_list", valid); json_print(r); } static void json_zns_start_zone_list(__u64 nr_zones, struct json_object **zone_list) { *zone_list = json_create_array(); } static void json_zns_changed(struct nvme_zns_changed_zone_log *log) { struct json_object *r = json_create_object(); char json_str[STR_LEN]; uint16_t nrzid = le16_to_cpu(log->nrzid); int i; if (nrzid == 0xFFFF) { obj_add_result(r, "Too many zones have changed to fit into the log. Use report zones for changes."); } else { obj_add_uint(r, "nrzid", nrzid); for (i = 0; i < nrzid; i++) { sprintf(json_str, "zid %03d", i); obj_add_uint64(r, json_str, (uint64_t)le64_to_cpu(log->zid[i])); } } json_print(r); } static void json_zns_finish_zone_list(__u64 nr_zones, struct json_object *zone_list) { struct json_object *r = json_create_object(); obj_add_uint(r, "nr_zones", nr_zones); obj_add_array(r, "zone_list", zone_list); json_print(r); } static void json_nvme_zns_report_zones(void *report, __u32 descs, __u8 ext_size, __u32 report_size, struct json_object *zone_list) { struct json_object *zone; struct json_object *ext_data; struct nvme_zone_report *r = report; struct nvme_zns_desc *desc; int i; for (i = 0; i < descs; i++) { desc = (struct nvme_zns_desc *) (report + sizeof(*r) + i * (sizeof(*desc) + ext_size)); zone = json_create_object(); obj_add_uint64(zone, "slba", le64_to_cpu(desc->zslba)); obj_add_uint64(zone, "wp", le64_to_cpu(desc->wp)); obj_add_uint64(zone, "cap", le64_to_cpu(desc->zcap)); obj_add_str(zone, "state", nvme_zone_state_to_string(desc->zs >> 4)); obj_add_str(zone, "type", nvme_zone_type_to_string(desc->zt)); obj_add_uint(zone, "attrs", desc->za); obj_add_uint(zone, "attrs_info", desc->zai); if (ext_size) { if (desc->za & NVME_ZNS_ZA_ZDEV) { ext_data = json_create_array(); d_json((unsigned char *)desc + sizeof(*desc), ext_size, 16, 1, ext_data); obj_add_array(zone, "ext_data", ext_data); } else { obj_add_str(zone, "ext_data", "Not valid"); } } array_add_obj(zone_list, zone); } } static void json_feature_show_fields_arbitration(struct json_object *r, unsigned int result) { char json_str[STR_LEN]; obj_add_uint(r, "High Priority Weight (HPW)", ((result & 0xff000000) >> 24) + 1); obj_add_uint(r, "Medium Priority Weight (MPW)", ((result & 0xff0000) >> 16) + 1); obj_add_uint(r, "Low Priority Weight (LPW)", ((result & 0xff00) >> 8) + 1); if ((result & 7) == 7) sprintf(json_str, "No limit"); else sprintf(json_str, "%u", 1 << (result & 7)); obj_add_str(r, "Arbitration Burst (AB)", json_str); } static void json_feature_show_fields_power_mgmt(struct json_object *r, unsigned int result) { __u8 field = (result & 0xe0) >> 5; obj_add_uint(r, "Workload Hint (WH)", field); obj_add_str(r, "WH description", nvme_feature_wl_hints_to_string(field)); obj_add_uint(r, "Power State (PS)", result & 0x1f); } static void json_lba_range_entry(struct nvme_lba_range_type *lbrt, int nr_ranges, struct json_object *r) { char json_str[STR_LEN]; struct json_object *lbare; int i; int j; struct json_object *lbara = json_create_array(); obj_add_array(r, "LBA Ranges", lbara); for (i = 0; i <= nr_ranges; i++) { lbare = json_create_object(); array_add_obj(lbara, lbare); obj_add_int(lbare, "LBA range", i); obj_add_uint_nx(lbare, "type", lbrt->entry[i].type); obj_add_str(lbare, "type description", nvme_feature_lba_type_to_string(lbrt->entry[i].type)); obj_add_uint_nx(lbare, "attributes", lbrt->entry[i].attributes); obj_add_str(lbare, "attribute[0]", lbrt->entry[i].attributes & 1 ? "LBA range may be overwritten" : "LBA range should not be overwritten"); obj_add_str(lbare, "attribute[1]", lbrt->entry[i].attributes & 2 ? "LBA range should be hidden from the OS/EFI/BIOS" : "LBA range should be visible from the OS/EFI/BIOS"); obj_add_nprix64(lbare, "slba", le64_to_cpu(lbrt->entry[i].slba)); obj_add_nprix64(lbare, "nlb", le64_to_cpu(lbrt->entry[i].nlb)); for (j = 0; j < ARRAY_SIZE(lbrt->entry[i].guid); j++) sprintf(&json_str[j * 2], "%02x", lbrt->entry[i].guid[j]); obj_add_str(lbare, "guid", json_str); } } static void json_feature_show_fields_lba_range(struct json_object *r, __u8 field, unsigned char *buf) { obj_add_uint(r, "Number of LBA Ranges (NUM)", field + 1); if (buf) json_lba_range_entry((struct nvme_lba_range_type *)buf, field, r); } static void json_feature_show_fields_temp_thresh(struct json_object *r, unsigned int result) { __u8 field = (result & 0x300000) >> 20; char json_str[STR_LEN]; obj_add_uint(r, "Threshold Type Select (THSEL)", field); obj_add_str(r, "THSEL description", nvme_feature_temp_type_to_string(field)); field = (result & 0xf0000) >> 16; obj_add_uint(r, "Threshold Temperature Select (TMPSEL)", field); obj_add_str(r, "TMPSEL description", nvme_feature_temp_sel_to_string(field)); sprintf(json_str, "%s", nvme_degrees_string(result & 0xffff)); obj_add_str(r, "Temperature Threshold (TMPTH)", json_str); sprintf(json_str, "%u K", result & 0xffff); obj_add_str(r, "TMPTH kelvin", json_str); } static void json_feature_show_fields_err_recovery(struct json_object *r, unsigned int result) { char json_str[STR_LEN]; obj_add_str(r, "Deallocated or Unwritten Logical Block Error Enable (DULBE)", (result & 0x10000) >> 16 ? "Enabled" : "Disabled"); sprintf(json_str, "%u ms", (result & 0xffff) * 100); obj_add_str(r, "Time Limited Error Recovery (TLER)", json_str); } static void json_feature_show_fields_volatile_wc(struct json_object *r, unsigned int result) { obj_add_str(r, "Volatile Write Cache Enable (WCE)", result & 1 ? "Enabled" : "Disabled"); } static void json_feature_show_fields_num_queues(struct json_object *r, unsigned int result) { obj_add_uint(r, "Number of IO Completion Queues Allocated (NCQA)", ((result & 0xffff0000) >> 16) + 1); obj_add_uint(r, "Number of IO Submission Queues Allocated (NSQA)", (result & 0xffff) + 1); } static void json_feature_show_fields_irq_coalesce(struct json_object *r, unsigned int result) { char json_str[STR_LEN]; sprintf(json_str, "%u usec", ((result & 0xff00) >> 8) * 100); obj_add_str(r, "Aggregation Time (TIME)", json_str); obj_add_uint(r, "Aggregation Threshold (THR)", (result & 0xff) + 1); } static void json_feature_show_fields_irq_config(struct json_object *r, unsigned int result) { obj_add_str(r, "Coalescing Disable (CD)", (result & 0x10000) >> 16 ? "True" : "False"); obj_add_uint(r, "Interrupt Vector (IV)", result & 0xffff); } static void json_feature_show_fields_write_atomic(struct json_object *r, unsigned int result) { obj_add_str(r, "Disable Normal (DN)", result & 1 ? "True" : "False"); } static void json_feature_show_fields_async_event(struct json_object *r, unsigned int result) { obj_add_str(r, "Discovery Log Page Change Notices", (result & 0x80000000) >> 31 ? "Send async event" : "Do not send async event"); obj_add_str(r, "Endurance Group Event Aggregate Log Change Notices", (result & 0x4000) >> 14 ? "Send async event" : "Do not send async event"); obj_add_str(r, "LBA Status Information Notices", (result & 0x2000) >> 13 ? "Send async event" : "Do not send async event"); obj_add_str(r, "Predictable Latency Event Aggregate Log Change Notices", (result & 0x1000) >> 12 ? "Send async event" : "Do not send async event"); obj_add_str(r, "Asymmetric Namespace Access Change Notices", (result & 0x800) >> 11 ? "Send async event" : "Do not send async event"); obj_add_str(r, "Telemetry Log Notices", (result & 0x400) >> 10 ? "Send async event" : "Do not send async event"); obj_add_str(r, "Firmware Activation Notices", (result & 0x200) >> 9 ? "Send async event" : "Do not send async event"); obj_add_str(r, "Namespace Attribute Notices", (result & 0x100) >> 8 ? "Send async event" : "Do not send async event"); obj_add_str(r, "SMART / Health Critical Warnings", result & 0xff ? "Send async event" : "Do not send async event"); } static void json_auto_pst(struct nvme_feat_auto_pst *apst, struct json_object *r) { int i; __u64 value; char json_str[STR_LEN]; struct json_object *apsta = json_create_array(); struct json_object *apste; obj_add_array(r, "Auto PST Entries", apsta); for (i = 0; i < ARRAY_SIZE(apst->apst_entry); i++) { apste = json_create_object(); array_add_obj(apsta, apste); sprintf(json_str, "%2d", i); obj_add_str(apste, "entry", json_str); value = le64_to_cpu(apst->apst_entry[i]); sprintf(json_str, "%u ms", (__u32)NVME_GET(value, APST_ENTRY_ITPT)); obj_add_str(apste, "Idle Time Prior to Transition (ITPT)", json_str); obj_add_uint(apste, "Idle Transition Power State (ITPS)", (__u32)NVME_GET(value, APST_ENTRY_ITPS)); } } static void json_feature_show_fields_auto_pst(struct json_object *r, unsigned int result, unsigned char *buf) { obj_add_str(r, "Autonomous Power State Transition Enable (APSTE)", result & 1 ? "Enabled" : "Disabled"); if (buf) json_auto_pst((struct nvme_feat_auto_pst *)buf, r); } static void json_host_mem_buffer(struct nvme_host_mem_buf_attrs *hmb, struct json_object *r) { char json_str[STR_LEN]; obj_add_uint(r, "Host Memory Descriptor List Entry Count (HMDLEC)", le32_to_cpu(hmb->hmdlec)); sprintf(json_str, "0x%x", le32_to_cpu(hmb->hmdlau)); obj_add_str(r, "Host Memory Descriptor List Address (HMDLAU)", json_str); sprintf(json_str, "0x%x", le32_to_cpu(hmb->hmdlal)); obj_add_str(r, "Host Memory Descriptor List Address (HMDLAL)", json_str); obj_add_uint(r, "Host Memory Buffer Size (HSIZE)", le32_to_cpu(hmb->hsize)); } static void json_feature_show_fields_host_mem_buf(struct json_object *r, unsigned int result, unsigned char *buf) { obj_add_str(r, "Enable Host Memory (EHM)", result & 1 ? "Enabled" : "Disabled"); obj_add_str(r, "Host Memory Non-operational Access Restriction Enable (HMNARE)", (result & 0x00000004) ? "True" : "False"); obj_add_str(r, "Host Memory Non-operational Access Restricted (HMNAR)", (result & 0x00000008) ? "True" : "False"); if (buf) json_host_mem_buffer((struct nvme_host_mem_buf_attrs *)buf, r); } static void json_timestamp(struct json_object *r, struct nvme_timestamp *ts) { char buffer[BUF_LEN]; time_t timestamp = int48_to_long(ts->timestamp) / 1000; struct tm *tm = localtime(×tamp); obj_add_uint64(r, "timestamp", int48_to_long(ts->timestamp)); if (!strftime(buffer, sizeof(buffer), "%c %Z", tm)) sprintf(buffer, "%s", "-"); obj_add_str(r, "timestamp string", buffer); obj_add_str(r, "timestamp origin", ts->attr & 2 ? "The Timestamp field was initialized with a Timestamp value using a Set Features command." : "The Timestamp field was initialized to 0h by a Controller Level Reset."); obj_add_str(r, "synch", ts->attr & 1 ? "The controller may have stopped counting during vendor specific intervals after the Timestamp value was initialized." : "The controller counted time in milliseconds continuously since the Timestamp value was initialized."); } static void json_feature_show_fields_timestamp(struct json_object *r, unsigned char *buf) { if (buf) json_timestamp(r, (struct nvme_timestamp *)buf); } static void json_feature_show_fields_kato(struct json_object *r, unsigned int result) { obj_add_uint(r, "Keep Alive Timeout (KATO) in milliseconds", result); } static void json_feature_show_fields_hctm(struct json_object *r, unsigned int result) { char json_str[STR_LEN]; sprintf(json_str, "%u K", result >> 16); obj_add_str(r, "Thermal Management Temperature 1 (TMT1)", json_str); sprintf(json_str, "%s", nvme_degrees_string(result >> 16)); obj_add_str(r, "TMT1 celsius", json_str); sprintf(json_str, "%u K", result & 0xffff); obj_add_str(r, "Thermal Management Temperature 2", json_str); sprintf(json_str, "%s", nvme_degrees_string(result & 0xffff)); obj_add_str(r, "TMT2 celsius", json_str); } static void json_feature_show_fields_nopsc(struct json_object *r, unsigned int result) { obj_add_str(r, "Non-Operational Power State Permissive Mode Enable (NOPPME)", result & 1 ? "True" : "False"); } static void json_feature_show_fields_rrl(struct json_object *r, unsigned int result) { obj_add_uint(r, "Read Recovery Level (RRL)", result & 0xf); } static void json_plm_config(struct nvme_plm_config *plmcfg, struct json_object *r) { char json_str[STR_LEN]; sprintf(json_str, "%04x", le16_to_cpu(plmcfg->ee)); obj_add_str(r, "Enable Event", json_str); obj_add_uint64(r, "DTWIN Reads Threshold", le64_to_cpu(plmcfg->dtwinrt)); obj_add_uint64(r, "DTWIN Writes Threshold", le64_to_cpu(plmcfg->dtwinwt)); obj_add_uint64(r, "DTWIN Time Threshold", le64_to_cpu(plmcfg->dtwintt)); } static void json_feature_show_fields_plm_config(struct json_object *r, unsigned int result, unsigned char *buf) { obj_add_str(r, "Predictable Latency Window Enabled", result & 1 ? "True" : "False"); if (buf) json_plm_config((struct nvme_plm_config *)buf, r); } static void json_feature_show_fields_plm_window(struct json_object *r, unsigned int result) { obj_add_str(r, "Window Select", nvme_plm_window_to_string(result)); } static void json_feature_show_fields_lba_sts_interval(struct json_object *r, unsigned int result) { obj_add_uint(r, "LBA Status Information Poll Interval (LSIPI)", result >> 16); obj_add_uint(r, "LBA Status Information Report Interval (LSIRI)", result & 0xffff); } static void json_feature_show_fields_host_behavior(struct json_object *r, unsigned char *buf) { if (buf) obj_add_str(r, "Host Behavior Support", buf[0] & 0x1 ? "True" : "False"); } static void json_feature_show_fields_sanitize(struct json_object *r, unsigned int result) { obj_add_uint(r, "No-Deallocate Response Mode (NODRM)", result & 1); } static void json_feature_show_fields_endurance_evt_cfg(struct json_object *r, unsigned int result) { obj_add_uint(r, "Endurance Group Identifier (ENDGID)", result & 0xffff); obj_add_uint(r, "Endurance Group Critical Warnings", result >> 16 & 0xff); } static void json_feature_show_fields_iocs_profile(struct json_object *r, unsigned int result) { obj_add_str(r, "I/O Command Set Profile", result & 0x1 ? "True" : "False"); } static void json_feature_show_fields_spinup_control(struct json_object *r, unsigned int result) { obj_add_str(r, "Spinup control feature Enabled", result & 1 ? "True" : "False"); } static void json_host_metadata(struct json_object *r, enum nvme_features_id fid, struct nvme_host_metadata *data) { struct nvme_metadata_element_desc *desc = &data->descs[0]; int i; char val[VAL_LEN]; __u16 len; char json_str[STR_LEN]; struct json_object *desca = json_create_array(); struct json_object *desce; obj_add_int(r, "Num Metadata Element Descriptors", data->ndesc); obj_add_array(r, "Metadata Element Descriptors", desca); for (i = 0; i < data->ndesc; i++) { desce = json_create_object(); array_add_obj(desca, desce); obj_add_int(desce, "Element", i); sprintf(json_str, "0x%02x", desc->type); obj_add_str(desce, "Type", json_str); obj_add_str(desce, "Type definition", nvme_host_metadata_type_to_string(fid, desc->type)); obj_add_int(desce, "Revision", desc->rev); len = le16_to_cpu(desc->len); obj_add_int(desce, "Length", len); strncpy(val, (char *)desc->val, min(sizeof(val) - 1, len)); obj_add_str(desce, "Value", val); desc = (struct nvme_metadata_element_desc *)&desc->val[desc->len]; } } static void json_feature_show_fields_ns_metadata(struct json_object *r, enum nvme_features_id fid, unsigned char *buf) { if (buf) json_host_metadata(r, fid, (struct nvme_host_metadata *)buf); } static void json_feature_show_fields_sw_progress(struct json_object *r, unsigned int result) { obj_add_uint(r, "Pre-boot Software Load Count (PBSLC)", result & 0xff); } static void json_feature_show_fields_host_id(struct json_object *r, unsigned char *buf) { uint64_t ull = 0; int i; if (buf) { for (i = sizeof(ull) / sizeof(*buf); i; i--) { ull |= buf[i - 1]; if (i - 1) ull <<= BYTE_TO_BIT(sizeof(buf[i])); } obj_add_uint64(r, "Host Identifier (HOSTID)", ull); } } static void json_feature_show_fields_resv_mask(struct json_object *r, unsigned int result) { obj_add_str(r, "Mask Reservation Preempted Notification (RESPRE)", (result & 8) >> 3 ? "True" : "False"); obj_add_str(r, "Mask Reservation Released Notification (RESREL)", (result & 4) >> 2 ? "True" : "False"); obj_add_str(r, "Mask Registration Preempted Notification (REGPRE)", (result & 2) >> 1 ? "True" : "False"); } static void json_feature_show_fields_resv_persist(struct json_object *r, unsigned int result) { obj_add_str(r, "Persist Through Power Loss (PTPL)", result & 1 ? "True" : "False"); } static void json_feature_show_fields_write_protect(struct json_object *r, unsigned int result) { obj_add_str(r, "Namespace Write Protect", nvme_ns_wp_cfg_to_string(result)); } static void json_feature_show_fields_fdp(struct json_object *r, unsigned int result) { obj_add_str(r, "Flexible Direct Placement Enable (FDPE)", result & 1 ? "Yes" : "No"); obj_add_uint(r, "Flexible Direct Placement Configuration Index", result >> 8 & 0xf); } static void json_feature_show_fields_fdp_events(struct json_object *r, unsigned int result, unsigned char *buf) { unsigned int i; struct nvme_fdp_supported_event_desc *d; char json_str[STR_LEN]; for (i = 0; i < result; i++) { d = &((struct nvme_fdp_supported_event_desc *)buf)[i]; sprintf(json_str, "%s", d->evta & 0x1 ? "Enabled" : "Not enabled"); obj_add_str(r, nvme_fdp_event_to_string(d->evt), json_str); } } static void json_feature_show(enum nvme_features_id fid, int sel, unsigned int result) { struct json_object *r; char json_str[STR_LEN]; sprintf(json_str, "feature: %#0*x", fid ? 4 : 2, fid); r = obj_create(json_str); obj_add_str(r, "name", nvme_feature_to_string(fid)); sprintf(json_str, "%#0*x", result ? 10 : 8, result); obj_add_str(r, nvme_select_to_string(sel), json_str); obj_print(r); } static void json_feature_show_fields(enum nvme_features_id fid, unsigned int result, unsigned char *buf) { struct json_object *r; char json_str[STR_LEN]; sprintf(json_str, "Feature: %#0*x", fid ? 4 : 2, fid); r = obj_create(json_str); switch (fid) { case NVME_FEAT_FID_ARBITRATION: json_feature_show_fields_arbitration(r, result); break; case NVME_FEAT_FID_POWER_MGMT: json_feature_show_fields_power_mgmt(r, result); break; case NVME_FEAT_FID_LBA_RANGE: json_feature_show_fields_lba_range(r, result & 0x3f, buf); break; case NVME_FEAT_FID_TEMP_THRESH: json_feature_show_fields_temp_thresh(r, result); break; case NVME_FEAT_FID_ERR_RECOVERY: json_feature_show_fields_err_recovery(r, result); break; case NVME_FEAT_FID_VOLATILE_WC: json_feature_show_fields_volatile_wc(r, result); break; case NVME_FEAT_FID_NUM_QUEUES: json_feature_show_fields_num_queues(r, result); break; case NVME_FEAT_FID_IRQ_COALESCE: json_feature_show_fields_irq_coalesce(r, result); break; case NVME_FEAT_FID_IRQ_CONFIG: json_feature_show_fields_irq_config(r, result); break; case NVME_FEAT_FID_WRITE_ATOMIC: json_feature_show_fields_write_atomic(r, result); break; case NVME_FEAT_FID_ASYNC_EVENT: json_feature_show_fields_async_event(r, result); break; case NVME_FEAT_FID_AUTO_PST: json_feature_show_fields_auto_pst(r, result, buf); break; case NVME_FEAT_FID_HOST_MEM_BUF: json_feature_show_fields_host_mem_buf(r, result, buf); break; case NVME_FEAT_FID_TIMESTAMP: json_feature_show_fields_timestamp(r, buf); break; case NVME_FEAT_FID_KATO: json_feature_show_fields_kato(r, result); break; case NVME_FEAT_FID_HCTM: json_feature_show_fields_hctm(r, result); break; case NVME_FEAT_FID_NOPSC: json_feature_show_fields_nopsc(r, result); break; case NVME_FEAT_FID_RRL: json_feature_show_fields_rrl(r, result); break; case NVME_FEAT_FID_PLM_CONFIG: json_feature_show_fields_plm_config(r, result, buf); break; case NVME_FEAT_FID_PLM_WINDOW: json_feature_show_fields_plm_window(r, result); break; case NVME_FEAT_FID_LBA_STS_INTERVAL: json_feature_show_fields_lba_sts_interval(r, result); break; case NVME_FEAT_FID_HOST_BEHAVIOR: json_feature_show_fields_host_behavior(r, buf); break; case NVME_FEAT_FID_SANITIZE: json_feature_show_fields_sanitize(r, result); break; case NVME_FEAT_FID_ENDURANCE_EVT_CFG: json_feature_show_fields_endurance_evt_cfg(r, result); break; case NVME_FEAT_FID_IOCS_PROFILE: json_feature_show_fields_iocs_profile(r, result); break; case NVME_FEAT_FID_SPINUP_CONTROL: json_feature_show_fields_spinup_control(r, result); break; case NVME_FEAT_FID_ENH_CTRL_METADATA: case NVME_FEAT_FID_CTRL_METADATA: case NVME_FEAT_FID_NS_METADATA: json_feature_show_fields_ns_metadata(r, fid, buf); break; case NVME_FEAT_FID_SW_PROGRESS: json_feature_show_fields_sw_progress(r, result); break; case NVME_FEAT_FID_HOST_ID: json_feature_show_fields_host_id(r, buf); break; case NVME_FEAT_FID_RESV_MASK: json_feature_show_fields_resv_mask(r, result); break; case NVME_FEAT_FID_RESV_PERSIST: json_feature_show_fields_resv_persist(r, result); break; case NVME_FEAT_FID_WRITE_PROTECT: json_feature_show_fields_write_protect(r, result); break; case NVME_FEAT_FID_FDP: json_feature_show_fields_fdp(r, result); break; case NVME_FEAT_FID_FDP_EVENTS: json_feature_show_fields_fdp_events(r, result, buf); break; default: break; } obj_print(r); } void json_id_ctrl_rpmbs(__le32 ctrl_rpmbs) { struct json_object *r = json_create_object(); __u32 rpmbs = le32_to_cpu(ctrl_rpmbs); __u32 asz = (rpmbs & 0xFF000000) >> 24; __u32 tsz = (rpmbs & 0xFF0000) >> 16; __u32 rsvd = (rpmbs & 0xFFC0) >> 6; __u32 auth = (rpmbs & 0x38) >> 3; __u32 rpmb = rpmbs & 7; obj_add_uint_nx(r, "[31:24]: Access Size", asz); obj_add_uint_nx(r, "[23:16]: Total Size", tsz); if (rsvd) obj_add_uint_nx(r, "[15:6]: Reserved", rsvd); obj_add_uint_nx(r, "[5:3]: Authentication Method", auth); obj_add_uint_nx(r, "[2:0]: Number of RPMB Units", rpmb); json_print(r); } static void json_lba_range(struct nvme_lba_range_type *lbrt, int nr_ranges) { struct json_object *r = json_create_object(); json_lba_range_entry(lbrt, nr_ranges, r); json_print(r); } static void json_lba_status_info(__u32 result) { struct json_object *r = json_create_object(); obj_add_uint(r, "LBA Status Information Poll Interval (LSIPI)", (result >> 16) & 0xffff); obj_add_uint(r, "LBA Status Information Report Interval (LSIRI)", result & 0xffff); json_print(r); } void json_d(unsigned char *buf, int len, int width, int group) { struct json_object *r = json_r ? json_r : json_create_object(); char json_str[STR_LEN]; sprintf(json_str, "data: buf=%p len=%d width=%d group=%d", buf, len, width, group); obj_d(r, json_str, buf, len, width, group); obj_print(r); } static void json_nvme_list_ctrl(struct nvme_ctrl_list *ctrl_list) { __u16 num = le16_to_cpu(ctrl_list->num); struct json_object *r = json_create_object(); struct json_object *valid_attrs; struct json_object *valid = json_create_array(); int i; obj_add_uint(r, "num_ctrl", le16_to_cpu(ctrl_list->num)); for (i = 0; i < min(num, 2047); i++) { valid_attrs = json_create_object(); obj_add_uint(valid_attrs, "ctrl_id", le16_to_cpu(ctrl_list->identifier[i])); array_add_obj(valid, valid_attrs); } obj_add_array(r, "ctrl_list", valid); json_print(r); } static void json_nvme_id_nvmset(struct nvme_id_nvmset_list *nvmset, unsigned int nvmeset_id) { __u32 nent = nvmset->nid; struct json_object *entries = json_create_array(); struct json_object *r = json_create_object(); int i; obj_add_int(r, "nid", nent); for (i = 0; i < nent; i++) { struct json_object *entry = json_create_object(); obj_add_int(entry, "nvmset_id", le16_to_cpu(nvmset->ent[i].nvmsetid)); obj_add_int(entry, "endurance_group_id", le16_to_cpu(nvmset->ent[i].endgid)); obj_add_uint(entry, "random_4k_read_typical", le32_to_cpu(nvmset->ent[i].rr4kt)); obj_add_uint(entry, "optimal_write_size", le32_to_cpu(nvmset->ent[i].ows)); obj_add_uint128(entry, "total_nvmset_cap", le128_to_cpu(nvmset->ent[i].tnvmsetcap)); obj_add_uint128(entry, "unalloc_nvmset_cap", le128_to_cpu(nvmset->ent[i].unvmsetcap)); array_add_obj(entries, entry); } obj_add_array(r, "NVMSet", entries); json_print(r); } static void json_nvme_primary_ctrl_cap(const struct nvme_primary_ctrl_cap *caps) { struct json_object *r = json_create_object(); obj_add_uint(r, "cntlid", le16_to_cpu(caps->cntlid)); obj_add_uint(r, "portid", le16_to_cpu(caps->portid)); obj_add_uint(r, "crt", caps->crt); obj_add_uint(r, "vqfrt", le32_to_cpu(caps->vqfrt)); obj_add_uint(r, "vqrfa", le32_to_cpu(caps->vqrfa)); obj_add_int(r, "vqrfap", le16_to_cpu(caps->vqrfap)); obj_add_int(r, "vqprt", le16_to_cpu(caps->vqprt)); obj_add_int(r, "vqfrsm", le16_to_cpu(caps->vqfrsm)); obj_add_int(r, "vqgran", le16_to_cpu(caps->vqgran)); obj_add_uint(r, "vifrt", le32_to_cpu(caps->vifrt)); obj_add_uint(r, "virfa", le32_to_cpu(caps->virfa)); obj_add_int(r, "virfap", le16_to_cpu(caps->virfap)); obj_add_int(r, "viprt", le16_to_cpu(caps->viprt)); obj_add_int(r, "vifrsm", le16_to_cpu(caps->vifrsm)); obj_add_int(r, "vigran", le16_to_cpu(caps->vigran)); json_print(r); } static void json_nvme_list_secondary_ctrl(const struct nvme_secondary_ctrl_list *sc_list, __u32 count) { const struct nvme_secondary_ctrl *sc_entry = &sc_list->sc_entry[0]; __u32 nent = min(sc_list->num, count); struct json_object *entries = json_create_array(); struct json_object *r = json_create_object(); int i; obj_add_int(r, "num", nent); for (i = 0; i < nent; i++) { struct json_object *entry = json_create_object(); obj_add_int(entry, "secondary-controller-identifier", le16_to_cpu(sc_entry[i].scid)); obj_add_int(entry, "primary-controller-identifier", le16_to_cpu(sc_entry[i].pcid)); obj_add_int(entry, "secondary-controller-state", sc_entry[i].scs); obj_add_int(entry, "virtual-function-number", le16_to_cpu(sc_entry[i].vfn)); obj_add_int(entry, "num-virtual-queues", le16_to_cpu(sc_entry[i].nvq)); obj_add_int(entry, "num-virtual-interrupts", le16_to_cpu(sc_entry[i].nvi)); array_add_obj(entries, entry); } obj_add_array(r, "secondary-controllers", entries); json_print(r); } static void json_nvme_id_ns_granularity_list( const struct nvme_id_ns_granularity_list *glist) { int i; struct json_object *r = json_create_object(); struct json_object *entries = json_create_array(); obj_add_int(r, "attributes", glist->attributes); obj_add_int(r, "num-descriptors", glist->num_descriptors); for (i = 0; i <= glist->num_descriptors; i++) { struct json_object *entry = json_create_object(); obj_add_uint64(entry, "namespace-size-granularity", le64_to_cpu(glist->entry[i].nszegran)); obj_add_uint64(entry, "namespace-capacity-granularity", le64_to_cpu(glist->entry[i].ncapgran)); array_add_obj(entries, entry); } obj_add_array(r, "namespace-granularity-list", entries); json_print(r); } static void json_nvme_id_uuid_list(const struct nvme_id_uuid_list *uuid_list) { struct json_object *r = json_create_object(); struct json_object *entries = json_create_array(); int i; for (i = 0; i < NVME_ID_UUID_LIST_MAX; i++) { __u8 uuid[NVME_UUID_LEN]; struct json_object *entry = json_create_object(); /* The list is terminated by a zero UUID value */ if (memcmp(uuid_list->entry[i].uuid, zero_uuid, sizeof(zero_uuid)) == 0) break; memcpy(&uuid, uuid_list->entry[i].uuid, sizeof(uuid)); obj_add_int(entry, "association", uuid_list->entry[i].header & 0x3); obj_add_str(entry, "uuid", util_uuid_to_string(uuid)); array_add_obj(entries, entry); } obj_add_array(r, "UUID-list", entries); json_print(r); } static void json_id_domain_list(struct nvme_id_domain_list *id_dom) { struct json_object *r = json_create_object(); struct json_object *entries = json_create_array(); struct json_object *entry; int i; nvme_uint128_t dom_cap, unalloc_dom_cap, max_egrp_dom_cap; obj_add_uint(r, "num_dom_entries", id_dom->num); for (i = 0; i < id_dom->num; i++) { entry = json_create_object(); dom_cap = le128_to_cpu(id_dom->domain_attr[i].dom_cap); unalloc_dom_cap = le128_to_cpu(id_dom->domain_attr[i].unalloc_dom_cap); max_egrp_dom_cap = le128_to_cpu(id_dom->domain_attr[i].max_egrp_dom_cap); obj_add_uint(entry, "dom_id", le16_to_cpu(id_dom->domain_attr[i].dom_id)); obj_add_uint128(entry, "dom_cap", dom_cap); obj_add_uint128(entry, "unalloc_dom_cap", unalloc_dom_cap); obj_add_uint128(entry, "max_egrp_dom_cap", max_egrp_dom_cap); array_add_obj(entries, entry); } obj_add_array(r, "domain_list", entries); json_print(r); } static void json_nvme_endurance_group_list(struct nvme_id_endurance_group_list *endgrp_list) { struct json_object *r = json_create_object(); struct json_object *valid_attrs; struct json_object *valid = json_create_array(); int i; obj_add_uint(r, "num_endgrp_id", le16_to_cpu(endgrp_list->num)); for (i = 0; i < min(le16_to_cpu(endgrp_list->num), 2047); i++) { valid_attrs = json_create_object(); obj_add_uint(valid_attrs, "endgrp_id", le16_to_cpu(endgrp_list->identifier[i])); array_add_obj(valid, valid_attrs); } obj_add_array(r, "endgrp_list", valid); json_print(r); } static void json_support_log(struct nvme_supported_log_pages *support_log, const char *devname) { struct json_object *r = json_create_object(); struct json_object *valid = json_create_array(); struct json_object *valid_attrs; unsigned int lid; char key[128]; __u32 support; for (lid = 0; lid < 256; lid++) { support = le32_to_cpu(support_log->lid_support[lid]); if (support & 0x1) { valid_attrs = json_create_object(); sprintf(key, "lid_0x%x ", lid); obj_add_uint(valid_attrs, key, support); array_add_obj(valid, valid_attrs); } } obj_add_array(r, "supported_logs", valid); json_print(r); } static void json_detail_list(nvme_root_t t) { struct json_object *r = json_create_object(); struct json_object *jdev = json_create_array(); nvme_host_t h; nvme_subsystem_t s; nvme_ctrl_t c; nvme_path_t p; nvme_ns_t n; nvme_for_each_host(t, h) { struct json_object *hss = json_create_object(); struct json_object *jsslist = json_create_array(); const char *hostid; obj_add_str(hss, "HostNQN", nvme_host_get_hostnqn(h)); hostid = nvme_host_get_hostid(h); if (hostid) obj_add_str(hss, "HostID", hostid); nvme_for_each_subsystem(h, s) { struct json_object *jss = json_create_object(); struct json_object *jctrls = json_create_array(); struct json_object *jnss = json_create_array(); obj_add_str(jss, "Subsystem", nvme_subsystem_get_name(s)); obj_add_str(jss, "SubsystemNQN", nvme_subsystem_get_nqn(s)); nvme_subsystem_for_each_ctrl(s, c) { struct json_object *jctrl = json_create_object(); struct json_object *jnss = json_create_array(); struct json_object *jpaths = json_create_array(); obj_add_str(jctrl, "Controller", nvme_ctrl_get_name(c)); obj_add_str(jctrl, "Cntlid", nvme_ctrl_get_cntlid(c)); obj_add_str(jctrl, "SerialNumber", nvme_ctrl_get_serial(c)); obj_add_str(jctrl, "ModelNumber", nvme_ctrl_get_model(c)); obj_add_str(jctrl, "Firmware", nvme_ctrl_get_firmware(c)); obj_add_str(jctrl, "Transport", nvme_ctrl_get_transport(c)); obj_add_str(jctrl, "Address", nvme_ctrl_get_address(c)); obj_add_str(jctrl, "Slot", nvme_ctrl_get_phy_slot(c)); nvme_ctrl_for_each_ns(c, n) { struct json_object *jns = json_create_object(); int lba = nvme_ns_get_lba_size(n); uint64_t nsze = nvme_ns_get_lba_count(n) * lba; uint64_t nuse = nvme_ns_get_lba_util(n) * lba; obj_add_str(jns, "NameSpace", nvme_ns_get_name(n)); obj_add_str(jns, "Generic", nvme_ns_get_generic_name(n)); obj_add_int(jns, "NSID", nvme_ns_get_nsid(n)); obj_add_uint64(jns, "UsedBytes", nuse); obj_add_uint64(jns, "MaximumLBA", nvme_ns_get_lba_count(n)); obj_add_uint64(jns, "PhysicalSize", nsze); obj_add_int(jns, "SectorSize", lba); array_add_obj(jnss, jns); } obj_add_obj(jctrl, "Namespaces", jnss); nvme_ctrl_for_each_path(c, p) { struct json_object *jpath = json_create_object(); obj_add_str(jpath, "Path", nvme_path_get_name(p)); obj_add_str(jpath, "ANAState", nvme_path_get_ana_state(p)); array_add_obj(jpaths, jpath); } obj_add_obj(jctrl, "Paths", jpaths); array_add_obj(jctrls, jctrl); } obj_add_obj(jss, "Controllers", jctrls); nvme_subsystem_for_each_ns(s, n) { struct json_object *jns = json_create_object(); int lba = nvme_ns_get_lba_size(n); uint64_t nsze = nvme_ns_get_lba_count(n) * lba; uint64_t nuse = nvme_ns_get_lba_util(n) * lba; obj_add_str(jns, "NameSpace", nvme_ns_get_name(n)); obj_add_str(jns, "Generic", nvme_ns_get_generic_name(n)); obj_add_int(jns, "NSID", nvme_ns_get_nsid(n)); obj_add_uint64(jns, "UsedBytes", nuse); obj_add_uint64(jns, "MaximumLBA", nvme_ns_get_lba_count(n)); obj_add_uint64(jns, "PhysicalSize", nsze); obj_add_int(jns, "SectorSize", lba); array_add_obj(jnss, jns); } obj_add_obj(jss, "Namespaces", jnss); array_add_obj(jsslist, jss); } obj_add_obj(hss, "Subsystems", jsslist); array_add_obj(jdev, hss); } obj_add_array(r, "Devices", jdev); json_print(r); } static struct json_object *json_list_item_obj(nvme_ns_t n) { struct json_object *r = json_create_object(); char devname[NAME_LEN] = { 0 }; char genname[NAME_LEN] = { 0 }; int lba = nvme_ns_get_lba_size(n); uint64_t nsze = nvme_ns_get_lba_count(n) * lba; uint64_t nuse = nvme_ns_get_lba_util(n) * lba; nvme_dev_full_path(n, devname, sizeof(devname)); nvme_generic_full_path(n, genname, sizeof(genname)); obj_add_int(r, "NameSpace", nvme_ns_get_nsid(n)); obj_add_str(r, "DevicePath", devname); obj_add_str(r, "GenericPath", genname); obj_add_str(r, "Firmware", nvme_ns_get_firmware(n)); obj_add_str(r, "ModelNumber", nvme_ns_get_model(n)); obj_add_str(r, "SerialNumber", nvme_ns_get_serial(n)); obj_add_uint64(r, "UsedBytes", nuse); obj_add_uint64(r, "MaximumLBA", nvme_ns_get_lba_count(n)); obj_add_uint64(r, "PhysicalSize", nsze); obj_add_int(r, "SectorSize", lba); return r; } static void json_simple_list(nvme_root_t t) { struct json_object *r = json_create_object(); struct json_object *jdevices = json_create_array(); nvme_host_t h; nvme_subsystem_t s; nvme_ctrl_t c; nvme_ns_t n; nvme_for_each_host(t, h) { nvme_for_each_subsystem(h, s) { nvme_subsystem_for_each_ns(s, n) array_add_obj(jdevices, json_list_item_obj(n)); nvme_subsystem_for_each_ctrl(s, c) { nvme_ctrl_for_each_ns(c, n) array_add_obj(jdevices, json_list_item_obj(n)); } } } obj_add_array(r, "Devices", jdevices); json_print(r); } static void json_list_item(nvme_ns_t n) { struct json_object *r = json_list_item_obj(n); json_print(r); } static void json_print_list_items(nvme_root_t t) { if (json_print_ops.flags & VERBOSE) json_detail_list(t); else json_simple_list(t); } static unsigned int json_subsystem_topology_multipath(nvme_subsystem_t s, json_object *namespaces) { nvme_ns_t n; nvme_path_t p; unsigned int i = 0; nvme_subsystem_for_each_ns(s, n) { struct json_object *ns_attrs; struct json_object *paths; ns_attrs = json_create_object(); obj_add_int(ns_attrs, "NSID", nvme_ns_get_nsid(n)); paths = json_create_array(); nvme_namespace_for_each_path(n, p) { struct json_object *path_attrs; nvme_ctrl_t c = nvme_path_get_ctrl(p); path_attrs = json_create_object(); obj_add_str(path_attrs, "Name", nvme_ctrl_get_name(c)); obj_add_str(path_attrs, "Transport", nvme_ctrl_get_transport(c)); obj_add_str(path_attrs, "Address", nvme_ctrl_get_address(c)); obj_add_str(path_attrs, "State", nvme_ctrl_get_state(c)); obj_add_str(path_attrs, "ANAState", nvme_path_get_ana_state(p)); array_add_obj(paths, path_attrs); } obj_add_array(ns_attrs, "Paths", paths); array_add_obj(namespaces, ns_attrs); i++; } return i; } static void json_print_nvme_subsystem_topology(nvme_subsystem_t s, json_object *namespaces) { nvme_ctrl_t c; nvme_ns_t n; nvme_subsystem_for_each_ctrl(s, c) { nvme_ctrl_for_each_ns(c, n) { struct json_object *ctrl_attrs; struct json_object *ns_attrs; struct json_object *ctrl; ns_attrs = json_create_object(); obj_add_int(ns_attrs, "NSID", nvme_ns_get_nsid(n)); ctrl = json_create_array(); ctrl_attrs = json_create_object(); obj_add_str(ctrl_attrs, "Name", nvme_ctrl_get_name(c)); obj_add_str(ctrl_attrs, "Transport", nvme_ctrl_get_transport(c)); obj_add_str(ctrl_attrs, "Address", nvme_ctrl_get_address(c)); obj_add_str(ctrl_attrs, "State", nvme_ctrl_get_state(c)); array_add_obj(ctrl, ctrl_attrs); obj_add_array(ns_attrs, "Controller", ctrl); array_add_obj(namespaces, ns_attrs); } } } static void json_simple_topology(nvme_root_t r) { struct json_object *host_attrs, *subsystem_attrs; struct json_object *subsystems, *namespaces; struct json_object *a = json_create_array(); nvme_host_t h; nvme_for_each_host(r, h) { nvme_subsystem_t s; const char *hostid; host_attrs = json_create_object(); obj_add_str(host_attrs, "HostNQN", nvme_host_get_hostnqn(h)); hostid = nvme_host_get_hostid(h); if (hostid) obj_add_str(host_attrs, "HostID", hostid); subsystems = json_create_array(); nvme_for_each_subsystem(h, s) { subsystem_attrs = json_create_object(); obj_add_str(subsystem_attrs, "Name", nvme_subsystem_get_name(s)); obj_add_str(subsystem_attrs, "NQN", nvme_subsystem_get_nqn(s)); obj_add_str(subsystem_attrs, "IOPolicy", nvme_subsystem_get_iopolicy(s)); array_add_obj(subsystems, subsystem_attrs); namespaces = json_create_array(); if (!json_subsystem_topology_multipath(s, namespaces)) json_print_nvme_subsystem_topology(s, namespaces); obj_add_array(subsystem_attrs, "Namespaces", namespaces); } obj_add_array(host_attrs, "Subsystems", subsystems); array_add_obj(a, host_attrs); } json_print(a); } static void json_directive_show_fields_identify(__u8 doper, __u8 *field, struct json_object *r) { struct json_object *support; struct json_object *enabled; struct json_object *persistent; switch (doper) { case NVME_DIRECTIVE_RECEIVE_IDENTIFY_DOPER_PARAM: support = json_create_array(); obj_add_array(r, "Directive support", support); obj_add_str(support, "Identify Directive", *field & 0x1 ? "Supported" : "Not supported"); obj_add_str(support, "Stream Directive", *field & 0x2 ? "Supported" : "Not supported"); obj_add_str(support, "Data Placement Directive", *field & 0x4 ? "Supported" : "Not supported"); enabled = json_create_array(); obj_add_array(r, "Directive enabled", enabled); obj_add_str(enabled, "Identify Directive", *(field + 32) & 0x1 ? "Enabled" : "Disabled"); obj_add_str(enabled, "Stream Directive", *(field + 32) & 0x2 ? "Enabled" : "Disabled"); obj_add_str(enabled, "Data Placement Directive", *(field + 32) & 0x4 ? "Enabled" : "Disabled"); persistent = json_create_array(); obj_add_array(r, "Directive Persistent Across Controller Level Resets", persistent); obj_add_str(persistent, "Identify Directive", *(field + 64) & 0x1 ? "Enabled" : "Disabled"); obj_add_str(persistent, "Stream Directive", *(field + 64) & 0x2 ? "Enabled" : "Disabled"); obj_add_str(persistent, "Data Placement Directive", *(field + 64) & 0x4 ? "Enabled" : "Disabled"); break; default: obj_add_str(r, "Error", "invalid directive operations for Identify Directives"); break; } } static void json_directive_show_fields_streams(__u8 doper, unsigned int result, __u16 *field, struct json_object *r) { int count; int i; char json_str[STR_LEN]; switch (doper) { case NVME_DIRECTIVE_RECEIVE_STREAMS_DOPER_PARAM: obj_add_uint(r, "Max Streams Limit (MSL)", le16_to_cpu(*field)); obj_add_uint(r, "NVM Subsystem Streams Available (NSSA)", le16_to_cpu(*(field + 2))); obj_add_uint(r, "NVM Subsystem Streams Open (NSSO)", le16_to_cpu(*(field + 4))); obj_add_uint(r, "NVM Subsystem Stream Capability (NSSC)", le16_to_cpu(*(field + 6))); obj_add_uint(r, "Stream Write Size (in unit of LB size) (SWS)", le16_to_cpu(*(__u32 *)(field + 16))); obj_add_uint(r, "Stream Granularity Size (in unit of SWS) (SGS)", le16_to_cpu(*(field + 20))); obj_add_uint(r, "Namespace Streams Allocated (NSA)", le16_to_cpu(*(field + 22))); obj_add_uint(r, "Namespace Streams Open (NSO)", le16_to_cpu(*(field + 24))); break; case NVME_DIRECTIVE_RECEIVE_STREAMS_DOPER_STATUS: count = *field; obj_add_uint(r, "Open Stream Count", le16_to_cpu(*field)); for (i = 0; i < count; i++) { sprintf(json_str, "Stream Identifier %.6u", i + 1); obj_add_uint(r, json_str, le16_to_cpu(*(field + (i + 1) * 2))); } break; case NVME_DIRECTIVE_RECEIVE_STREAMS_DOPER_RESOURCE: obj_add_uint(r, "Namespace Streams Allocated (NSA)", result & 0xffff); break; default: obj_add_str(r, "Error", "invalid directive operations for Streams Directives"); break; } } static void json_directive_show_fields(__u8 dtype, __u8 doper, unsigned int result, __u8 *field, struct json_object *r) { switch (dtype) { case NVME_DIRECTIVE_DTYPE_IDENTIFY: json_directive_show_fields_identify(doper, field, r); break; case NVME_DIRECTIVE_DTYPE_STREAMS: json_directive_show_fields_streams(doper, result, (__u16 *)field, r); break; default: obj_add_str(r, "Error", "invalid directive type"); break; } } static void json_directive_show(__u8 type, __u8 oper, __u16 spec, __u32 nsid, __u32 result, void *buf, __u32 len) { struct json_object *r = json_create_object(); struct json_object *data; char json_str[STR_LEN]; sprintf(json_str, "%#x", type); obj_add_str(r, "Type", json_str); sprintf(json_str, "%#x", oper); obj_add_str(r, "Operation", json_str); sprintf(json_str, "%#x", spec); obj_add_str(r, "spec", json_str); sprintf(json_str, "%#x", nsid); obj_add_str(r, "NSID", json_str); sprintf(json_str, "%#x", result); obj_add_result(r, json_str); if (json_print_ops.flags & VERBOSE) { json_directive_show_fields(type, oper, result, buf, r); } else if (buf) { data = json_create_array(); d_json((unsigned char *)buf, len, 16, 1, data); obj_add_array(r, "data", data); } json_print(r); } static void json_discovery_log(struct nvmf_discovery_log *log, int numrec) { struct json_object *r = json_create_object(); struct json_object *entries = json_create_array(); int i; obj_add_uint64(r, "genctr", le64_to_cpu(log->genctr)); obj_add_array(r, "records", entries); for (i = 0; i < numrec; i++) { struct nvmf_disc_log_entry *e = &log->entries[i]; struct json_object *entry = json_create_object(); obj_add_str(entry, "trtype", nvmf_trtype_str(e->trtype)); obj_add_str(entry, "adrfam", nvmf_adrfam_str(e->adrfam)); obj_add_str(entry, "subtype", nvmf_subtype_str(e->subtype)); obj_add_str(entry, "treq", nvmf_treq_str(e->treq)); obj_add_uint(entry, "portid", le16_to_cpu(e->portid)); obj_add_str(entry, "trsvcid", e->trsvcid); obj_add_str(entry, "subnqn", e->subnqn); obj_add_str(entry, "traddr", e->traddr); obj_add_str(entry, "eflags", nvmf_eflags_str(le16_to_cpu(e->eflags))); switch (e->trtype) { case NVMF_TRTYPE_RDMA: obj_add_str(entry, "rdma_prtype", nvmf_prtype_str(e->tsas.rdma.prtype)); obj_add_str(entry, "rdma_qptype", nvmf_qptype_str(e->tsas.rdma.qptype)); obj_add_str(entry, "rdma_cms", nvmf_cms_str(e->tsas.rdma.cms)); obj_add_uint(entry, "rdma_pkey", le16_to_cpu(e->tsas.rdma.pkey)); break; case NVMF_TRTYPE_TCP: obj_add_str(entry, "sectype", nvmf_sectype_str(e->tsas.tcp.sectype)); break; default: break; } array_add_obj(entries, entry); } json_print(r); } static void json_connect_msg(nvme_ctrl_t c) { struct json_object *r = json_create_object(); obj_add_str(r, "device", nvme_ctrl_get_name(c)); json_print(r); } static void json_output_object(struct json_object *r) { json_print(r); } static void json_output_status(int status) { struct json_object *r; char json_str[STR_LEN]; int val; int type; sprintf(json_str, "status: %d", status); r = obj_create(json_str); if (status < 0) { obj_add_str(r, "error", nvme_strerror(errno)); obj_print(r); return; } val = nvme_status_get_value(status); type = nvme_status_get_type(status); switch (type) { case NVME_STATUS_TYPE_NVME: obj_add_str(r, "error", nvme_status_to_string(val, false)); obj_add_str(r, "type", "nvme"); break; case NVME_STATUS_TYPE_MI: obj_add_str(r, "error", nvme_mi_status_to_string(val)); obj_add_str(r, "type", "nvme-mi"); break; default: obj_add_str(r, "type", "Unknown"); break; } obj_print(r); } static void json_output_error_status(int status, const char *msg, va_list ap) { struct json_object *r; char json_str[STR_LEN]; char *value; int val; int type; if (vasprintf(&value, msg, ap) < 0) value = NULL; sprintf(json_str, "Error: %s", value ? value : "Could not allocate string"); r = obj_create(json_str); free(value); if (status < 0) { obj_add_str(r, "error", nvme_strerror(errno)); obj_print(r); return; } val = nvme_status_get_value(status); type = nvme_status_get_type(status); switch (type) { case NVME_STATUS_TYPE_NVME: obj_add_str(r, "status", nvme_status_to_string(val, false)); obj_add_str(r, "type", "nvme"); break; case NVME_STATUS_TYPE_MI: obj_add_str(r, "status", nvme_mi_status_to_string(val)); obj_add_str(r, "type", "nvme-mi"); break; default: obj_add_str(r, "type", "Unknown"); break; } obj_add_int(r, "value", val); obj_print(r); } static void json_output_message(bool error, const char *msg, va_list ap) { struct json_object *r = json_r ? json_r : json_create_object(); char *value; if (vasprintf(&value, msg, ap) < 0) value = NULL; obj_add_str(r, error ? "error" : "result", value ? value : "Could not allocate string"); free(value); obj_print(r); } static void json_output_perror(const char *msg) { struct json_object *r = json_create_object(); char *error; if (asprintf(&error, "%s: %s", msg, strerror(errno)) < 0) error = NULL; if (error) obj_add_str(r, "error", error); else obj_add_str(r, "error", "Could not allocate string"); json_output_object(r); free(error); } void json_show_init(void) { json_r = json_create_object(); } void json_show_finish(void) { if (json_r) json_output_object(json_r); json_r = NULL; } static struct print_ops json_print_ops = { /* libnvme types.h print functions */ .ana_log = json_ana_log, .boot_part_log = json_boot_part_log, .phy_rx_eom_log = json_phy_rx_eom_log, .ctrl_list = json_nvme_list_ctrl, .ctrl_registers = json_ctrl_registers, .ctrl_register = json_ctrl_register, .directive = json_directive_show, .discovery_log = json_discovery_log, .effects_log_list = json_effects_log_list, .endurance_group_event_agg_log = json_endurance_group_event_agg_log, .endurance_group_list = json_nvme_endurance_group_list, .endurance_log = json_endurance_log, .error_log = json_error_log, .fdp_config_log = json_nvme_fdp_configs, .fdp_event_log = json_nvme_fdp_events, .fdp_ruh_status = json_nvme_fdp_ruh_status, .fdp_stats_log = json_nvme_fdp_stats, .fdp_usage_log = json_nvme_fdp_usage, .fid_supported_effects_log = json_fid_support_effects_log, .fw_log = json_fw_log, .id_ctrl = json_nvme_id_ctrl, .id_ctrl_nvm = json_nvme_id_ctrl_nvm, .id_domain_list = json_id_domain_list, .id_independent_id_ns = json_nvme_cmd_set_independent_id_ns, .id_iocs = json_id_iocs, .id_ns = json_nvme_id_ns, .id_ns_descs = json_nvme_id_ns_descs, .id_ns_granularity_list = json_nvme_id_ns_granularity_list, .id_nvmset_list = json_nvme_id_nvmset, .id_uuid_list = json_nvme_id_uuid_list, .lba_status = json_lba_status, .lba_status_log = json_lba_status_log, .media_unit_stat_log = json_media_unit_stat_log, .mi_cmd_support_effects_log = json_mi_cmd_support_effects_log, .ns_list = json_nvme_list_ns, .ns_list_log = json_changed_ns_list_log, .nvm_id_ns = json_nvme_nvm_id_ns, .persistent_event_log = json_persistent_event_log, .predictable_latency_event_agg_log = json_predictable_latency_event_agg_log, .predictable_latency_per_nvmset = json_predictable_latency_per_nvmset, .primary_ctrl_cap = json_nvme_primary_ctrl_cap, .resv_notification_log = json_resv_notif_log, .resv_report = json_nvme_resv_report, .sanitize_log_page = json_sanitize_log, .secondary_ctrl_list = json_nvme_list_secondary_ctrl, .select_result = json_select_result, .self_test_log = json_self_test_log, .single_property = json_single_property, .smart_log = json_smart_log, .supported_cap_config_list_log = json_supported_cap_config_log, .supported_log_pages = json_support_log, .zns_start_zone_list = json_zns_start_zone_list, .zns_changed_zone_log = json_zns_changed, .zns_finish_zone_list = json_zns_finish_zone_list, .zns_id_ctrl = json_nvme_zns_id_ctrl, .zns_id_ns = json_nvme_zns_id_ns, .zns_report_zones = json_nvme_zns_report_zones, .show_feature = json_feature_show, .show_feature_fields = json_feature_show_fields, .id_ctrl_rpmbs = json_id_ctrl_rpmbs, .lba_range = json_lba_range, .lba_status_info = json_lba_status_info, .d = json_d, .show_init = json_show_init, .show_finish = json_show_finish, /* libnvme tree print functions */ .list_item = json_list_item, .list_items = json_print_list_items, .print_nvme_subsystem_list = json_print_nvme_subsystem_list, .topology_ctrl = json_simple_topology, .topology_namespace = json_simple_topology, /* status and error messages */ .connect_msg = json_connect_msg, .show_message = json_output_message, .show_perror = json_output_perror, .show_status = json_output_status, .show_error_status = json_output_error_status, }; struct print_ops *nvme_get_json_print_ops(nvme_print_flags_t flags) { json_print_ops.flags = flags; return &json_print_ops; }