// SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include #include "nvme.h" #include "libnvme.h" #include "nvme-print.h" #include "nvme-models.h" #include "util/suffix.h" #include "util/types.h" #include "common.h" static const uint8_t zero_uuid[16] = { 0 }; static const uint8_t invalid_uuid[16] = {[0 ... 15] = 0xff }; static const char dash[100] = {[0 ... 99] = '-'}; struct nvme_bar_cap { __u16 mqes; __u8 ams_cqr; __u8 to; __u16 bps_css_nssrs_dstrd; __u8 mpsmax_mpsmin; __u8 rsvd_crms_nsss_cmbs_pmrs; }; static const char *nvme_ana_state_to_string(enum nvme_ana_state state) { switch (state) { case NVME_ANA_STATE_OPTIMIZED: return "optimized"; case NVME_ANA_STATE_NONOPTIMIZED: return "non-optimized"; case NVME_ANA_STATE_INACCESSIBLE: return "inaccessible"; case NVME_ANA_STATE_PERSISTENT_LOSS: return "persistent-loss"; case NVME_ANA_STATE_CHANGE: return "change"; } return "invalid state"; } const char *nvme_cmd_to_string(int admin, __u8 opcode) { if (admin) { switch (opcode) { case nvme_admin_delete_sq: return "Delete I/O Submission Queue"; case nvme_admin_create_sq: return "Create I/O Submission Queue"; case nvme_admin_get_log_page: return "Get Log Page"; case nvme_admin_delete_cq: return "Delete I/O Completion Queue"; case nvme_admin_create_cq: return "Create I/O Completion Queue"; case nvme_admin_identify: return "Identify"; case nvme_admin_abort_cmd: return "Abort"; case nvme_admin_set_features: return "Set Features"; case nvme_admin_get_features: return "Get Features"; case nvme_admin_async_event: return "Asynchronous Event Request"; case nvme_admin_ns_mgmt: return "Namespace Management"; case nvme_admin_fw_commit: return "Firmware Commit"; case nvme_admin_fw_download: return "Firmware Image Download"; case nvme_admin_dev_self_test: return "Device Self-test"; case nvme_admin_ns_attach: return "Namespace Attachment"; case nvme_admin_keep_alive: return "Keep Alive"; case nvme_admin_directive_send: return "Directive Send"; case nvme_admin_directive_recv: return "Directive Receive"; case nvme_admin_virtual_mgmt: return "Virtualization Management"; case nvme_admin_nvme_mi_send: return "NVMe-MI Send"; case nvme_admin_nvme_mi_recv: return "NVMe-MI Receive"; case nvme_admin_dbbuf: return "Doorbell Buffer Config"; case nvme_admin_format_nvm: return "Format NVM"; case nvme_admin_security_send: return "Security Send"; case nvme_admin_security_recv: return "Security Receive"; case nvme_admin_sanitize_nvm: return "Sanitize"; case nvme_admin_get_lba_status: return "Get LBA Status"; } } else { switch (opcode) { case nvme_cmd_flush: return "Flush"; case nvme_cmd_write: return "Write"; case nvme_cmd_read: return "Read"; case nvme_cmd_write_uncor: return "Write Uncorrectable"; case nvme_cmd_compare: return "Compare"; case nvme_cmd_write_zeroes: return "Write Zeroes"; case nvme_cmd_dsm: return "Dataset Management"; case nvme_cmd_resv_register: return "Reservation Register"; case nvme_cmd_resv_report: return "Reservation Report"; case nvme_cmd_resv_acquire: return "Reservation Acquire"; case nvme_cmd_resv_release: return "Reservation Release"; case nvme_cmd_verify: return "Verify"; case nvme_cmd_copy: return "Copy"; case nvme_zns_cmd_mgmt_send: return "Zone Management Send"; case nvme_zns_cmd_mgmt_recv: return "Zone Management Receive"; case nvme_zns_cmd_append: return "Zone Append"; } } return "Unknown"; } static const char *get_sanitize_log_sstat_status_str(__u16 status) { switch (status & NVME_SANITIZE_SSTAT_STATUS_MASK) { case NVME_SANITIZE_SSTAT_STATUS_NEVER_SANITIZED: return "NVM Subsystem has never been sanitized."; case NVME_SANITIZE_SSTAT_STATUS_COMPLETE_SUCCESS: return "Most Recent Sanitize Command Completed Successfully."; case NVME_SANITIZE_SSTAT_STATUS_IN_PROGESS: return "Sanitize in Progress."; case NVME_SANITIZE_SSTAT_STATUS_COMPLETED_FAILED: return "Most Recent Sanitize Command Failed."; case NVME_SANITIZE_SSTAT_STATUS_ND_COMPLETE_SUCCESS: return "Most Recent Sanitize Command (No-Deallocate After Sanitize) Completed Successfully."; default: return "Unknown"; } } static void json_nvme_id_ns(struct nvme_id_ns *ns, bool cap_only) { char nguid_buf[2 * sizeof(ns->nguid) + 1], eui64_buf[2 * sizeof(ns->eui64) + 1]; char *nguid = nguid_buf, *eui64 = eui64_buf; struct json_object *root; struct json_object *lbafs; int i; nvme_uint128_t nvmcap = le128_to_cpu(ns->nvmcap); root = json_create_object(); if (!cap_only) { json_object_add_value_uint64(root, "nsze", le64_to_cpu(ns->nsze)); json_object_add_value_uint64(root, "ncap", le64_to_cpu(ns->ncap)); json_object_add_value_uint64(root, "nuse", le64_to_cpu(ns->nuse)); json_object_add_value_int(root, "nsfeat", ns->nsfeat); } json_object_add_value_int(root, "nlbaf", ns->nlbaf); if (!cap_only) json_object_add_value_int(root, "flbas", ns->flbas); json_object_add_value_int(root, "mc", ns->mc); json_object_add_value_int(root, "dpc", ns->dpc); if (!cap_only) { json_object_add_value_int(root, "dps", ns->dps); json_object_add_value_int(root, "nmic", ns->nmic); json_object_add_value_int(root, "rescap", ns->rescap); json_object_add_value_int(root, "fpi", ns->fpi); json_object_add_value_int(root, "dlfeat", ns->dlfeat); json_object_add_value_int(root, "nawun", le16_to_cpu(ns->nawun)); json_object_add_value_int(root, "nawupf", le16_to_cpu(ns->nawupf)); json_object_add_value_int(root, "nacwu", le16_to_cpu(ns->nacwu)); json_object_add_value_int(root, "nabsn", le16_to_cpu(ns->nabsn)); json_object_add_value_int(root, "nabo", le16_to_cpu(ns->nabo)); json_object_add_value_int(root, "nabspf", le16_to_cpu(ns->nabspf)); json_object_add_value_int(root, "noiob", le16_to_cpu(ns->noiob)); json_object_add_value_uint128(root, "nvmcap", nvmcap); json_object_add_value_int(root, "nsattr", ns->nsattr); json_object_add_value_int(root, "nvmsetid", le16_to_cpu(ns->nvmsetid)); if (ns->nsfeat & 0x10) { json_object_add_value_int(root, "npwg", le16_to_cpu(ns->npwg)); json_object_add_value_int(root, "npwa", le16_to_cpu(ns->npwa)); json_object_add_value_int(root, "npdg", le16_to_cpu(ns->npdg)); json_object_add_value_int(root, "npda", le16_to_cpu(ns->npda)); json_object_add_value_int(root, "nows", le16_to_cpu(ns->nows)); } json_object_add_value_int(root, "mssrl", le16_to_cpu(ns->mssrl)); json_object_add_value_int(root, "mcl", le32_to_cpu(ns->mcl)); json_object_add_value_int(root, "msrc", ns->msrc); } json_object_add_value_int(root, "nulbaf", ns->nulbaf); if (!cap_only) { json_object_add_value_int(root, "anagrpid", le32_to_cpu(ns->anagrpid)); json_object_add_value_int(root, "endgid", le16_to_cpu(ns->endgid)); memset(eui64, 0, sizeof(eui64_buf)); for (i = 0; i < sizeof(ns->eui64); i++) eui64 += sprintf(eui64, "%02x", ns->eui64[i]); memset(nguid, 0, sizeof(nguid_buf)); for (i = 0; i < sizeof(ns->nguid); i++) nguid += sprintf(nguid, "%02x", ns->nguid[i]); json_object_add_value_string(root, "eui64", eui64_buf); json_object_add_value_string(root, "nguid", nguid_buf); } lbafs = json_create_array(); json_object_add_value_array(root, "lbafs", lbafs); for (i = 0; i <= ns->nlbaf; i++) { struct json_object *lbaf = json_create_object(); json_object_add_value_int(lbaf, "ms", le16_to_cpu(ns->lbaf[i].ms)); json_object_add_value_int(lbaf, "ds", ns->lbaf[i].ds); json_object_add_value_int(lbaf, "rp", ns->lbaf[i].rp); json_array_add_value_object(lbafs, lbaf); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_nvme_id_ctrl(struct nvme_id_ctrl *ctrl, void (*vs)(__u8 *vs, struct json_object *root)) { struct json_object *root; struct json_object *psds; nvme_uint128_t tnvmcap = le128_to_cpu(ctrl->tnvmcap); nvme_uint128_t unvmcap = le128_to_cpu(ctrl->unvmcap); nvme_uint128_t megcap = le128_to_cpu(ctrl->megcap); nvme_uint128_t maxdna = le128_to_cpu(ctrl->maxdna); char sn[sizeof(ctrl->sn) + 1], mn[sizeof(ctrl->mn) + 1], fr[sizeof(ctrl->fr) + 1], subnqn[sizeof(ctrl->subnqn) + 1]; __u32 ieee = ctrl->ieee[2] << 16 | ctrl->ieee[1] << 8 | ctrl->ieee[0]; int i; snprintf(sn, sizeof(sn), "%-.*s", (int)sizeof(ctrl->sn), ctrl->sn); snprintf(mn, sizeof(mn), "%-.*s", (int)sizeof(ctrl->mn), ctrl->mn); snprintf(fr, sizeof(fr), "%-.*s", (int)sizeof(ctrl->fr), ctrl->fr); snprintf(subnqn, sizeof(subnqn), "%-.*s", (int)sizeof(ctrl->subnqn), ctrl->subnqn); root = json_create_object(); json_object_add_value_int(root, "vid", le16_to_cpu(ctrl->vid)); json_object_add_value_int(root, "ssvid", le16_to_cpu(ctrl->ssvid)); json_object_add_value_string(root, "sn", sn); json_object_add_value_string(root, "mn", mn); json_object_add_value_string(root, "fr", fr); json_object_add_value_int(root, "rab", ctrl->rab); json_object_add_value_int(root, "ieee", ieee); json_object_add_value_int(root, "cmic", ctrl->cmic); json_object_add_value_int(root, "mdts", ctrl->mdts); json_object_add_value_int(root, "cntlid", le16_to_cpu(ctrl->cntlid)); json_object_add_value_uint(root, "ver", le32_to_cpu(ctrl->ver)); json_object_add_value_uint(root, "rtd3r", le32_to_cpu(ctrl->rtd3r)); json_object_add_value_uint(root, "rtd3e", le32_to_cpu(ctrl->rtd3e)); json_object_add_value_uint(root, "oaes", le32_to_cpu(ctrl->oaes)); json_object_add_value_int(root, "ctratt", le32_to_cpu(ctrl->ctratt)); json_object_add_value_int(root, "rrls", le16_to_cpu(ctrl->rrls)); json_object_add_value_int(root, "cntrltype", ctrl->cntrltype); json_object_add_value_string(root, "fguid", util_uuid_to_string(ctrl->fguid)); json_object_add_value_int(root, "crdt1", le16_to_cpu(ctrl->crdt1)); json_object_add_value_int(root, "crdt2", le16_to_cpu(ctrl->crdt2)); json_object_add_value_int(root, "crdt3", le16_to_cpu(ctrl->crdt3)); json_object_add_value_int(root, "nvmsr", ctrl->nvmsr); json_object_add_value_int(root, "vwci", ctrl->vwci); json_object_add_value_int(root, "mec", ctrl->mec); json_object_add_value_int(root, "oacs", le16_to_cpu(ctrl->oacs)); json_object_add_value_int(root, "acl", ctrl->acl); json_object_add_value_int(root, "aerl", ctrl->aerl); json_object_add_value_int(root, "frmw", ctrl->frmw); json_object_add_value_int(root, "lpa", ctrl->lpa); json_object_add_value_int(root, "elpe", ctrl->elpe); json_object_add_value_int(root, "npss", ctrl->npss); json_object_add_value_int(root, "avscc", ctrl->avscc); json_object_add_value_int(root, "apsta", ctrl->apsta); json_object_add_value_int(root, "wctemp", le16_to_cpu(ctrl->wctemp)); json_object_add_value_int(root, "cctemp", le16_to_cpu(ctrl->cctemp)); json_object_add_value_int(root, "mtfa", le16_to_cpu(ctrl->mtfa)); json_object_add_value_uint(root, "hmpre", le32_to_cpu(ctrl->hmpre)); json_object_add_value_uint(root, "hmmin", le32_to_cpu(ctrl->hmmin)); json_object_add_value_uint128(root, "tnvmcap", tnvmcap); json_object_add_value_uint128(root, "unvmcap", unvmcap); json_object_add_value_uint(root, "rpmbs", le32_to_cpu(ctrl->rpmbs)); json_object_add_value_int(root, "edstt", le16_to_cpu(ctrl->edstt)); json_object_add_value_int(root, "dsto", ctrl->dsto); json_object_add_value_int(root, "fwug", ctrl->fwug); json_object_add_value_int(root, "kas", le16_to_cpu(ctrl->kas)); json_object_add_value_int(root, "hctma", le16_to_cpu(ctrl->hctma)); json_object_add_value_int(root, "mntmt", le16_to_cpu(ctrl->mntmt)); json_object_add_value_int(root, "mxtmt", le16_to_cpu(ctrl->mxtmt)); json_object_add_value_int(root, "sanicap", le32_to_cpu(ctrl->sanicap)); json_object_add_value_int(root, "hmminds", le32_to_cpu(ctrl->hmminds)); json_object_add_value_int(root, "hmmaxd", le16_to_cpu(ctrl->hmmaxd)); json_object_add_value_int(root, "nsetidmax", le16_to_cpu(ctrl->nsetidmax)); json_object_add_value_int(root, "endgidmax", le16_to_cpu(ctrl->endgidmax)); json_object_add_value_int(root, "anatt",ctrl->anatt); json_object_add_value_int(root, "anacap", ctrl->anacap); json_object_add_value_int(root, "anagrpmax", le32_to_cpu(ctrl->anagrpmax)); json_object_add_value_int(root, "nanagrpid", le32_to_cpu(ctrl->nanagrpid)); json_object_add_value_int(root, "pels", le32_to_cpu(ctrl->pels)); json_object_add_value_int(root, "domainid", le16_to_cpu(ctrl->domainid)); json_object_add_value_uint128(root, "megcap", megcap); json_object_add_value_int(root, "sqes", ctrl->sqes); json_object_add_value_int(root, "cqes", ctrl->cqes); json_object_add_value_int(root, "maxcmd", le16_to_cpu(ctrl->maxcmd)); json_object_add_value_uint(root, "nn", le32_to_cpu(ctrl->nn)); json_object_add_value_int(root, "oncs", le16_to_cpu(ctrl->oncs)); json_object_add_value_int(root, "fuses", le16_to_cpu(ctrl->fuses)); json_object_add_value_int(root, "fna", ctrl->fna); json_object_add_value_int(root, "vwc", ctrl->vwc); json_object_add_value_int(root, "awun", le16_to_cpu(ctrl->awun)); json_object_add_value_int(root, "awupf", le16_to_cpu(ctrl->awupf)); json_object_add_value_int(root, "icsvscc", ctrl->icsvscc); json_object_add_value_int(root, "nwpc", ctrl->nwpc); json_object_add_value_int(root, "acwu", le16_to_cpu(ctrl->acwu)); json_object_add_value_int(root, "ocfs", le16_to_cpu(ctrl->ocfs)); json_object_add_value_int(root, "sgls", le32_to_cpu(ctrl->sgls)); json_object_add_value_int(root, "mnan", le32_to_cpu(ctrl->mnan)); json_object_add_value_uint128(root, "maxdna", maxdna); json_object_add_value_int(root, "maxcna", le32_to_cpu(ctrl->maxcna)); if (strlen(subnqn)) json_object_add_value_string(root, "subnqn", subnqn); json_object_add_value_int(root, "ioccsz", le32_to_cpu(ctrl->ioccsz)); json_object_add_value_int(root, "iorcsz", le32_to_cpu(ctrl->iorcsz)); json_object_add_value_int(root, "icdoff", le16_to_cpu(ctrl->icdoff)); json_object_add_value_int(root, "fcatt", ctrl->fcatt); json_object_add_value_int(root, "msdbd", ctrl->msdbd); json_object_add_value_int(root, "ofcs", le16_to_cpu(ctrl->ofcs)); psds = json_create_array(); json_object_add_value_array(root, "psds", psds); for (i = 0; i <= ctrl->npss; i++) { struct json_object *psd = json_create_object(); json_object_add_value_int(psd, "max_power", le16_to_cpu(ctrl->psd[i].mp)); json_object_add_value_int(psd, "flags", ctrl->psd[i].flags); json_object_add_value_uint(psd, "entry_lat", le32_to_cpu(ctrl->psd[i].enlat)); json_object_add_value_uint(psd, "exit_lat", le32_to_cpu(ctrl->psd[i].exlat)); json_object_add_value_int(psd, "read_tput", ctrl->psd[i].rrt); json_object_add_value_int(psd, "read_lat", ctrl->psd[i].rrl); json_object_add_value_int(psd, "write_tput", ctrl->psd[i].rwt); json_object_add_value_int(psd, "write_lat", ctrl->psd[i].rwl); json_object_add_value_int(psd, "idle_power", le16_to_cpu(ctrl->psd[i].idlp)); json_object_add_value_int(psd, "idle_scale", nvme_psd_power_scale(ctrl->psd[i].ips)); json_object_add_value_int(psd, "active_power", le16_to_cpu(ctrl->psd[i].actp)); json_object_add_value_int(psd, "active_power_work", ctrl->psd[i].apws & 0x7); json_object_add_value_int(psd, "active_scale", nvme_psd_power_scale(ctrl->psd[i].apws)); json_array_add_value_object(psds, psd); } if(vs) vs(ctrl->vs, root); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_error_log(struct nvme_error_log_page *err_log, int entries) { struct json_object *root; struct json_object *errors; int i; root = json_create_object(); errors = json_create_array(); json_object_add_value_array(root, "errors", errors); for (i = 0; i < entries; i++) { struct json_object *error = json_create_object(); json_object_add_value_uint64(error, "error_count", le64_to_cpu(err_log[i].error_count)); json_object_add_value_int(error, "sqid", le16_to_cpu(err_log[i].sqid)); json_object_add_value_int(error, "cmdid", le16_to_cpu(err_log[i].cmdid)); json_object_add_value_int(error, "status_field", le16_to_cpu(err_log[i].status_field >> 0x1)); json_object_add_value_int(error, "phase_tag", le16_to_cpu(err_log[i].status_field & 0x1)); json_object_add_value_int(error, "parm_error_location", le16_to_cpu(err_log[i].parm_error_location)); json_object_add_value_uint64(error, "lba", le64_to_cpu(err_log[i].lba)); json_object_add_value_uint(error, "nsid", le32_to_cpu(err_log[i].nsid)); json_object_add_value_int(error, "vs", err_log[i].vs); json_object_add_value_int(error, "trtype", err_log[i].trtype); json_object_add_value_uint64(error, "cs", le64_to_cpu(err_log[i].cs)); json_object_add_value_int(error, "trtype_spec_info", le16_to_cpu(err_log[i].trtype_spec_info)); json_array_add_value_object(errors, error); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_nvme_resv_report(struct nvme_resv_status *status, int bytes, bool eds) { struct json_object *root; struct json_object *rcs; int i, j, regctl, entries; regctl = status->regctl[0] | (status->regctl[1] << 8); root = json_create_object(); json_object_add_value_int(root, "gen", le32_to_cpu(status->gen)); json_object_add_value_int(root, "rtype", status->rtype); json_object_add_value_int(root, "regctl", regctl); json_object_add_value_int(root, "ptpls", status->ptpls); rcs = json_create_array(); /* check Extended Data Structure bit */ if (!eds) { /* * if status buffer was too small, don't loop past the end of * the buffer */ entries = (bytes - 24) / 24; if (entries < regctl) regctl = entries; json_object_add_value_array(root, "regctls", rcs); for (i = 0; i < regctl; i++) { struct json_object *rc = json_create_object(); json_object_add_value_int(rc, "cntlid", le16_to_cpu(status->regctl_ds[i].cntlid)); json_object_add_value_int(rc, "rcsts", status->regctl_ds[i].rcsts); json_object_add_value_uint64(rc, "hostid", le64_to_cpu(status->regctl_ds[i].hostid)); json_object_add_value_uint64(rc, "rkey", le64_to_cpu(status->regctl_ds[i].rkey)); json_array_add_value_object(rcs, rc); } } else { char hostid[33]; /* if status buffer was too small, don't loop past the end of the buffer */ entries = (bytes - 64) / 64; if (entries < regctl) regctl = entries; json_object_add_value_array(root, "regctlext", rcs); for (i = 0; i < regctl; i++) { struct json_object *rc = json_create_object(); json_object_add_value_int(rc, "cntlid", le16_to_cpu(status->regctl_eds[i].cntlid)); json_object_add_value_int(rc, "rcsts", status->regctl_eds[i].rcsts); json_object_add_value_uint64(rc, "rkey", le64_to_cpu(status->regctl_eds[i].rkey)); for (j = 0; j < 16; j++) sprintf(hostid + j * 2, "%02x", status->regctl_eds[i].hostid[j]); json_object_add_value_string(rc, "hostid", hostid); json_array_add_value_object(rcs, rc); } } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_fw_log(struct nvme_firmware_slot *fw_log, const char *devname) { struct json_object *root; struct json_object *fwsi; char fmt[21]; char str[32]; int i; __le64 *frs; root = json_create_object(); fwsi = json_create_object(); json_object_add_value_int(fwsi, "Active Firmware Slot (afi)", fw_log->afi); for (i = 0; i < 7; i++) { if (fw_log->frs[i][0]) { snprintf(fmt, sizeof(fmt), "Firmware Rev Slot %d", i + 1); frs = (__le64 *)&fw_log->frs[i]; snprintf(str, sizeof(str), "%"PRIu64" (%s)", le64_to_cpu(*frs), util_fw_to_string(fw_log->frs[i])); json_object_add_value_string(fwsi, fmt, str); } } json_object_add_value_object(root, devname, fwsi); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_changed_ns_list_log(struct nvme_ns_list *log, const char *devname) { struct json_object *root; struct json_object *nsi; char fmt[32]; char str[32]; __u32 nsid; int i; if (log->ns[0] == cpu_to_le32(0xffffffff)) return; root = json_create_object(); nsi = json_create_object(); json_object_add_value_string(root, "Changed Namespace List Log", devname); for (i = 0; i < NVME_ID_NS_LIST_MAX; i++) { nsid = le32_to_cpu(log->ns[i]); if (nsid == 0) break; snprintf(fmt, sizeof(fmt), "[%4u]", i + 1); snprintf(str, sizeof(str), "%#x", nsid); json_object_add_value_string(nsi, fmt, str); } json_object_add_value_object(root, devname, nsi); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_endurance_log(struct nvme_endurance_group_log *endurance_group, __u16 group_id) { struct json_object *root; nvme_uint128_t endurance_estimate = le128_to_cpu(endurance_group->endurance_estimate); nvme_uint128_t data_units_read = le128_to_cpu(endurance_group->data_units_read); nvme_uint128_t data_units_written = le128_to_cpu(endurance_group->data_units_written); nvme_uint128_t media_units_written = le128_to_cpu(endurance_group->media_units_written); nvme_uint128_t host_read_cmds = le128_to_cpu(endurance_group->host_read_cmds); nvme_uint128_t host_write_cmds = le128_to_cpu(endurance_group->host_write_cmds); nvme_uint128_t media_data_integrity_err = le128_to_cpu(endurance_group->media_data_integrity_err); nvme_uint128_t num_err_info_log_entries = le128_to_cpu(endurance_group->num_err_info_log_entries); root = json_create_object(); json_object_add_value_int(root, "critical_warning", endurance_group->critical_warning); json_object_add_value_int(root, "avl_spare", endurance_group->avl_spare); json_object_add_value_int(root, "avl_spare_threshold", endurance_group->avl_spare_threshold); json_object_add_value_int(root, "percent_used", endurance_group->percent_used); json_object_add_value_uint128(root, "endurance_estimate", endurance_estimate); json_object_add_value_uint128(root, "data_units_read", data_units_read); json_object_add_value_uint128(root, "data_units_written", data_units_written); json_object_add_value_uint128(root, "media_units_written", media_units_written); json_object_add_value_uint128(root, "host_read_cmds", host_read_cmds); json_object_add_value_uint128(root, "host_write_cmds", host_write_cmds); json_object_add_value_uint128(root, "media_data_integrity_err", media_data_integrity_err); json_object_add_value_uint128(root, "num_err_info_log_entries", num_err_info_log_entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_smart_log(struct nvme_smart_log *smart, unsigned int nsid, enum nvme_print_flags flags) { int c, human = flags & VERBOSE; struct json_object *root; char key[21]; unsigned int temperature = ((smart->temperature[1] << 8) | smart->temperature[0]); nvme_uint128_t data_units_read = le128_to_cpu(smart->data_units_read); nvme_uint128_t data_units_written = le128_to_cpu(smart->data_units_written); nvme_uint128_t host_read_commands = le128_to_cpu(smart->host_reads); nvme_uint128_t host_write_commands = le128_to_cpu(smart->host_writes); nvme_uint128_t controller_busy_time = le128_to_cpu(smart->ctrl_busy_time); nvme_uint128_t power_cycles = le128_to_cpu(smart->power_cycles); nvme_uint128_t power_on_hours = le128_to_cpu(smart->power_on_hours); nvme_uint128_t unsafe_shutdowns = le128_to_cpu(smart->unsafe_shutdowns); nvme_uint128_t media_errors = le128_to_cpu(smart->media_errors); nvme_uint128_t num_err_log_entries = le128_to_cpu(smart->num_err_log_entries); root = json_create_object(); if (human) { struct json_object *crt = json_create_object(); json_object_add_value_int(crt, "value", smart->critical_warning); json_object_add_value_int(crt, "available_spare", smart->critical_warning & 0x01); json_object_add_value_int(crt, "temp_threshold", (smart->critical_warning & 0x02) >> 1); json_object_add_value_int(crt, "reliability_degraded", (smart->critical_warning & 0x04) >> 2); json_object_add_value_int(crt, "ro", (smart->critical_warning & 0x08) >> 3); json_object_add_value_int(crt, "vmbu_failed", (smart->critical_warning & 0x10) >> 4); json_object_add_value_int(crt, "pmr_ro", (smart->critical_warning & 0x20) >> 5); json_object_add_value_object(root, "critical_warning", crt); } else json_object_add_value_int(root, "critical_warning", smart->critical_warning); json_object_add_value_int(root, "temperature", temperature); json_object_add_value_int(root, "avail_spare", smart->avail_spare); json_object_add_value_int(root, "spare_thresh", smart->spare_thresh); json_object_add_value_int(root, "percent_used", smart->percent_used); json_object_add_value_int(root, "endurance_grp_critical_warning_summary", smart->endu_grp_crit_warn_sumry); json_object_add_value_uint128(root, "data_units_read", data_units_read); json_object_add_value_uint128(root, "data_units_written", data_units_written); json_object_add_value_uint128(root, "host_read_commands", host_read_commands); json_object_add_value_uint128(root, "host_write_commands", host_write_commands); json_object_add_value_uint128(root, "controller_busy_time", controller_busy_time); json_object_add_value_uint128(root, "power_cycles", power_cycles); json_object_add_value_uint128(root, "power_on_hours", power_on_hours); json_object_add_value_uint128(root, "unsafe_shutdowns", unsafe_shutdowns); json_object_add_value_uint128(root, "media_errors", media_errors); json_object_add_value_uint128(root, "num_err_log_entries", num_err_log_entries); json_object_add_value_uint(root, "warning_temp_time", le32_to_cpu(smart->warning_temp_time)); json_object_add_value_uint(root, "critical_comp_time", le32_to_cpu(smart->critical_comp_time)); for (c=0; c < 8; c++) { __s32 temp = le16_to_cpu(smart->temp_sensor[c]); if (temp == 0) continue; sprintf(key, "temperature_sensor_%d",c+1); json_object_add_value_int(root, key, temp); } json_object_add_value_uint(root, "thm_temp1_trans_count", le32_to_cpu(smart->thm_temp1_trans_count)); json_object_add_value_uint(root, "thm_temp2_trans_count", le32_to_cpu(smart->thm_temp2_trans_count)); json_object_add_value_uint(root, "thm_temp1_total_time", le32_to_cpu(smart->thm_temp1_total_time)); json_object_add_value_uint(root, "thm_temp2_total_time", le32_to_cpu(smart->thm_temp2_total_time)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_ana_log(struct nvme_ana_log *ana_log, const char *devname) { int offset = sizeof(struct nvme_ana_log); struct nvme_ana_log *hdr = ana_log; struct nvme_ana_group_desc *ana_desc; struct json_object *desc_list; struct json_object *ns_list; struct json_object *desc; struct json_object *nsid; struct json_object *root; size_t nsid_buf_size; void *base = ana_log; __u32 nr_nsids; int i, j; root = json_create_object(); json_object_add_value_string(root, "Asymmetric Namespace Access Log for NVMe device", devname); json_object_add_value_uint64(root, "chgcnt", le64_to_cpu(hdr->chgcnt)); json_object_add_value_uint(root, "ngrps", le16_to_cpu(hdr->ngrps)); desc_list = json_create_array(); for (i = 0; i < le16_to_cpu(ana_log->ngrps); i++) { desc = json_create_object(); ana_desc = base + offset; nr_nsids = le32_to_cpu(ana_desc->nnsids); nsid_buf_size = nr_nsids * sizeof(__le32); offset += sizeof(*ana_desc); json_object_add_value_uint(desc, "grpid", le32_to_cpu(ana_desc->grpid)); json_object_add_value_uint(desc, "nnsids", le32_to_cpu(ana_desc->nnsids)); json_object_add_value_uint(desc, "chgcnt", le64_to_cpu(ana_desc->chgcnt)); json_object_add_value_string(desc, "state", nvme_ana_state_to_string(ana_desc->state)); ns_list = json_create_array(); for (j = 0; j < le32_to_cpu(ana_desc->nnsids); j++) { nsid = json_create_object(); json_object_add_value_uint(nsid, "nsid", le32_to_cpu(ana_desc->nsids[j])); json_array_add_value_object(ns_list, nsid); } json_object_add_value_array(desc, "NSIDS", ns_list); offset += nsid_buf_size; json_array_add_value_object(desc_list, desc); } json_object_add_value_array(root, "ANA DESC LIST ", desc_list); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_self_test_log(struct nvme_self_test_log *self_test, __u8 dst_entries) { struct json_object *valid_attrs; struct json_object *root; struct json_object *valid; int i; __u32 num_entries; root = json_create_object(); json_object_add_value_int(root, "Current Device Self-Test Operation", self_test->current_operation); json_object_add_value_int(root, "Current Device Self-Test Completion", self_test->completion); valid = json_create_array(); num_entries = min(dst_entries, NVME_LOG_ST_MAX_RESULTS); for (i = 0; i < num_entries; i++) { valid_attrs = json_create_object(); json_object_add_value_int(valid_attrs, "Self test result", self_test->result[i].dsts & 0xf); if ((self_test->result[i].dsts & 0xf) == 0xf) goto add; json_object_add_value_int(valid_attrs, "Self test code", self_test->result[i].dsts >> 4); json_object_add_value_int(valid_attrs, "Segment number", self_test->result[i].seg); json_object_add_value_int(valid_attrs, "Valid Diagnostic Information", self_test->result[i].vdi); json_object_add_value_uint64(valid_attrs, "Power on hours", le64_to_cpu(self_test->result[i].poh)); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_NSID) json_object_add_value_int(valid_attrs, "Namespace Identifier", le32_to_cpu(self_test->result[i].nsid)); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_FLBA) { json_object_add_value_uint64(valid_attrs, "Failing LBA", le64_to_cpu(self_test->result[i].flba)); } if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_SCT) json_object_add_value_int(valid_attrs, "Status Code Type", self_test->result[i].sct); if (self_test->result[i].vdi & NVME_ST_VALID_DIAG_INFO_SC) json_object_add_value_int(valid_attrs, "Status Code", self_test->result[i].sc); json_object_add_value_int(valid_attrs, "Vendor Specific", (self_test->result[i].vs[1] << 8) | (self_test->result[i].vs[0])); add: json_array_add_value_object(valid, valid_attrs); } json_object_add_value_array(root, "List of Valid Reports", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } struct json_object* json_effects_log(enum nvme_csi csi, struct nvme_cmd_effects_log *effects_log) { struct json_object *root; struct json_object *acs; struct json_object *iocs; unsigned int opcode; char key[128]; __u32 effect; root = json_create_object(); json_object_add_value_uint(root, "command_set_identifier", csi); acs = json_create_object(); for (opcode = 0; opcode < 256; opcode++) { effect = le32_to_cpu(effects_log->acs[opcode]); if (effect & NVME_CMD_EFFECTS_CSUPP) { sprintf(key, "ACS_%u (%s)", opcode, nvme_cmd_to_string(1, opcode)); json_object_add_value_uint(acs, key, effect); } } json_object_add_value_object(root, "admin_cmd_set", acs); iocs = json_create_object(); for (opcode = 0; opcode < 256; opcode++) { effect = le32_to_cpu(effects_log->iocs[opcode]); if (effect & NVME_CMD_EFFECTS_CSUPP) { sprintf(key, "IOCS_%u (%s)", opcode, nvme_cmd_to_string(0, opcode)); json_object_add_value_uint(iocs, key, effect); } } json_object_add_value_object(root, "io_cmd_set", iocs); return root; } void json_effects_log_list(struct list_head *list) { struct json_object *json_list; nvme_effects_log_node_t *node; json_list = json_create_array(); list_for_each(list, node, node) { struct json_object *json_page = json_effects_log(node->csi, &node->effects); json_array_add_value_object(json_list, json_page); } json_print_object(json_list, NULL); printf("\n"); json_free_object(json_list); } static void json_sanitize_log(struct nvme_sanitize_log_page *sanitize_log, const char *devname) { struct json_object *root; struct json_object *dev; struct json_object *sstat; const char *status_str; char str[128]; __u16 status = le16_to_cpu(sanitize_log->sstat); root = json_create_object(); dev = json_create_object(); sstat = json_create_object(); json_object_add_value_int(dev, "sprog", le16_to_cpu(sanitize_log->sprog)); json_object_add_value_int(sstat, "global_erased", (status & NVME_SANITIZE_SSTAT_GLOBAL_DATA_ERASED) >> 8); json_object_add_value_int(sstat, "no_cmplted_passes", (status >> NVME_SANITIZE_SSTAT_COMPLETED_PASSES_SHIFT) & NVME_SANITIZE_SSTAT_COMPLETED_PASSES_MASK); status_str = get_sanitize_log_sstat_status_str(status); sprintf(str, "(%d) %s", status & NVME_SANITIZE_SSTAT_STATUS_MASK, status_str); json_object_add_value_string(sstat, "status", str); json_object_add_value_object(dev, "sstat", sstat); json_object_add_value_uint(dev, "cdw10_info", le32_to_cpu(sanitize_log->scdw10)); json_object_add_value_uint(dev, "time_over_write", le32_to_cpu(sanitize_log->eto)); json_object_add_value_uint(dev, "time_block_erase", le32_to_cpu(sanitize_log->etbe)); json_object_add_value_uint(dev, "time_crypto_erase", le32_to_cpu(sanitize_log->etce)); json_object_add_value_uint(dev, "time_over_write_no_dealloc", le32_to_cpu(sanitize_log->etond)); json_object_add_value_uint(dev, "time_block_erase_no_dealloc", le32_to_cpu(sanitize_log->etbend)); json_object_add_value_uint(dev, "time_crypto_erase_no_dealloc", le32_to_cpu(sanitize_log->etcend)); json_object_add_value_object(root, devname, dev); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_predictable_latency_per_nvmset( struct nvme_nvmset_predictable_lat_log *plpns_log, __u16 nvmset_id) { struct json_object *root; root = json_create_object(); json_object_add_value_uint(root, "nvmset_id", le16_to_cpu(nvmset_id)); json_object_add_value_uint(root, "status", plpns_log->status); json_object_add_value_uint(root, "event_type", le16_to_cpu(plpns_log->event_type)); json_object_add_value_uint64(root, "dtwin_reads_typical", le64_to_cpu(plpns_log->dtwin_rt)); json_object_add_value_uint64(root, "dtwin_writes_typical", le64_to_cpu(plpns_log->dtwin_wt)); json_object_add_value_uint64(root, "dtwin_time_maximum", le64_to_cpu(plpns_log->dtwin_tmax)); json_object_add_value_uint64(root, "ndwin_time_minimum_high", le64_to_cpu(plpns_log->ndwin_tmin_hi)); json_object_add_value_uint64(root, "ndwin_time_minimum_low", le64_to_cpu(plpns_log->ndwin_tmin_lo)); json_object_add_value_uint64(root, "dtwin_reads_estimate", le64_to_cpu(plpns_log->dtwin_re)); json_object_add_value_uint64(root, "dtwin_writes_estimate", le64_to_cpu(plpns_log->dtwin_we)); json_object_add_value_uint64(root, "dtwin_time_estimate", le64_to_cpu(plpns_log->dtwin_te)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_predictable_latency_per_nvmset( struct nvme_nvmset_predictable_lat_log *plpns_log, __u16 nvmset_id, const char *devname, enum nvme_print_flags flags) { if (flags & BINARY) return d_raw((unsigned char *)plpns_log, sizeof(*plpns_log)); if (flags & JSON) return json_predictable_latency_per_nvmset(plpns_log, nvmset_id); printf("Predictable Latency Per NVM Set Log for device: %s\n", devname); printf("Predictable Latency Per NVM Set Log for NVM Set ID: %u\n", le16_to_cpu(nvmset_id)); printf("Status: %u\n", plpns_log->status); printf("Event Type: %u\n", le16_to_cpu(plpns_log->event_type)); printf("DTWIN Reads Typical: %"PRIu64"\n", le64_to_cpu(plpns_log->dtwin_rt)); printf("DTWIN Writes Typical: %"PRIu64"\n", le64_to_cpu(plpns_log->dtwin_wt)); printf("DTWIN Time Maximum: %"PRIu64"\n", le64_to_cpu(plpns_log->dtwin_tmax)); printf("NDWIN Time Minimum High: %"PRIu64" \n", le64_to_cpu(plpns_log->ndwin_tmin_hi)); printf("NDWIN Time Minimum Low: %"PRIu64"\n", le64_to_cpu(plpns_log->ndwin_tmin_lo)); printf("DTWIN Reads Estimate: %"PRIu64"\n", le64_to_cpu(plpns_log->dtwin_re)); printf("DTWIN Writes Estimate: %"PRIu64"\n", le64_to_cpu(plpns_log->dtwin_we)); printf("DTWIN Time Estimate: %"PRIu64"\n\n\n", le64_to_cpu(plpns_log->dtwin_te)); } static void json_predictable_latency_event_agg_log( struct nvme_aggregate_predictable_lat_event *pea_log, __u64 log_entries) { struct json_object *root; struct json_object *valid_attrs; struct json_object *valid; __u64 num_iter; __u64 num_entries; root = json_create_object(); num_entries = le64_to_cpu(pea_log->num_entries); json_object_add_value_uint64(root, "num_entries_avail", num_entries); valid = json_create_array(); num_iter = min(num_entries, log_entries); for (int i = 0; i < num_iter; i++) { valid_attrs = json_create_object(); json_object_add_value_uint(valid_attrs, "entry", le16_to_cpu(pea_log->entries[i])); json_array_add_value_object(valid, valid_attrs); } json_object_add_value_array(root, "list_of_entries", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_predictable_latency_event_agg_log( struct nvme_aggregate_predictable_lat_event *pea_log, __u64 log_entries, __u32 size, const char *devname, enum nvme_print_flags flags) { __u64 num_iter; __u64 num_entries; if (flags & BINARY) return d_raw((unsigned char *)pea_log, size); if (flags & JSON) return json_predictable_latency_event_agg_log(pea_log, log_entries); num_entries = le64_to_cpu(pea_log->num_entries); printf("Predictable Latency Event Aggregate Log for"\ " device: %s\n", devname); printf("Number of Entries Available: %"PRIu64"\n", (uint64_t)num_entries); num_iter = min(num_entries, log_entries); for (int i = 0; i < num_iter; i++) { printf("Entry[%d]: %u\n", i + 1, le16_to_cpu(pea_log->entries[i])); } } const char *nvme_pel_event_to_string(int type) { switch (type) { case NVME_PEL_SMART_HEALTH_EVENT: return "SMART/Health Log Snapshot Event(0x1)"; case NVME_PEL_FW_COMMIT_EVENT: return "Firmware Commit Event(0x2)"; case NVME_PEL_TIMESTAMP_EVENT: return "Timestamp Change Event(0x3)"; case NVME_PEL_POWER_ON_RESET_EVENT: return "Power-on or Reset Event(0x4)"; case NVME_PEL_NSS_HW_ERROR_EVENT: return "NVM Subsystem Hardware Error Event(0x5)"; case NVME_PEL_CHANGE_NS_EVENT: return "Change Namespace Event(0x6)"; case NVME_PEL_FORMAT_START_EVENT: return "Format NVM Start Event(0x7)"; case NVME_PEL_FORMAT_COMPLETION_EVENT: return "Format NVM Completion Event(0x8)"; case NVME_PEL_SANITIZE_START_EVENT: return "Sanitize Start Event(0x9)"; case NVME_PEL_SANITIZE_COMPLETION_EVENT: return "Sanitize Completion Event(0xa)"; case NVME_PEL_SET_FEATURE_EVENT: return "Set Feature Event(0xb)"; case NVME_PEL_TELEMETRY_CRT: return "Set Telemetry CRT Event(0xc)"; case NVME_PEL_THERMAL_EXCURSION_EVENT: return "Thermal Excursion Event(0xd)"; default: return NULL; } } static const char *nvme_show_nss_hw_error(__u16 error_code) { switch (error_code) { case 0x01: return "PCIe Correctable Error"; case 0x02: return "PCIe Uncorrectable Non fatal Error"; case 0x03: return "PCIe Uncorrectable Fatal Error"; case 0x04: return "PCIe Link Status Change"; case 0x05: return "PCIe Link Not Active"; case 0x06: return "Critical Warning Condition"; case 0x07: return "Endurance Group Critical Warning Condition"; case 0x08: return "Unsafe Shutdown"; case 0x09: return "Controller Fatal Status"; case 0xA: return "Media and Data Integrity Status"; case 0xB: return "Controller Ready Timeout Exceeded"; default: return "Reserved"; } } static void add_bitmap(int i, __u8 seb, struct json_object *root, int json_flag) { char evt_str[50]; char key[128]; for (int bit = 0; bit < 8; bit++) { if (nvme_pel_event_to_string(bit + i * 8)) { if (json_flag == 1) { sprintf(key, "bitmap_%x", (bit + i * 8)); if ((seb >> bit) & 0x1) snprintf(evt_str, sizeof(evt_str), "Support %s", nvme_pel_event_to_string(bit + i * 8)); json_object_add_value_string(root, key, evt_str); } else { if (nvme_pel_event_to_string(bit + i * 8)) if ((seb >> bit) & 0x1) printf(" Support %s\n", nvme_pel_event_to_string(bit + i * 8)); } } } } static void json_persistent_event_log(void *pevent_log_info, __u32 size) { struct json_object *root; struct json_object *valid_attrs; struct json_object *valid; __u32 offset, por_info_len, por_info_list; __u64 *fw_rev; char key[128]; char fw_str[50]; struct nvme_smart_log *smart_event; struct nvme_fw_commit_event *fw_commit_event; struct nvme_time_stamp_change_event *ts_change_event; struct nvme_power_on_reset_info_list *por_event; struct nvme_nss_hw_err_event *nss_hw_err_event; struct nvme_change_ns_event *ns_event; struct nvme_format_nvm_start_event *format_start_event; struct nvme_format_nvm_compln_event *format_cmpln_event; struct nvme_sanitize_start_event *sanitize_start_event; struct nvme_sanitize_compln_event *sanitize_cmpln_event; struct nvme_thermal_exc_event *thermal_exc_event; struct nvme_persistent_event_log *pevent_log_head; struct nvme_persistent_event_entry *pevent_entry_head; root = json_create_object(); valid = json_create_array(); offset = sizeof(*pevent_log_head); if (size >= offset) { pevent_log_head = pevent_log_info; char sn[sizeof(pevent_log_head->sn) + 1], mn[sizeof(pevent_log_head->mn) + 1], subnqn[sizeof(pevent_log_head->subnqn) + 1]; snprintf(sn, sizeof(sn), "%-.*s", (int)sizeof(pevent_log_head->sn), pevent_log_head->sn); snprintf(mn, sizeof(mn), "%-.*s", (int)sizeof(pevent_log_head->mn), pevent_log_head->mn); snprintf(subnqn, sizeof(subnqn), "%-.*s", (int)sizeof(pevent_log_head->subnqn), pevent_log_head->subnqn); json_object_add_value_uint(root, "log_id", pevent_log_head->lid); json_object_add_value_uint(root, "total_num_of_events", le32_to_cpu(pevent_log_head->tnev)); json_object_add_value_uint64(root, "total_log_len", le64_to_cpu(pevent_log_head->tll)); json_object_add_value_uint(root, "log_revision", pevent_log_head->rv); json_object_add_value_uint(root, "log_header_len", le16_to_cpu(pevent_log_head->lhl)); json_object_add_value_uint64(root, "timestamp", le64_to_cpu(pevent_log_head->ts)); json_object_add_value_uint128(root, "power_on_hours", le128_to_cpu(pevent_log_head->poh)); json_object_add_value_uint64(root, "power_cycle_count", le64_to_cpu(pevent_log_head->pcc)); json_object_add_value_uint(root, "pci_vid", le16_to_cpu(pevent_log_head->vid)); json_object_add_value_uint(root, "pci_ssvid", le16_to_cpu(pevent_log_head->ssvid)); json_object_add_value_string(root, "sn", sn); json_object_add_value_string(root, "mn", mn); json_object_add_value_string(root, "subnqn", subnqn); json_object_add_value_uint(root, "gen_number", le16_to_cpu(pevent_log_head->gen_number)); json_object_add_value_uint(root, "rci", le32_to_cpu(pevent_log_head->rci)); for (int i = 0; i < 32; i++) { if (pevent_log_head->seb[i] == 0) continue; add_bitmap(i, pevent_log_head->seb[i], root, 1); } } else { printf("No log data can be shown with this log len at least " \ "512 bytes is required or can be 0 to read the complete "\ "log page after context established\n"); return; } for (int i = 0; i < le32_to_cpu(pevent_log_head->tnev); i++) { if (offset + sizeof(*pevent_entry_head) >= size) break; pevent_entry_head = pevent_log_info + offset; if ((offset + pevent_entry_head->ehl + 3 + le16_to_cpu(pevent_entry_head->el)) >= size) break; valid_attrs = json_create_object(); json_object_add_value_uint(valid_attrs, "event_number", i); json_object_add_value_string(valid_attrs, "event_type", nvme_pel_event_to_string(pevent_entry_head->etype)); json_object_add_value_uint(valid_attrs, "event_type_rev", pevent_entry_head->etype_rev); json_object_add_value_uint(valid_attrs, "event_header_len", pevent_entry_head->ehl); json_object_add_value_uint(valid_attrs, "event_header_additional_info", pevent_entry_head->ehai); json_object_add_value_uint(valid_attrs, "ctrl_id", le16_to_cpu(pevent_entry_head->cntlid)); json_object_add_value_uint64(valid_attrs, "event_time_stamp", le64_to_cpu(pevent_entry_head->ets)); json_object_add_value_uint(valid_attrs, "port_id", le16_to_cpu(pevent_entry_head->pelpid)); json_object_add_value_uint(valid_attrs, "vu_info_len", le16_to_cpu(pevent_entry_head->vsil)); json_object_add_value_uint(valid_attrs, "event_len", le16_to_cpu(pevent_entry_head->el)); offset += pevent_entry_head->ehl + 3; switch (pevent_entry_head->etype) { case NVME_PEL_SMART_HEALTH_EVENT: smart_event = pevent_log_info + offset; unsigned int temperature = ((smart_event->temperature[1] << 8) | smart_event->temperature[0]); nvme_uint128_t data_units_read = le128_to_cpu(smart_event->data_units_read); nvme_uint128_t data_units_written = le128_to_cpu(smart_event->data_units_written); nvme_uint128_t host_read_commands = le128_to_cpu(smart_event->host_reads); nvme_uint128_t host_write_commands = le128_to_cpu(smart_event->host_writes); nvme_uint128_t controller_busy_time = le128_to_cpu(smart_event->ctrl_busy_time); nvme_uint128_t power_cycles = le128_to_cpu(smart_event->power_cycles); nvme_uint128_t power_on_hours = le128_to_cpu(smart_event->power_on_hours); nvme_uint128_t unsafe_shutdowns = le128_to_cpu(smart_event->unsafe_shutdowns); nvme_uint128_t media_errors = le128_to_cpu(smart_event->media_errors); nvme_uint128_t num_err_log_entries = le128_to_cpu(smart_event->num_err_log_entries); json_object_add_value_int(valid_attrs, "critical_warning", smart_event->critical_warning); json_object_add_value_int(valid_attrs, "temperature", temperature); json_object_add_value_int(valid_attrs, "avail_spare", smart_event->avail_spare); json_object_add_value_int(valid_attrs, "spare_thresh", smart_event->spare_thresh); json_object_add_value_int(valid_attrs, "percent_used", smart_event->percent_used); json_object_add_value_int(valid_attrs, "endurance_grp_critical_warning_summary", smart_event->endu_grp_crit_warn_sumry); json_object_add_value_uint128(valid_attrs, "data_units_read", data_units_read); json_object_add_value_uint128(valid_attrs, "data_units_written", data_units_written); json_object_add_value_uint128(valid_attrs, "host_read_commands", host_read_commands); json_object_add_value_uint128(valid_attrs, "host_write_commands", host_write_commands); json_object_add_value_uint128(valid_attrs, "controller_busy_time", controller_busy_time); json_object_add_value_uint128(valid_attrs, "power_cycles", power_cycles); json_object_add_value_uint128(valid_attrs, "power_on_hours", power_on_hours); json_object_add_value_uint128(valid_attrs, "unsafe_shutdowns", unsafe_shutdowns); json_object_add_value_uint128(valid_attrs, "media_errors", media_errors); json_object_add_value_uint128(valid_attrs, "num_err_log_entries", num_err_log_entries); json_object_add_value_uint(valid_attrs, "warning_temp_time", le32_to_cpu(smart_event->warning_temp_time)); json_object_add_value_uint(valid_attrs, "critical_comp_time", le32_to_cpu(smart_event->critical_comp_time)); for (int c = 0; c < 8; c++) { __s32 temp = le16_to_cpu(smart_event->temp_sensor[c]); if (temp == 0) continue; sprintf(key, "temperature_sensor_%d",c + 1); json_object_add_value_int(valid_attrs, key, temp); } json_object_add_value_uint(valid_attrs, "thm_temp1_trans_count", le32_to_cpu(smart_event->thm_temp1_trans_count)); json_object_add_value_uint(valid_attrs, "thm_temp2_trans_count", le32_to_cpu(smart_event->thm_temp2_trans_count)); json_object_add_value_uint(valid_attrs, "thm_temp1_total_time", le32_to_cpu(smart_event->thm_temp1_total_time)); json_object_add_value_uint(valid_attrs, "thm_temp2_total_time", le32_to_cpu(smart_event->thm_temp2_total_time)); break; case NVME_PEL_FW_COMMIT_EVENT: fw_commit_event = pevent_log_info + offset; snprintf(fw_str, sizeof(fw_str), "%"PRIu64" (%s)", le64_to_cpu(fw_commit_event->old_fw_rev), util_fw_to_string((char *)&fw_commit_event->old_fw_rev)); json_object_add_value_string(valid_attrs, "old_fw_rev", fw_str); snprintf(fw_str, sizeof(fw_str), "%"PRIu64" (%s)", le64_to_cpu(fw_commit_event->new_fw_rev), util_fw_to_string((char *)&fw_commit_event->new_fw_rev)); json_object_add_value_string(valid_attrs, "new_fw_rev", fw_str); json_object_add_value_uint(valid_attrs, "fw_commit_action", fw_commit_event->fw_commit_action); json_object_add_value_uint(valid_attrs, "fw_slot", fw_commit_event->fw_slot); json_object_add_value_uint(valid_attrs, "sct_fw", fw_commit_event->sct_fw); json_object_add_value_uint(valid_attrs, "sc_fw", fw_commit_event->sc_fw); json_object_add_value_uint(valid_attrs, "vu_assign_fw_commit_rc", le16_to_cpu(fw_commit_event->vndr_assign_fw_commit_rc)); break; case NVME_PEL_TIMESTAMP_EVENT: ts_change_event = pevent_log_info + offset; json_object_add_value_uint64(valid_attrs, "prev_ts", le64_to_cpu(ts_change_event->previous_timestamp)); json_object_add_value_uint64(valid_attrs, "ml_secs_since_reset", le64_to_cpu(ts_change_event->ml_secs_since_reset)); break; case NVME_PEL_POWER_ON_RESET_EVENT: por_info_len = (le16_to_cpu(pevent_entry_head->el) - le16_to_cpu(pevent_entry_head->vsil) - sizeof(*fw_rev)); por_info_list = por_info_len / sizeof(*por_event); fw_rev = pevent_log_info + offset; snprintf(fw_str, sizeof(fw_str), "%"PRIu64" (%s)", le64_to_cpu(*fw_rev), util_fw_to_string((char *)fw_rev)); json_object_add_value_string(valid_attrs, "fw_rev", fw_str); for (int i = 0; i < por_info_list; i++) { por_event = pevent_log_info + offset + sizeof(*fw_rev) + i * sizeof(*por_event); json_object_add_value_uint(valid_attrs, "ctrl_id", le16_to_cpu(por_event->cid)); json_object_add_value_uint(valid_attrs, "fw_act", por_event->fw_act); json_object_add_value_uint(valid_attrs, "op_in_prog", por_event->op_in_prog); json_object_add_value_uint(valid_attrs, "ctrl_power_cycle", le32_to_cpu(por_event->ctrl_power_cycle)); json_object_add_value_uint64(valid_attrs, "power_on_ml_secs", le64_to_cpu(por_event->power_on_ml_seconds)); json_object_add_value_uint64(valid_attrs, "ctrl_time_stamp", le64_to_cpu(por_event->ctrl_time_stamp)); } break; case NVME_PEL_NSS_HW_ERROR_EVENT: nss_hw_err_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "nss_hw_err_code", le16_to_cpu(nss_hw_err_event->nss_hw_err_event_code)); break; case NVME_PEL_CHANGE_NS_EVENT: ns_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "nsmgt_cdw10", le32_to_cpu(ns_event->nsmgt_cdw10)); json_object_add_value_uint64(valid_attrs, "nsze", le64_to_cpu(ns_event->nsze)); json_object_add_value_uint64(valid_attrs, "nscap", le64_to_cpu(ns_event->nscap)); json_object_add_value_uint(valid_attrs, "flbas", ns_event->flbas); json_object_add_value_uint(valid_attrs, "dps", ns_event->dps); json_object_add_value_uint(valid_attrs, "nmic", ns_event->nmic); json_object_add_value_uint(valid_attrs, "ana_grp_id", le32_to_cpu(ns_event->ana_grp_id)); json_object_add_value_uint(valid_attrs, "nvmset_id", le16_to_cpu(ns_event->nvmset_id)); json_object_add_value_uint(valid_attrs, "nsid", le32_to_cpu(ns_event->nsid)); break; case NVME_PEL_FORMAT_START_EVENT: format_start_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "nsid", le32_to_cpu(format_start_event->nsid)); json_object_add_value_uint(valid_attrs, "fna", format_start_event->fna); json_object_add_value_uint(valid_attrs, "format_nvm_cdw10", le32_to_cpu(format_start_event->format_nvm_cdw10)); break; case NVME_PEL_FORMAT_COMPLETION_EVENT: format_cmpln_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "nsid", le32_to_cpu(format_cmpln_event->nsid)); json_object_add_value_uint(valid_attrs, "smallest_fpi", format_cmpln_event->smallest_fpi); json_object_add_value_uint(valid_attrs, "format_nvm_status", format_cmpln_event->format_nvm_status); json_object_add_value_uint(valid_attrs, "compln_info", le16_to_cpu(format_cmpln_event->compln_info)); json_object_add_value_uint(valid_attrs, "status_field", le32_to_cpu(format_cmpln_event->status_field)); break; case NVME_PEL_SANITIZE_START_EVENT: sanitize_start_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "SANICAP", le32_to_cpu(sanitize_start_event->sani_cap)); json_object_add_value_uint(valid_attrs, "sani_cdw10", le32_to_cpu(sanitize_start_event->sani_cdw10)); json_object_add_value_uint(valid_attrs, "sani_cdw11", le32_to_cpu(sanitize_start_event->sani_cdw11)); break; case NVME_PEL_SANITIZE_COMPLETION_EVENT: sanitize_cmpln_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "sani_prog", le16_to_cpu(sanitize_cmpln_event->sani_prog)); json_object_add_value_uint(valid_attrs, "sani_status", le16_to_cpu(sanitize_cmpln_event->sani_status)); json_object_add_value_uint(valid_attrs, "cmpln_info", le16_to_cpu(sanitize_cmpln_event->cmpln_info)); break; case NVME_PEL_THERMAL_EXCURSION_EVENT: thermal_exc_event = pevent_log_info + offset; json_object_add_value_uint(valid_attrs, "over_temp", thermal_exc_event->over_temp); json_object_add_value_uint(valid_attrs, "threshold", thermal_exc_event->threshold); break; } json_array_add_value_object(valid, valid_attrs); offset += le16_to_cpu(pevent_entry_head->el); } json_object_add_value_array(root, "list_of_event_entries", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void nvme_show_persistent_event_log_rci(__le32 pel_header_rci) { __u32 rci = le32_to_cpu(pel_header_rci); __u32 rsvd19 = (rci & 0xfff80000) >> 19; __u8 rce = (rci & 0x40000) >> 18; __u8 rcpit = (rci & 0x30000) >> 16; __u16 rcpid = rci & 0xffff; if(rsvd19) printf(" [31:19] : %#x\tReserved\n", rsvd19); printf("\tReporting Context Exists (RCE): %s(%u)\n", rce ? "true" : "false", rce); printf("\tReporting Context Port Identifier Type (RCPIT): %u(%s)\n", rcpit, (rcpit == 0x00) ? "Does not already exist" : (rcpit == 0x01) ? "NVM subsystem port" : (rcpit == 0x02) ? "NVMe-MI port" : "Reserved"); printf("\tReporting Context Port Identifier (RCPID): %#x\n\n", rcpid); } static void nvme_show_persistent_event_entry_ehai(__u8 ehai) { __u8 rsvd1 = (ehai & 0xfc) >> 2; __u8 pit = ehai & 0x03; printf(" [7:2] : %#x\tReserved\n", rsvd1); printf("\tPort Identifier Type (PIT): %u(%s)\n", pit, (pit == 0x00) ? "PIT not reported and PELPID does not apply" : (pit == 0x01) ? "NVM subsystem port" : (pit == 0x02) ? "NVMe-MI port" : "Event not associated with any port and PELPID does not apply"); } void nvme_show_persistent_event_log(void *pevent_log_info, __u8 action, __u32 size, const char *devname, enum nvme_print_flags flags) { __u32 offset, por_info_len, por_info_list; __u64 *fw_rev; int fid, cdw11, dword_cnt; unsigned char *mem_buf = NULL; struct nvme_smart_log *smart_event; struct nvme_fw_commit_event *fw_commit_event; struct nvme_time_stamp_change_event *ts_change_event; struct nvme_power_on_reset_info_list *por_event; struct nvme_nss_hw_err_event *nss_hw_err_event; struct nvme_change_ns_event *ns_event; struct nvme_format_nvm_start_event *format_start_event; struct nvme_format_nvm_compln_event *format_cmpln_event; struct nvme_sanitize_start_event *sanitize_start_event; struct nvme_sanitize_compln_event *sanitize_cmpln_event; struct nvme_set_feature_event *set_feat_event; struct nvme_thermal_exc_event *thermal_exc_event; struct nvme_persistent_event_log *pevent_log_head; struct nvme_persistent_event_entry *pevent_entry_head; int human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)pevent_log_info, size); if (flags & JSON) return json_persistent_event_log(pevent_log_info, size); offset = sizeof(*pevent_log_head); printf("Persistent Event Log for device: %s\n", devname); printf("Action for Persistent Event Log: %u\n", action); if (size >= offset) { pevent_log_head = pevent_log_info; printf("Log Identifier: %u\n", pevent_log_head->lid); printf("Total Number of Events: %u\n", le32_to_cpu(pevent_log_head->tnev)); printf("Total Log Length : %"PRIu64"\n", le64_to_cpu(pevent_log_head->tll)); printf("Log Revision: %u\n", pevent_log_head->rv); printf("Log Header Length: %u\n", pevent_log_head->lhl); printf("Timestamp: %"PRIu64"\n", le64_to_cpu(pevent_log_head->ts)); printf("Power On Hours (POH): %s", uint128_t_to_string(le128_to_cpu(pevent_log_head->poh))); printf("Power Cycle Count: %"PRIu64"\n", le64_to_cpu(pevent_log_head->pcc)); printf("PCI Vendor ID (VID): %u\n", le16_to_cpu(pevent_log_head->vid)); printf("PCI Subsystem Vendor ID (SSVID): %u\n", le16_to_cpu(pevent_log_head->ssvid)); printf("Serial Number (SN): %-.*s\n", (int)sizeof(pevent_log_head->sn), pevent_log_head->sn); printf("Model Number (MN): %-.*s\n", (int)sizeof(pevent_log_head->mn), pevent_log_head->mn); printf("NVM Subsystem NVMe Qualified Name (SUBNQN): %-.*s\n", (int)sizeof(pevent_log_head->subnqn), pevent_log_head->subnqn); printf("Generation Number: %u\n", le16_to_cpu(pevent_log_head->gen_number)); printf("Reporting Context Information (RCI): %u\n", le32_to_cpu(pevent_log_head->rci)); if (human) nvme_show_persistent_event_log_rci(pevent_log_head->rci); printf("Supported Events Bitmap: \n"); for (int i = 0; i < 32; i++) { if (pevent_log_head->seb[i] == 0) continue; add_bitmap(i, pevent_log_head->seb[i], NULL, 0); } } else { printf("No log data can be shown with this log len at least " \ "512 bytes is required or can be 0 to read the complete "\ "log page after context established\n"); return; } printf("\n"); printf("\nPersistent Event Entries:\n"); for (int i = 0; i < le32_to_cpu(pevent_log_head->tnev); i++) { if (offset + sizeof(*pevent_entry_head) >= size) break; pevent_entry_head = pevent_log_info + offset; if ((offset + pevent_entry_head->ehl + 3 + le16_to_cpu(pevent_entry_head->el)) >= size) break; printf("Event Number: %u\n", i); printf("Event Type: %s\n", nvme_pel_event_to_string(pevent_entry_head->etype)); printf("Event Type Revision: %u\n", pevent_entry_head->etype_rev); printf("Event Header Length: %u\n", pevent_entry_head->ehl); printf("Event Header Additional Info: %u\n", pevent_entry_head->ehai); if (human) nvme_show_persistent_event_entry_ehai(pevent_entry_head->ehai); printf("Controller Identifier: %u\n", le16_to_cpu(pevent_entry_head->cntlid)); printf("Event Timestamp: %"PRIu64"\n", le64_to_cpu(pevent_entry_head->ets)); printf("Port Identifier: %u\n", le16_to_cpu(pevent_entry_head->pelpid)); printf("Vendor Specific Information Length: %u\n", le16_to_cpu(pevent_entry_head->vsil)); printf("Event Length: %u\n", le16_to_cpu(pevent_entry_head->el)); offset += pevent_entry_head->ehl + 3; switch (pevent_entry_head->etype) { case NVME_PEL_SMART_HEALTH_EVENT: smart_event = pevent_log_info + offset; printf("Smart Health Event Entry: \n"); nvme_show_smart_log(smart_event, NVME_NSID_ALL, devname, flags); break; case NVME_PEL_FW_COMMIT_EVENT: fw_commit_event = pevent_log_info + offset; printf("FW Commit Event Entry: \n"); printf("Old Firmware Revision: %"PRIu64" (%s)\n", le64_to_cpu(fw_commit_event->old_fw_rev), util_fw_to_string((char *)&fw_commit_event->old_fw_rev)); printf("New Firmware Revision: %"PRIu64" (%s)\n", le64_to_cpu(fw_commit_event->new_fw_rev), util_fw_to_string((char *)&fw_commit_event->new_fw_rev)); printf("FW Commit Action: %u\n", fw_commit_event->fw_commit_action); printf("FW Slot: %u\n", fw_commit_event->fw_slot); printf("Status Code Type for Firmware Commit Command: %u\n", fw_commit_event->sct_fw); printf("Status Returned for Firmware Commit Command: %u\n", fw_commit_event->sc_fw); printf("Vendor Assigned Firmware Commit Result Code: %u\n", le16_to_cpu(fw_commit_event->vndr_assign_fw_commit_rc)); break; case NVME_PEL_TIMESTAMP_EVENT: ts_change_event = pevent_log_info + offset; printf("Time Stamp Change Event Entry: \n"); printf("Previous Timestamp: %"PRIu64"\n", le64_to_cpu(ts_change_event->previous_timestamp)); printf("Milliseconds Since Reset: %"PRIu64"\n", le64_to_cpu(ts_change_event->ml_secs_since_reset)); break; case NVME_PEL_POWER_ON_RESET_EVENT: por_info_len = (le16_to_cpu(pevent_entry_head->el) - le16_to_cpu(pevent_entry_head->vsil) - sizeof(*fw_rev)); por_info_list = por_info_len / sizeof(*por_event); printf("Power On Reset Event Entry: \n"); fw_rev = pevent_log_info + offset; printf("Firmware Revision: %"PRIu64" (%s)\n", le64_to_cpu(*fw_rev), util_fw_to_string((char *)fw_rev)); printf("Reset Information List: \n"); for (int i = 0; i < por_info_list; i++) { por_event = pevent_log_info + offset + sizeof(*fw_rev) + i * sizeof(*por_event); printf("Controller ID: %u\n", le16_to_cpu(por_event->cid)); printf("Firmware Activation: %u\n", por_event->fw_act); printf("Operation in Progress: %u\n", por_event->op_in_prog); printf("Controller Power Cycle: %u\n", le32_to_cpu(por_event->ctrl_power_cycle)); printf("Power on milliseconds: %"PRIu64"\n", le64_to_cpu(por_event->power_on_ml_seconds)); printf("Controller Timestamp: %"PRIu64"\n", le64_to_cpu(por_event->ctrl_time_stamp)); } break; case NVME_PEL_NSS_HW_ERROR_EVENT: nss_hw_err_event = pevent_log_info + offset; printf("NVM Subsystem Hardware Error Event Code Entry: %u, %s\n", le16_to_cpu(nss_hw_err_event->nss_hw_err_event_code), nvme_show_nss_hw_error(nss_hw_err_event->nss_hw_err_event_code)); break; case NVME_PEL_CHANGE_NS_EVENT: ns_event = pevent_log_info + offset; printf("Change Namespace Event Entry: \n"); printf("Namespace Management CDW10: %u\n", le32_to_cpu(ns_event->nsmgt_cdw10)); printf("Namespace Size: %"PRIu64"\n", le64_to_cpu(ns_event->nsze)); printf("Namespace Capacity: %"PRIu64"\n", le64_to_cpu(ns_event->nscap)); printf("Formatted LBA Size: %u\n", ns_event->flbas); printf("End-to-end Data Protection Type Settings: %u\n", ns_event->dps); printf("Namespace Multi-path I/O and Namespace Sharing" \ " Capabilities: %u\n", ns_event->nmic); printf("ANA Group Identifier: %u\n", le32_to_cpu(ns_event->ana_grp_id)); printf("NVM Set Identifier: %u\n", le16_to_cpu(ns_event->nvmset_id)); printf("Namespace ID: %u\n", le32_to_cpu(ns_event->nsid)); break; case NVME_PEL_FORMAT_START_EVENT: format_start_event = pevent_log_info + offset; printf("Format NVM Start Event Entry: \n"); printf("Namespace Identifier: %u\n", le32_to_cpu(format_start_event->nsid)); printf("Format NVM Attributes: %u\n", format_start_event->fna); printf("Format NVM CDW10: %u\n", le32_to_cpu(format_start_event->format_nvm_cdw10)); break; case NVME_PEL_FORMAT_COMPLETION_EVENT: format_cmpln_event = pevent_log_info + offset; printf("Format NVM Completion Event Entry: \n"); printf("Namespace Identifier: %u\n", le32_to_cpu(format_cmpln_event->nsid)); printf("Smallest Format Progress Indicator: %u\n", format_cmpln_event->smallest_fpi); printf("Format NVM Status: %u\n", format_cmpln_event->format_nvm_status); printf("Completion Information: %u\n", le16_to_cpu(format_cmpln_event->compln_info)); printf("Status Field: %u\n", le32_to_cpu(format_cmpln_event->status_field)); break; case NVME_PEL_SANITIZE_START_EVENT: sanitize_start_event = pevent_log_info + offset; printf("Sanitize Start Event Entry: \n"); printf("SANICAP: %u\n", sanitize_start_event->sani_cap); printf("Sanitize CDW10: %u\n", le32_to_cpu(sanitize_start_event->sani_cdw10)); printf("Sanitize CDW11: %u\n", le32_to_cpu(sanitize_start_event->sani_cdw11)); break; case NVME_PEL_SANITIZE_COMPLETION_EVENT: sanitize_cmpln_event = pevent_log_info + offset; printf("Sanitize Completion Event Entry: \n"); printf("Sanitize Progress: %u\n", le16_to_cpu(sanitize_cmpln_event->sani_prog)); printf("Sanitize Status: %u\n", le16_to_cpu(sanitize_cmpln_event->sani_status)); printf("Completion Information: %u\n", le16_to_cpu(sanitize_cmpln_event->cmpln_info)); break; case NVME_PEL_SET_FEATURE_EVENT: set_feat_event = pevent_log_info + offset; printf("Set Feature Event Entry: \n"); dword_cnt = set_feat_event->layout & 0x03; fid = le32_to_cpu(set_feat_event->cdw_mem[0]) & 0x000f; cdw11 = le32_to_cpu(set_feat_event->cdw_mem[1]); printf("Set Feature ID :%#02x (%s), value:%#08x\n", fid, nvme_feature_to_string(fid), cdw11); if (((set_feat_event->layout & 0xff) >> 2) != 0) { mem_buf = (unsigned char *)(set_feat_event + 4 + dword_cnt * 4); nvme_feature_show_fields(fid, cdw11, mem_buf); } break; case NVME_PEL_TELEMETRY_CRT: d(pevent_log_info + offset, 512, 16, 1); break; case NVME_PEL_THERMAL_EXCURSION_EVENT: thermal_exc_event = pevent_log_info + offset; printf("Thermal Excursion Event Entry: \n"); printf("Over Temperature: %u\n", thermal_exc_event->over_temp); printf("Threshold: %u\n", thermal_exc_event->threshold); break; default: printf("Reserved Event\n\n"); } offset += le16_to_cpu(pevent_entry_head->el); printf("\n"); } } void json_endurance_group_event_agg_log( struct nvme_aggregate_predictable_lat_event *endurance_log, __u64 log_entries) { struct json_object *root; struct json_object *valid_attrs; struct json_object *valid; root = json_create_object(); json_object_add_value_uint64(root, "num_entries_avail", le64_to_cpu(endurance_log->num_entries)); valid = json_create_array(); for (int i = 0; i < log_entries; i++) { valid_attrs = json_create_object(); json_object_add_value_uint(valid_attrs, "entry", le16_to_cpu(endurance_log->entries[i])); json_array_add_value_object(valid, valid_attrs); } json_object_add_value_array(root, "list_of_entries", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_endurance_group_event_agg_log( struct nvme_aggregate_predictable_lat_event *endurance_log, __u64 log_entries, __u32 size, const char *devname, enum nvme_print_flags flags) { if (flags & BINARY) return d_raw((unsigned char *)endurance_log, size); if (flags & JSON) return json_endurance_group_event_agg_log(endurance_log, log_entries); printf("Endurance Group Event Aggregate Log for"\ " device: %s\n", devname); printf("Number of Entries Available: %"PRIu64"\n", le64_to_cpu(endurance_log->num_entries)); for (int i = 0; i < log_entries; i++) { printf("Entry[%d]: %u\n", i + 1, le16_to_cpu(endurance_log->entries[i])); } } static void json_lba_status_log(void *lba_status) { struct json_object *root; struct json_object *desc; struct json_object *element; struct json_object *desc_list; struct json_object *elements_list; struct nvme_lba_status_log *hdr; struct nvme_lbas_ns_element *ns_element; struct nvme_lba_rd *range_desc; int offset = sizeof(*hdr); __u32 num_lba_desc, num_elements; root = json_create_object(); hdr = lba_status; json_object_add_value_uint(root, "lslplen", le32_to_cpu(hdr->lslplen)); num_elements = le32_to_cpu(hdr->nlslne); json_object_add_value_uint(root, "nlslne", num_elements); json_object_add_value_uint(root, "estulb", le32_to_cpu(hdr->estulb)); json_object_add_value_uint(root, "lsgc", le16_to_cpu(hdr->lsgc)); elements_list = json_create_array(); for (int ele = 0; ele < num_elements; ele++) { ns_element = lba_status + offset; element = json_create_object(); json_object_add_value_uint(element, "neid", le32_to_cpu(ns_element->neid)); num_lba_desc = le32_to_cpu(ns_element->nlrd); json_object_add_value_uint(element, "nlrd", num_lba_desc); json_object_add_value_uint(element, "ratype", ns_element->ratype); offset += sizeof(*ns_element); desc_list = json_create_array(); if (num_lba_desc != 0xffffffff) { for (int i = 0; i < num_lba_desc; i++) { range_desc = lba_status + offset; desc = json_create_object(); json_object_add_value_uint64(desc, "rslba", le64_to_cpu(range_desc->rslba)); json_object_add_value_uint(desc, "rnlb", le32_to_cpu(range_desc->rnlb)); offset += sizeof(*range_desc); json_array_add_value_object(desc_list, desc); } } else { printf("Number of LBA Range Descriptors (NLRD) set to %#x for " \ "NS element %d", num_lba_desc, ele); } json_object_add_value_array(element, "descs", desc_list); json_array_add_value_object(elements_list, element); } json_object_add_value_array(root, "ns_elements", elements_list); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_lba_status_log(void *lba_status, __u32 size, const char *devname, enum nvme_print_flags flags) { struct nvme_lba_status_log *hdr; struct nvme_lbas_ns_element *ns_element; struct nvme_lba_rd *range_desc; int offset = sizeof(*hdr); __u32 num_lba_desc, num_elements; if (flags & BINARY) return d_raw((unsigned char *)lba_status, size); if (flags & JSON) return json_lba_status_log(lba_status); hdr = lba_status; printf("LBA Status Log for device: %s\n", devname); printf("LBA Status Log Page Length: %"PRIu32"\n", le32_to_cpu(hdr->lslplen)); num_elements = le32_to_cpu(hdr->nlslne); printf("Number of LBA Status Log Namespace Elements: %"PRIu32"\n", num_elements); printf("Estimate of Unrecoverable Logical Blocks: %"PRIu32"\n", le32_to_cpu(hdr->estulb)); printf("LBA Status Generation Counter: %"PRIu16"\n", le16_to_cpu(hdr->lsgc)); for (int ele = 0; ele < num_elements; ele++) { ns_element = lba_status + offset; printf("Namespace Element Identifier: %"PRIu32"\n", le32_to_cpu(ns_element->neid)); num_lba_desc = le32_to_cpu(ns_element->nlrd); printf("Number of LBA Range Descriptors: %"PRIu32"\n", num_lba_desc); printf("Recommended Action Type: %u\n", ns_element->ratype); offset += sizeof(*ns_element); if (num_lba_desc != 0xffffffff) { for (int i = 0; i < num_lba_desc; i++) { range_desc = lba_status + offset; printf("RSLBA[%d]: %"PRIu64"\n", i, le64_to_cpu(range_desc->rslba)); printf("RNLB[%d]: %"PRIu32"\n", i, le32_to_cpu(range_desc->rnlb)); offset += sizeof(*range_desc); } } else { printf("Number of LBA Range Descriptors (NLRD) set to %#x for "\ "NS element %d\n", num_lba_desc, ele); } } } static const char *resv_notif_to_string(__u8 type) { switch (type) { case 0x1: return "Empty Log Page"; case 0x2: return "Registration Preempted"; case 0x3: return "Reservation Released"; case 0x4: return "Reservation Preempted"; default: return "Reserved"; } } static void json_resv_notif_log(struct nvme_resv_notification_log *resv) { struct json_object *root; root = json_create_object(); json_object_add_value_uint64(root, "count", le64_to_cpu(resv->lpc)); json_object_add_value_uint(root, "rn_log_type", resv->rnlpt); json_object_add_value_uint(root, "num_logs", resv->nalp); json_object_add_value_uint(root, "nsid", le32_to_cpu(resv->nsid)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_resv_notif_log(struct nvme_resv_notification_log *resv, const char *devname, enum nvme_print_flags flags) { if (flags & BINARY) return d_raw((unsigned char *)resv, sizeof(*resv)); if (flags & JSON) return json_resv_notif_log(resv); printf("Reservation Notif Log for device: %s\n", devname); printf("Log Page Count : %"PRIx64"\n", le64_to_cpu(resv->lpc)); printf("Resv Notif Log Page Type : %u (%s)\n", resv->rnlpt, resv_notif_to_string(resv->rnlpt)); printf("Num of Available Log Pages : %u\n", resv->nalp); printf("Namespace ID: : %"PRIx32"\n", le32_to_cpu(resv->nsid)); } static void json_fid_support_effects_log(struct nvme_fid_supported_effects_log *fid_log) { struct json_object *root; struct json_object *fids; struct json_object *fids_list; unsigned int fid; char key[128]; __u32 fid_support; root = json_create_object(); fids_list = json_create_array(); for (fid = 0; fid < 256; fid++) { fid_support = le32_to_cpu(fid_log->fid_support[fid]); if (fid_support & NVME_FID_SUPPORTED_EFFECTS_FSUPP) { fids = json_create_object(); sprintf(key, "fid_%u", fid); json_object_add_value_uint(fids, key, fid_support); json_array_add_value_object(fids_list, fids); } } json_object_add_value_object(root, "fid_support", fids_list); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void nvme_show_fid_support_effects_log_human(__u32 fid_support) { const char *set = "+"; const char *clr = "-"; __u16 fsp; printf(" FSUPP+"); printf(" UDCC%s", (fid_support & NVME_FID_SUPPORTED_EFFECTS_UDCC) ? set : clr); printf(" NCC%s", (fid_support & NVME_FID_SUPPORTED_EFFECTS_NCC) ? set : clr); printf(" NIC%s", (fid_support & NVME_FID_SUPPORTED_EFFECTS_NIC) ? set : clr); printf(" CCC%s", (fid_support & NVME_FID_SUPPORTED_EFFECTS_CCC) ? set : clr); printf(" USS%s", (fid_support & NVME_FID_SUPPORTED_EFFECTS_UUID_SEL) ? set : clr); fsp = (fid_support >> NVME_FID_SUPPORTED_EFFECTS_SCOPE_SHIFT) & NVME_FID_SUPPORTED_EFFECTS_SCOPE_MASK; printf(" NAMESPACE SCOPE%s", (fsp & NVME_FID_SUPPORTED_EFFECTS_SCOPE_NS) ? set : clr); printf(" CONTROLLER SCOPE%s", (fsp & NVME_FID_SUPPORTED_EFFECTS_SCOPE_CTRL) ? set : clr); printf(" NVM SET SCOPE%s", (fsp & NVME_FID_SUPPORTED_EFFECTS_SCOPE_NVM_SET) ? set : clr); printf(" ENDURANCE GROUP SCOPE%s", (fsp & NVME_FID_SUPPORTED_EFFECTS_SCOPE_ENDGRP) ? set : clr); printf(" DOMAIN SCOPE%s", (fsp & NVME_FID_SUPPORTED_EFFECTS_SCOPE_DOMAIN) ? set : clr); printf(" NVM Subsystem SCOPE%s", (fsp & NVME_FID_SUPPORTED_EFFECTS_SCOPE_NSS) ? set : clr); } void nvme_show_fid_support_effects_log(struct nvme_fid_supported_effects_log *fid_log, const char *devname, enum nvme_print_flags flags) { __u32 fid_effect; int i, human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)fid_log, sizeof(*fid_log)); if (flags & JSON) return json_fid_support_effects_log(fid_log); printf("FID Supports Effects Log for device: %s\n", devname); printf("Admin Command Set\n"); for (i = 0; i < 256; i++) { fid_effect = le32_to_cpu(fid_log->fid_support[i]); if (fid_effect & NVME_FID_SUPPORTED_EFFECTS_FSUPP) { printf("FID %02x -> Support Effects Log: %08x", i, fid_effect); if (human) nvme_show_fid_support_effects_log_human(fid_effect); else printf("\n"); } } } static void json_mi_cmd_support_effects_log(struct nvme_mi_cmd_supported_effects_log *mi_cmd_log) { struct json_object *root; struct json_object *mi_cmds; struct json_object *mi_cmds_list; unsigned int mi_cmd; char key[128]; __u32 mi_cmd_support; root = json_create_object(); mi_cmds_list = json_create_array(); for (mi_cmd = 0; mi_cmd < 256; mi_cmd++) { mi_cmd_support = le32_to_cpu(mi_cmd_log->mi_cmd_support[mi_cmd]); if (mi_cmd_support & NVME_MI_CMD_SUPPORTED_EFFECTS_CSUPP) { mi_cmds = json_create_object(); sprintf(key, "mi_cmd_%u", mi_cmd); json_object_add_value_uint(mi_cmds, key, mi_cmd_support); json_array_add_value_object(mi_cmds_list, mi_cmds); } } json_object_add_value_object(root, "mi_command_support", mi_cmds_list); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void nvme_show_mi_cmd_support_effects_log_human(__u32 mi_cmd_support) { const char *set = "+"; const char *clr = "-"; __u16 csp; printf(" CSUPP+"); printf(" UDCC%s", (mi_cmd_support & NVME_MI_CMD_SUPPORTED_EFFECTS_UDCC) ? set : clr); printf(" NCC%s", (mi_cmd_support & NVME_MI_CMD_SUPPORTED_EFFECTS_NCC) ? set : clr); printf(" NIC%s", (mi_cmd_support & NVME_MI_CMD_SUPPORTED_EFFECTS_NIC) ? set : clr); printf(" CCC%s", (mi_cmd_support & NVME_MI_CMD_SUPPORTED_EFFECTS_CCC) ? set : clr); csp = (mi_cmd_support >> NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_SHIFT) & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_MASK; printf(" NAMESPACE SCOPE%s", (csp & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_NS) ? set : clr); printf(" CONTROLLER SCOPE%s", (csp & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_CTRL) ? set : clr); printf(" NVM SET SCOPE%s", (csp & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_NVM_SET) ? set : clr); printf(" ENDURANCE GROUP SCOPE%s", (csp & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_ENDGRP) ? set : clr); printf(" DOMAIN SCOPE%s", (csp & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_DOMAIN) ? set : clr); printf(" NVM Subsystem SCOPE%s", (csp & NVME_MI_CMD_SUPPORTED_EFFECTS_SCOPE_NSS) ? set : clr); } void nvme_show_mi_cmd_support_effects_log(struct nvme_mi_cmd_supported_effects_log *mi_cmd_log, const char *devname, enum nvme_print_flags flags) { __u32 mi_cmd_effect; int i, human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)mi_cmd_log, sizeof(*mi_cmd_log)); if (flags & JSON) return json_mi_cmd_support_effects_log(mi_cmd_log); printf("MI Commands Support Effects Log for device: %s\n", devname); printf("Admin Command Set\n"); for (i = 0; i < NVME_LOG_MI_CMD_SUPPORTED_EFFECTS_MAX; i++) { mi_cmd_effect = le32_to_cpu(mi_cmd_log->mi_cmd_support[i]); if (mi_cmd_effect & NVME_MI_CMD_SUPPORTED_EFFECTS_CSUPP) { printf("MI CMD %02x -> Support Effects Log: %08x", i, mi_cmd_effect); if (human) nvme_show_mi_cmd_support_effects_log_human(mi_cmd_effect); else printf("\n"); } } } static void json_boot_part_log(void *bp_log) { struct nvme_boot_partition *hdr; struct json_object *root; hdr = bp_log; root = json_create_object(); json_object_add_value_uint(root, "count", hdr->lid); json_object_add_value_uint(root, "abpid", (le32_to_cpu(hdr->bpinfo) >> 31) & 0x1); json_object_add_value_uint(root, "bpsz", le32_to_cpu(hdr->bpinfo) & 0x7fff); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_boot_part_log(void *bp_log, const char *devname, __u32 size, enum nvme_print_flags flags) { struct nvme_boot_partition *hdr; if (flags & BINARY) return d_raw((unsigned char *)bp_log, size); if (flags & JSON) return json_boot_part_log(bp_log); hdr = bp_log; printf("Boot Partition Log for device: %s\n", devname); printf("Log ID: %u\n", hdr->lid); printf("Boot Partition Size: %u KiB\n", le32_to_cpu(hdr->bpinfo) & 0x7fff); printf("Active BPID: %u\n", (le32_to_cpu(hdr->bpinfo) >> 31) & 0x1); } static void json_media_unit_stat_log(struct nvme_media_unit_stat_log *mus) { struct json_object *root; struct json_object *entries; struct json_object *entry; int i; root = json_create_object(); entries = json_create_array(); json_object_add_value_uint(root, "nmu", le16_to_cpu(mus->nmu)); json_object_add_value_uint(root, "cchans", le16_to_cpu(mus->cchans)); json_object_add_value_uint(root, "sel_config", le16_to_cpu(mus->sel_config)); for (i = 0; i < mus->nmu; i++) { entry = json_create_object(); json_object_add_value_uint(entry, "muid", le16_to_cpu(mus->mus_desc[i].muid)); json_object_add_value_uint(entry, "domainid", le16_to_cpu(mus->mus_desc[i].domainid)); json_object_add_value_uint(entry, "endgid", le16_to_cpu(mus->mus_desc[i].endgid)); json_object_add_value_uint(entry, "nvmsetid", le16_to_cpu(mus->mus_desc[i].nvmsetid)); json_object_add_value_uint(entry, "cap_adj_fctr", le16_to_cpu(mus->mus_desc[i].cap_adj_fctr)); json_object_add_value_uint(entry, "avl_spare", mus->mus_desc[i].avl_spare); json_object_add_value_uint(entry, "percent_used", mus->mus_desc[i].percent_used); json_object_add_value_uint(entry, "mucs", mus->mus_desc[i].mucs); json_object_add_value_uint(entry, "cio", mus->mus_desc[i].cio); json_array_add_value_object(entries, entry); } json_object_add_value_array(root, "mus_list", entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_media_unit_stat_log(struct nvme_media_unit_stat_log *mus_log, enum nvme_print_flags flags) { int i; int nmu = le16_to_cpu(mus_log->nmu); if (flags & BINARY) return d_raw((unsigned char *)mus_log, sizeof(*mus_log)); else if (flags & JSON) return json_media_unit_stat_log(mus_log); printf("Number of Media Unit Status Descriptors: %u\n", nmu); printf("Number of Channels: %u\n", le16_to_cpu(mus_log->cchans)); printf("Selected Configuration: %u\n", le16_to_cpu(mus_log->sel_config)); for (i = 0; i < nmu; i++) { printf("Media Unit Status Descriptor: %u\n", i); printf("Media Unit Identifier: %u\n", le16_to_cpu(mus_log->mus_desc[i].muid)); printf("Domain Identifier: %u\n", le16_to_cpu(mus_log->mus_desc[i].domainid)); printf("Endurance Group Identifier: %u\n", le16_to_cpu(mus_log->mus_desc[i].endgid)); printf("NVM Set Identifier: %u\n", le16_to_cpu(mus_log->mus_desc[i].nvmsetid)); printf("Capacity Adjustment Factor: %u\n", le16_to_cpu(mus_log->mus_desc[i].cap_adj_fctr)); printf("Available Spare: %u\n", mus_log->mus_desc[i].avl_spare); printf("Percentage Used: %u\n", mus_log->mus_desc[i].percent_used); printf("Number of Channels: %u\n", mus_log->mus_desc[i].mucs); printf("Channel Identifiers Offset: %u\n", mus_log->mus_desc[i].cio); } } static void json_supported_cap_config_log( struct nvme_supported_cap_config_list_log *cap_log) { struct json_object *root; struct json_object *cap_list; struct json_object *capacity; struct json_object *end_list; struct json_object *set_list; struct json_object *set; struct json_object *chan_list; struct json_object *channel; struct json_object *media_list; struct json_object *media; struct json_object *endurance; struct nvme_end_grp_chan_desc *chan_desc; int i, j, k, l, m, sccn, egcn, egsets, egchans, chmus; root = json_create_object(); json_object_add_value_uint(root, "sccn", cap_log->sccn); cap_list = json_create_array(); sccn = cap_log->sccn; for (i = 0; i < sccn; i++) { capacity = json_create_object(); json_object_add_value_uint(capacity, "cap_config_id", le16_to_cpu(cap_log->cap_config_desc[i].cap_config_id)); json_object_add_value_uint(capacity, "domainid", le16_to_cpu(cap_log->cap_config_desc[i].domainid)); json_object_add_value_uint(capacity, "egcn", le16_to_cpu(cap_log->cap_config_desc[i].egcn)); end_list = json_create_array(); egcn = le16_to_cpu(cap_log->cap_config_desc[i].egcn); for (j = 0; j < egcn; j++) { endurance = json_create_object(); json_object_add_value_uint(endurance, "endgid", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].endgid)); json_object_add_value_uint(endurance, "cap_adj_factor", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].cap_adj_factor)); json_object_add_value_uint128(endurance, "tegcap", le128_to_cpu(cap_log->cap_config_desc[i].egcd[j].tegcap)); json_object_add_value_uint128(endurance, "segcap", le128_to_cpu(cap_log->cap_config_desc[i].egcd[j].segcap)); json_object_add_value_uint(endurance, "egsets", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].egsets)); egsets = le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].egsets); set_list = json_create_array(); for (k = 0; k < egsets; k++) { set = json_create_object(); json_object_add_value_uint(set, "nvmsetid", le16_to_cpu(cap_log->cap_config_desc[i].egcd[j].nvmsetid[k])); json_array_add_value_object(set_list, set); } chan_desc = (struct nvme_end_grp_chan_desc *) \ ((cap_log->cap_config_desc[i].egcd[j].nvmsetid[0]) * (sizeof(__u16)*egsets)); egchans = le16_to_cpu(chan_desc->egchans); json_object_add_value_uint(endurance, "egchans", le16_to_cpu(chan_desc->egchans)); chan_list = json_create_array(); for (l = 0; l < egchans; l++) { channel = json_create_object(); json_object_add_value_uint(channel, "chanid", le16_to_cpu(chan_desc->chan_config_desc[l].chanid)); json_object_add_value_uint(channel, "chmus", le16_to_cpu(chan_desc->chan_config_desc[l].chmus)); chmus = le16_to_cpu(chan_desc->chan_config_desc[l].chmus); media_list = json_create_array(); for (m = 0; m < chmus; m++) { media = json_create_object(); json_object_add_value_uint(media, "chanid", le16_to_cpu(chan_desc->chan_config_desc[l].mu_config_desc[m].muid)); json_object_add_value_uint(media, "chmus", le16_to_cpu(chan_desc->chan_config_desc[l].mu_config_desc[m].mudl)); json_array_add_value_object(media_list, media); } json_object_add_value_array(channel, "Media Descriptor", media_list); json_array_add_value_object(chan_list, channel); } json_object_add_value_array(endurance, "Channel Descriptor", chan_list); json_object_add_value_array(endurance, "NVM Set IDs", set_list); json_array_add_value_object(end_list, endurance); } json_object_add_value_array(capacity, "Endurance Descriptor", end_list); json_array_add_value_object(cap_list, capacity); } json_object_add_value_array(root, "Capacity Descriptor", cap_list); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_supported_cap_config_log( struct nvme_supported_cap_config_list_log *cap, enum nvme_print_flags flags) { struct nvme_end_grp_chan_desc *chan_desc; int i, j, k, l, m, sccn, egcn, egsets, egchans, chmus; if (flags & BINARY) return d_raw((unsigned char *)cap, sizeof(*cap)); else if (flags & JSON) return json_supported_cap_config_log(cap); sccn = cap->sccn; printf("Number of Supported Capacity Configurations: %u\n", sccn); for (i = 0; i < sccn; i++) { printf("Capacity Configuration Descriptor: %u\n", i); printf("Capacity Configuration Identifier: %u\n", le16_to_cpu(cap->cap_config_desc[i].cap_config_id)); printf("Domain Identifier: %u\n", le16_to_cpu(cap->cap_config_desc[i].domainid)); egcn = le16_to_cpu(cap->cap_config_desc[i].egcn); printf("Number of Endurance Group Configuration Descriptors: %u\n", egcn); for(j = 0; j < egcn; j++) { printf("Endurance Group Identifier: %u\n", le16_to_cpu(cap->cap_config_desc[i].egcd[j].endgid)); printf("Capacity Adjustment Factor: %u\n", le16_to_cpu(cap->cap_config_desc[i].egcd[j].cap_adj_factor)); printf("Total Endurance Group Capacity: %s\n", uint128_t_to_string(le128_to_cpu( cap->cap_config_desc[i].egcd[j].tegcap))); printf("Spare Endurance Group Capacity: %s\n", uint128_t_to_string(le128_to_cpu( cap->cap_config_desc[i].egcd[j].segcap))); printf("Endurance Estimate: %s\n", uint128_t_to_string(le128_to_cpu( cap->cap_config_desc[i].egcd[j].end_est))); egsets = le16_to_cpu(cap->cap_config_desc[i].egcd[j].egsets); printf("Number of NVM Sets: %u\n", egsets); for(k = 0; k < egsets; k++) { printf("NVM Set %d Identifier: %u\n", i, le16_to_cpu(cap->cap_config_desc[i].egcd[j].nvmsetid[k])); } chan_desc = (struct nvme_end_grp_chan_desc *) \ ((cap->cap_config_desc[i].egcd[j].nvmsetid[0]) * (sizeof(__u16)*egsets)); egchans = le16_to_cpu(chan_desc->egchans); printf("Number of Channels: %u\n", egchans); for(l = 0; l < egchans; l++) { printf("Channel Identifier: %u\n", le16_to_cpu(chan_desc->chan_config_desc[l].chanid)); chmus = le16_to_cpu(chan_desc->chan_config_desc[l].chmus); printf("Number of Channel Media Units: %u\n", chmus); for(m = 0; m < chmus; m++) { printf("Media Unit Identifier: %u\n", le16_to_cpu(chan_desc->chan_config_desc[l].mu_config_desc[m].muid)); printf("Media Unit Descriptor Length: %u\n", le16_to_cpu(chan_desc->chan_config_desc[l].mu_config_desc[m].mudl)); } } } } } static unsigned int nvme_show_subsystem_multipath(nvme_subsystem_t s, bool show_ana) { nvme_ns_t n; nvme_path_t p; unsigned int i = 0; n = nvme_subsystem_first_ns(s); if (!n) return 0; nvme_namespace_for_each_path(n, p) { nvme_ctrl_t c = nvme_path_get_ctrl(p); const char *ana_state = ""; if (show_ana) ana_state = nvme_path_get_ana_state(p); printf(" +- %s %s %s %s %s\n", nvme_ctrl_get_name(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c), nvme_ctrl_get_state(c), ana_state); i++; } return i; } static void nvme_show_subsystem_ctrls(nvme_subsystem_t s) { nvme_ctrl_t c; nvme_subsystem_for_each_ctrl(s, c) { printf(" +- %s %s %s %s\n", nvme_ctrl_get_name(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c), nvme_ctrl_get_state(c)); } } static void nvme_show_subsystem(nvme_root_t r, bool show_ana) { nvme_host_t h; nvme_for_each_host(r, h) { nvme_subsystem_t s; nvme_for_each_subsystem(h, s) { printf("%s - NQN=%s\n", nvme_subsystem_get_name(s), nvme_subsystem_get_nqn(s)); printf("\\\n"); if (!nvme_show_subsystem_multipath(s, show_ana)) nvme_show_subsystem_ctrls(s); } } } static unsigned int json_print_nvme_subsystem_multipath(nvme_subsystem_t s, bool show_ana, json_object *paths) { nvme_ns_t n; nvme_path_t p; unsigned int i = 0; n = nvme_subsystem_first_ns(s); if (!n) return 0; nvme_namespace_for_each_path(n, p) { struct json_object *path_attrs; nvme_ctrl_t c = nvme_path_get_ctrl(p); path_attrs = json_create_object(); json_object_add_value_string(path_attrs, "Name", nvme_ctrl_get_name(c)); json_object_add_value_string(path_attrs, "Transport", nvme_ctrl_get_transport(c)); json_object_add_value_string(path_attrs, "Address", nvme_ctrl_get_address(c)); json_object_add_value_string(path_attrs, "State", nvme_ctrl_get_state(c)); if (show_ana) json_object_add_value_string(path_attrs, "ANAState", nvme_path_get_ana_state(p)); json_array_add_value_object(paths, path_attrs); i++; } return i; } static void json_print_nvme_subsystem_ctrls(nvme_subsystem_t s, json_object *paths) { nvme_ctrl_t c; nvme_subsystem_for_each_ctrl(s, c) { struct json_object *path_attrs; path_attrs = json_create_object(); json_object_add_value_string(path_attrs, "Name", nvme_ctrl_get_name(c)); json_object_add_value_string(path_attrs, "Transport", nvme_ctrl_get_transport(c)); json_object_add_value_string(path_attrs, "Address", nvme_ctrl_get_address(c)); json_object_add_value_string(path_attrs, "State", nvme_ctrl_get_state(c)); json_array_add_value_object(paths, path_attrs); } } static void json_print_nvme_subsystem_list(nvme_root_t r, bool show_ana) { struct json_object *host_attrs, *subsystem_attrs; struct json_object *subsystems, *paths; struct json_object *root; nvme_host_t h; root = json_create_array(); nvme_for_each_host(r, h) { nvme_subsystem_t s; const char *hostid; host_attrs = json_create_object(); json_object_add_value_string(host_attrs, "HostNQN", nvme_host_get_hostnqn(h)); hostid = nvme_host_get_hostid(h); if (hostid) json_object_add_value_string(host_attrs, "HostID", hostid); subsystems = json_create_array(); nvme_for_each_subsystem(h, s) { subsystem_attrs = json_create_object(); json_object_add_value_string(subsystem_attrs, "Name", nvme_subsystem_get_name(s)); json_object_add_value_string(subsystem_attrs, "NQN", nvme_subsystem_get_nqn(s)); json_array_add_value_object(subsystems, subsystem_attrs); paths = json_create_array(); if (!json_print_nvme_subsystem_multipath(s, show_ana, paths)) json_print_nvme_subsystem_ctrls(s, paths); json_object_add_value_array(subsystem_attrs, "Paths", paths); } json_object_add_value_array(host_attrs, "Subsystems", subsystems); json_array_add_value_object(root, host_attrs); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_subsystem_list(nvme_root_t r, bool show_ana, enum nvme_print_flags flags) { if (flags & JSON) return json_print_nvme_subsystem_list(r, show_ana); nvme_show_subsystem(r, show_ana); } static void nvme_show_registers_cap(struct nvme_bar_cap *cap) { printf("\tController Ready With Media Support (CRWMS): %s\n", ((cap->rsvd_crms_nsss_cmbs_pmrs & 0x08) >> 3) ? "Supported" : "Not Supported"); printf("\tController Ready Independent of Media Support (CRIMS): %s\n", ((cap->rsvd_crms_nsss_cmbs_pmrs & 0x10) >> 4) ? "Supported" : "Not Supported"); printf("\tController Memory Buffer Supported (CMBS): The Controller Memory Buffer is %s\n", ((cap->rsvd_crms_nsss_cmbs_pmrs & 0x02) >> 1) ? "Supported" : "Not Supported"); printf("\tPersistent Memory Region Supported (PMRS): The Persistent Memory Region is %s\n", (cap->rsvd_crms_nsss_cmbs_pmrs & 0x01) ? "Supported" : "Not Supported"); printf("\tMemory Page Size Maximum (MPSMAX): %u bytes\n", 1 << (12 + ((cap->mpsmax_mpsmin & 0xf0) >> 4))); printf("\tMemory Page Size Minimum (MPSMIN): %u bytes\n", 1 << (12 + (cap->mpsmax_mpsmin & 0x0f))); printf("\tBoot Partition Support (BPS): %s\n", (cap->bps_css_nssrs_dstrd & 0x2000) ? "Yes":"No"); printf("\tCommand Sets Supported (CSS): NVM command set is %s\n", (cap->bps_css_nssrs_dstrd & 0x0020) ? "Supported" : "Not Supported"); printf("\t One or more I/O Command Sets are %s\n", (cap->bps_css_nssrs_dstrd & 0x0800) ? "Supported" : "Not Supported"); printf("\t %s\n", (cap->bps_css_nssrs_dstrd & 0x1000) ? "Only Admin Command Set Supported" : "I/O Command Set is Supported"); printf("\tNVM Subsystem Reset Supported (NSSRS): %s\n", (cap->bps_css_nssrs_dstrd & 0x0010) ? "Yes":"No"); printf("\tDoorbell Stride (DSTRD): %u bytes\n", 1 << (2 + (cap->bps_css_nssrs_dstrd & 0x000f))); printf("\tTimeout (TO): %u ms\n", cap->to * 500); printf("\tArbitration Mechanism Supported (AMS): Weighted Round Robin with Urgent Priority Class is %s\n", (cap->ams_cqr & 0x02) ? "supported":"not supported"); printf("\tContiguous Queues Required (CQR): %s\n", (cap->ams_cqr & 0x01) ? "Yes":"No"); printf("\tMaximum Queue Entries Supported (MQES): %u\n\n", cap->mqes + 1); } static void nvme_show_registers_version(__u32 vs) { printf("\tNVMe specification %d.%d\n\n", (vs & 0xffff0000) >> 16, (vs & 0x0000ff00) >> 8); } static void nvme_show_registers_cc_ams (__u8 ams) { printf("\tArbitration Mechanism Selected (AMS): "); switch (ams) { case 0: printf("Round Robin\n"); break; case 1: printf("Weighted Round Robin with Urgent Priority Class\n"); break; case 7: printf("Vendor Specific\n"); break; default: printf("Reserved\n"); } } static void nvme_show_registers_cc_shn (__u8 shn) { printf("\tShutdown Notification (SHN): "); switch (shn) { case 0: printf("No notification; no effect\n"); break; case 1: printf("Normal shutdown notification\n"); break; case 2: printf("Abrupt shutdown notification\n"); break; default: printf("Reserved\n"); } } static void nvme_show_registers_cc(__u32 cc) { printf("\tController Ready Independent of Media Enable (CRIME): %s\n", NVME_CC_CRIME(cc) ? "Enabled":"Disabled"); printf("\tI/O Completion Queue Entry Size (IOCQES): %u bytes\n", 1 << ((cc & 0x00f00000) >> NVME_CC_IOCQES_SHIFT)); printf("\tI/O Submission Queue Entry Size (IOSQES): %u bytes\n", 1 << ((cc & 0x000f0000) >> NVME_CC_IOSQES_SHIFT)); nvme_show_registers_cc_shn((cc & 0x0000c000) >> NVME_CC_SHN_SHIFT); nvme_show_registers_cc_ams((cc & 0x00003800) >> NVME_CC_AMS_SHIFT); printf("\tMemory Page Size (MPS): %u bytes\n", 1 << (12 + ((cc & 0x00000780) >> NVME_CC_MPS_SHIFT))); printf("\tI/O Command Set Selected (CSS): %s\n", (cc & 0x00000070) == 0x00 ? "NVM Command Set" : (cc & 0x00000070) == 0x60 ? "All supported I/O Command Sets" : (cc & 0x00000070) == 0x70 ? "Admin Command Set only" : "Reserved"); printf("\tEnable (EN): %s\n\n", (cc & 0x00000001) ? "Yes":"No"); } static void nvme_show_registers_csts_shst(__u8 shst) { printf("\tShutdown Status (SHST): "); switch (shst) { case 0: printf("Normal operation (no shutdown has been requested)\n"); break; case 1: printf("Shutdown processing occurring\n"); break; case 2: printf("Shutdown processing complete\n"); break; default: printf("Reserved\n"); } } static void nvme_show_registers_csts(__u32 csts) { printf("\tProcessing Paused (PP): %s\n", (csts & 0x00000020) ? "Yes":"No"); printf("\tNVM Subsystem Reset Occurred (NSSRO): %s\n", (csts & 0x00000010) ? "Yes":"No"); nvme_show_registers_csts_shst((csts & 0x0000000c) >> 2); printf("\tController Fatal Status (CFS): %s\n", (csts & 0x00000002) ? "True":"False"); printf("\tReady (RDY): %s\n\n", (csts & 0x00000001) ? "Yes":"No"); } static void nvme_show_registers_crto(__u32 crto) { printf("\tCRIMT : %d secs\n", NVME_CRTO_CRIMT(crto)/2 ); printf("\tCRWMT : %d secs\n", NVME_CRTO_CRWMT(crto)/2 ); } static void nvme_show_registers_aqa(__u32 aqa) { printf("\tAdmin Completion Queue Size (ACQS): %u\n", ((aqa & 0x0fff0000) >> 16) + 1); printf("\tAdmin Submission Queue Size (ASQS): %u\n\n", (aqa & 0x00000fff) + 1); } static void nvme_show_registers_cmbloc(__u32 cmbloc, __u32 cmbsz) { static const char *enforced[] = { "Enforced", "Not Enforced" }; if (cmbsz == 0) { printf("\tController Memory Buffer feature is not supported\n\n"); return; } printf("\tOffset (OFST): 0x%x (See cmbsz.szu for granularity)\n", (cmbloc & 0xfffff000) >> 12); printf("\tCMB Queue Dword Alignment (CQDA): %d\n", (cmbloc & 0x00000100) >> 8); printf("\tCMB Data Metadata Mixed Memory Support (CDMMMS): %s\n", enforced[(cmbloc & 0x00000080) >> 7]); printf("\tCMB Data Pointer and Command Independent Locations Support (CDPCILS): %s\n", enforced[(cmbloc & 0x00000040) >> 6]); printf("\tCMB Data Pointer Mixed Locations Support (CDPMLS): %s\n", enforced[(cmbloc & 0x00000020) >> 5]); printf("\tCMB Queue Physically Discontiguous Support (CQPDS): %s\n", enforced[(cmbloc & 0x00000010) >> 4]); printf("\tCMB Queue Mixed Memory Support (CQMMS): %s\n", enforced[(cmbloc & 0x00000008) >> 3]); printf("\tBase Indicator Register (BIR): 0x%x\n\n", (cmbloc & 0x00000007)); } static const char *nvme_register_szu_to_string(__u8 szu) { switch (szu) { case 0: return "4 KB"; case 1: return "64 KB"; case 2: return "1 MB"; case 3: return "16 MB"; case 4: return "256 MB"; case 5: return "4 GB"; case 6: return "64 GB"; default:return "Reserved"; } } static void nvme_show_registers_cmbsz(__u32 cmbsz) { if (cmbsz == 0) { printf("\tController Memory Buffer feature is not supported\n\n"); return; } printf("\tSize (SZ): %u\n", (cmbsz & 0xfffff000) >> 12); printf("\tSize Units (SZU): %s\n", nvme_register_szu_to_string((cmbsz & 0x00000f00) >> 8)); printf("\tWrite Data Support (WDS): Write Data and metadata transfer in Controller Memory Buffer is %s\n", (cmbsz & 0x00000010) ? "Supported":"Not supported"); printf("\tRead Data Support (RDS): Read Data and metadata transfer in Controller Memory Buffer is %s\n", (cmbsz & 0x00000008) ? "Supported":"Not supported"); printf("\tPRP SGL List Support (LISTS): PRP/SG Lists in Controller Memory Buffer is %s\n", (cmbsz & 0x00000004) ? "Supported":"Not supported"); printf("\tCompletion Queue Support (CQS): Admin and I/O Completion Queues in Controller Memory Buffer is %s\n", (cmbsz & 0x00000002) ? "Supported":"Not supported"); printf("\tSubmission Queue Support (SQS): Admin and I/O Submission Queues in Controller Memory Buffer is %s\n\n", (cmbsz & 0x00000001) ? "Supported":"Not supported"); } static void nvme_show_registers_bpinfo_brs(__u8 brs) { printf("\tBoot Read Status (BRS): "); switch (brs) { case 0: printf("No Boot Partition read operation requested\n"); break; case 1: printf("Boot Partition read in progress\n"); break; case 2: printf("Boot Partition read completed successfully\n"); break; case 3: printf("Error completing Boot Partition read\n"); break; default: printf("Invalid\n"); } } static void nvme_show_registers_bpinfo(__u32 bpinfo) { printf("\tActive Boot Partition ID (ABPID): %u\n", (bpinfo & 0x80000000) >> 31); nvme_show_registers_bpinfo_brs((bpinfo & 0x03000000) >> 24); printf("\tBoot Partition Size (BPSZ): %u\n", bpinfo & 0x00007fff); } static void nvme_show_registers_bprsel(__u32 bprsel) { printf("\tBoot Partition Identifier (BPID): %u\n", (bprsel & 0x80000000) >> 31); printf("\tBoot Partition Read Offset (BPROF): %x\n", (bprsel & 0x3ffffc00) >> 10); printf("\tBoot Partition Read Size (BPRSZ): %x\n", bprsel & 0x000003ff); } static void nvme_show_registers_bpmbl(uint64_t bpmbl) { printf("\tBoot Partition Memory Buffer Base Address (BMBBA): %"PRIx64"\n", bpmbl); } static void nvme_show_registers_cmbmsc(uint64_t cmbmsc) { printf("\tController Base Address (CBA): %" PRIx64 "\n", (cmbmsc & 0xfffffffffffff000) >> 12); printf("\tController Memory Space Enable (CMSE): %" PRIx64 "\n", (cmbmsc & 0x0000000000000002) >> 1); printf("\tCapabilities Registers Enabled (CRE): CMBLOC and "\ "CMBSZ registers are%senabled\n\n", (cmbmsc & 0x0000000000000001) ? " " : " NOT "); } static void nvme_show_registers_cmbsts(__u32 cmbsts) { printf("\tController Base Address Invalid (CBAI): %x\n\n", (cmbsts & 0x00000001)); } static void nvme_show_registers_pmrcap(__u32 pmrcap) { printf("\tController Memory Space Supported (CMSS): "\ "Referencing PMR with host supplied addresses is %s\n", ((pmrcap & 0x01000000) >> 24) ? "Supported" : "Not Supported"); printf("\tPersistent Memory Region Timeout (PMRTO): %x\n", (pmrcap & 0x00ff0000) >> 16); printf("\tPersistent Memory Region Write Barrier Mechanisms (PMRWBM): %x\n", (pmrcap & 0x00003c00) >> 10); printf("\tPersistent Memory Region Time Units (PMRTU): PMR time unit is %s\n", (pmrcap & 0x00000300) >> 8 ? "minutes":"500 milliseconds"); printf("\tBase Indicator Register (BIR): %x\n", (pmrcap & 0x000000e0) >> 5); printf("\tWrite Data Support (WDS): Write data to the PMR is %s\n", (pmrcap & 0x00000010) ? "supported":"not supported"); printf("\tRead Data Support (RDS): Read data from the PMR is %s\n", (pmrcap & 0x00000008) ? "supported":"not supported"); } static void nvme_show_registers_pmrctl(__u32 pmrctl) { printf("\tEnable (EN): PMR is %s\n", (pmrctl & 0x00000001) ? "READY" : "Disabled"); } static const char *nvme_register_pmr_hsts_to_string(__u8 hsts) { switch (hsts) { case 0: return "Normal Operation"; case 1: return "Restore Error"; case 2: return "Read Only"; case 3: return "Unreliable"; default: return "Reserved"; } } static void nvme_show_registers_pmrsts(__u32 pmrsts, __u32 pmrctl) { printf("\tController Base Address Invalid (CBAI): %x\n", (pmrsts & 0x00001000) >> 12); printf("\tHealth Status (HSTS): %s\n", nvme_register_pmr_hsts_to_string((pmrsts & 0x00000e00) >> 9)); printf("\tNot Ready (NRDY): "\ "The Persistent Memory Region is %s to process "\ "PCI Express memory read and write requests\n", (pmrsts & 0x00000100) == 0 && (pmrctl & 0x00000001) ? "READY":"Not Ready"); printf("\tError (ERR): %x\n", (pmrsts & 0x000000ff)); } static const char *nvme_register_pmr_pmrszu_to_string(__u8 pmrszu) { switch (pmrszu) { case 0: return "Bytes"; case 1: return "One KB"; case 2: return "One MB"; case 3: return "One GB"; default: return "Reserved"; } } static void nvme_show_registers_pmrebs(__u32 pmrebs) { printf("\tPMR Elasticity Buffer Size Base (PMRWBZ): %x\n", (pmrebs & 0xffffff00) >> 8); printf("\tRead Bypass Behavior : memory reads not conflicting with memory writes "\ "in the PMR Elasticity Buffer %s bypass those memory writes\n", (pmrebs & 0x00000010) ? "SHALL":"MAY"); printf("\tPMR Elasticity Buffer Size Units (PMRSZU): %s\n", nvme_register_pmr_pmrszu_to_string(pmrebs & 0x0000000f)); } static void nvme_show_registers_pmrswtp(__u32 pmrswtp) { printf("\tPMR Sustained Write Throughput (PMRSWTV): %x\n", (pmrswtp & 0xffffff00) >> 8); printf("\tPMR Sustained Write Throughput Units (PMRSWTU): %s/second\n", nvme_register_pmr_pmrszu_to_string(pmrswtp & 0x0000000f)); } static void nvme_show_registers_pmrmscl(uint32_t pmrmscl) { printf("\tController Base Address (CBA): %#x\n", (pmrmscl & 0xfffff000) >> 12); printf("\tController Memory Space Enable (CMSE): %#x\n\n", (pmrmscl & 0x00000002) >> 1); } static void nvme_show_registers_pmrmscu(uint32_t pmrmscu) { printf("\tController Base Address (CBA): %#x\n", pmrmscu); } static void json_ctrl_registers(void *bar) { uint64_t cap, asq, acq, bpmbl, cmbmsc; uint32_t vs, intms, intmc, cc, csts, nssr, crto, aqa, cmbsz, cmbloc, bpinfo, bprsel, cmbsts, pmrcap, pmrctl, pmrsts, pmrebs, pmrswtp, pmrmscl, pmrmscu; struct json_object *root; cap = mmio_read64(bar + NVME_REG_CAP); vs = mmio_read32(bar + NVME_REG_VS); intms = mmio_read32(bar + NVME_REG_INTMS); intmc = mmio_read32(bar + NVME_REG_INTMC); cc = mmio_read32(bar + NVME_REG_CC); csts = mmio_read32(bar + NVME_REG_CSTS); nssr = mmio_read32(bar + NVME_REG_NSSR); crto = mmio_read32(bar + NVME_REG_CRTO); aqa = mmio_read32(bar + NVME_REG_AQA); asq = mmio_read64(bar + NVME_REG_ASQ); acq = mmio_read64(bar + NVME_REG_ACQ); cmbloc = mmio_read32(bar + NVME_REG_CMBLOC); cmbsz = mmio_read32(bar + NVME_REG_CMBSZ); bpinfo = mmio_read32(bar + NVME_REG_BPINFO); bprsel = mmio_read32(bar + NVME_REG_BPRSEL); bpmbl = mmio_read64(bar + NVME_REG_BPMBL); cmbmsc = mmio_read64(bar + NVME_REG_CMBMSC); cmbsts = mmio_read32(bar + NVME_REG_CMBSTS); pmrcap = mmio_read32(bar + NVME_REG_PMRCAP); pmrctl = mmio_read32(bar + NVME_REG_PMRCTL); pmrsts = mmio_read32(bar + NVME_REG_PMRSTS); pmrebs = mmio_read32(bar + NVME_REG_PMREBS); pmrswtp = mmio_read32(bar + NVME_REG_PMRSWTP); pmrmscl = mmio_read32(bar + NVME_REG_PMRMSCL); pmrmscu = mmio_read32(bar + NVME_REG_PMRMSCU); root = json_create_object(); json_object_add_value_uint64(root, "cap", cap); json_object_add_value_int(root, "vs", vs); json_object_add_value_int(root, "intms", intms); json_object_add_value_int(root, "intmc", intmc); json_object_add_value_int(root, "cc", cc); json_object_add_value_int(root, "csts", csts); json_object_add_value_int(root, "nssr", nssr); json_object_add_value_int(root, "crto", crto); json_object_add_value_int(root, "aqa", aqa); json_object_add_value_uint64(root, "asq", asq); json_object_add_value_uint64(root, "acq", acq); json_object_add_value_int(root, "cmbloc", cmbloc); json_object_add_value_int(root, "cmbsz", cmbsz); json_object_add_value_int(root, "bpinfo", bpinfo); json_object_add_value_int(root, "bprsel", bprsel); json_object_add_value_uint64(root, "bpmbl", bpmbl); json_object_add_value_uint64(root, "cmbmsc", cmbmsc); json_object_add_value_int(root, "cmbsts", cmbsts); json_object_add_value_int(root, "pmrcap", pmrcap); json_object_add_value_int(root, "pmrctl", pmrctl); json_object_add_value_int(root, "pmrsts", pmrsts); json_object_add_value_int(root, "pmrebs", pmrebs); json_object_add_value_int(root, "pmrswtp", pmrswtp); json_object_add_value_uint(root, "pmrmscl", pmrmscl); json_object_add_value_uint(root, "pmrmscu", pmrmscu); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_ctrl_registers(void *bar, bool fabrics, enum nvme_print_flags flags) { const unsigned int reg_size = 0x0e1c; /* 0x0000 to 0x0e1b */ uint64_t cap, asq, acq, bpmbl, cmbmsc; uint32_t vs, intms, intmc, cc, csts, nssr, crto, aqa, cmbsz, cmbloc, bpinfo, bprsel, cmbsts, pmrcap, pmrctl, pmrsts, pmrebs, pmrswtp, pmrmscl, pmrmscu; int human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)bar, reg_size); if (flags & JSON) return json_ctrl_registers(bar); cap = mmio_read64(bar + NVME_REG_CAP); vs = mmio_read32(bar + NVME_REG_VS); intms = mmio_read32(bar + NVME_REG_INTMS); intmc = mmio_read32(bar + NVME_REG_INTMC); cc = mmio_read32(bar + NVME_REG_CC); csts = mmio_read32(bar + NVME_REG_CSTS); nssr = mmio_read32(bar + NVME_REG_NSSR); crto = mmio_read32(bar + NVME_REG_CRTO); aqa = mmio_read32(bar + NVME_REG_AQA); asq = mmio_read64(bar + NVME_REG_ASQ); acq = mmio_read64(bar + NVME_REG_ACQ); cmbloc = mmio_read32(bar + NVME_REG_CMBLOC); cmbsz = mmio_read32(bar + NVME_REG_CMBSZ); bpinfo = mmio_read32(bar + NVME_REG_BPINFO); bprsel = mmio_read32(bar + NVME_REG_BPRSEL); bpmbl = mmio_read64(bar + NVME_REG_BPMBL); cmbmsc = mmio_read64(bar + NVME_REG_CMBMSC); cmbsts = mmio_read32(bar + NVME_REG_CMBSTS); pmrcap = mmio_read32(bar + NVME_REG_PMRCAP); pmrctl = mmio_read32(bar + NVME_REG_PMRCTL); pmrsts = mmio_read32(bar + NVME_REG_PMRSTS); pmrebs = mmio_read32(bar + NVME_REG_PMREBS); pmrswtp = mmio_read32(bar + NVME_REG_PMRSWTP); pmrmscl = mmio_read32(bar + NVME_REG_PMRMSCL); pmrmscu = mmio_read32(bar + NVME_REG_PMRMSCU); if (human) { if (cap != 0xffffffff) { printf("cap : %"PRIx64"\n", cap); nvme_show_registers_cap((struct nvme_bar_cap *)&cap); } if (vs != 0xffffffff) { printf("version : %x\n", vs); nvme_show_registers_version(vs); } if (cc != 0xffffffff) { printf("cc : %x\n", cc); nvme_show_registers_cc(cc); } if (csts != 0xffffffff) { printf("csts : %x\n", csts); nvme_show_registers_csts(csts); } if (nssr != 0xffffffff) { printf("nssr : %x\n", nssr); printf("\tNVM Subsystem Reset Control (NSSRC): %u\n\n", nssr); } if (crto != 0xffffffff) { printf("crto : %x\n", crto); nvme_show_registers_crto(crto); } if (!fabrics) { printf("intms : %x\n", intms); printf("\tInterrupt Vector Mask Set (IVMS): %x\n\n", intms); printf("intmc : %x\n", intmc); printf("\tInterrupt Vector Mask Clear (IVMC): %x\n\n", intmc); printf("aqa : %x\n", aqa); nvme_show_registers_aqa(aqa); printf("asq : %"PRIx64"\n", asq); printf("\tAdmin Submission Queue Base (ASQB): %"PRIx64"\n\n", asq); printf("acq : %"PRIx64"\n", acq); printf("\tAdmin Completion Queue Base (ACQB): %"PRIx64"\n\n", acq); printf("cmbloc : %x\n", cmbloc); nvme_show_registers_cmbloc(cmbloc, cmbsz); printf("cmbsz : %x\n", cmbsz); nvme_show_registers_cmbsz(cmbsz); printf("bpinfo : %x\n", bpinfo); nvme_show_registers_bpinfo(bpinfo); printf("bprsel : %x\n", bprsel); nvme_show_registers_bprsel(bprsel); printf("bpmbl : %"PRIx64"\n", bpmbl); nvme_show_registers_bpmbl(bpmbl); printf("cmbmsc : %"PRIx64"\n", cmbmsc); nvme_show_registers_cmbmsc(cmbmsc); printf("cmbsts : %x\n", cmbsts); nvme_show_registers_cmbsts(cmbsts); printf("pmrcap : %x\n", pmrcap); nvme_show_registers_pmrcap(pmrcap); printf("pmrctl : %x\n", pmrctl); nvme_show_registers_pmrctl(pmrctl); printf("pmrsts : %x\n", pmrsts); nvme_show_registers_pmrsts(pmrsts, pmrctl); printf("pmrebs : %x\n", pmrebs); nvme_show_registers_pmrebs(pmrebs); printf("pmrswtp : %x\n", pmrswtp); nvme_show_registers_pmrswtp(pmrswtp); printf("pmrmscl : %#x\n", pmrmscl); nvme_show_registers_pmrmscl(pmrmscl); printf("pmrmscu : %#x\n", pmrmscu); nvme_show_registers_pmrmscu(pmrmscu); } } else { if (cap != 0xffffffff) printf("cap : %"PRIx64"\n", cap); if (vs != 0xffffffff) printf("version : %x\n", vs); if (cc != 0xffffffff) printf("cc : %x\n", cc); if (csts != 0xffffffff) printf("csts : %x\n", csts); if (nssr != 0xffffffff) printf("nssr : %x\n", nssr); if (crto != 0xffffffff) printf("crto : %x\n", crto); if (!fabrics) { printf("intms : %x\n", intms); printf("intmc : %x\n", intmc); printf("aqa : %x\n", aqa); printf("asq : %"PRIx64"\n", asq); printf("acq : %"PRIx64"\n", acq); printf("cmbloc : %x\n", cmbloc); printf("cmbsz : %x\n", cmbsz); printf("bpinfo : %x\n", bpinfo); printf("bprsel : %x\n", bprsel); printf("bpmbl : %"PRIx64"\n", bpmbl); printf("cmbmsc : %"PRIx64"\n", cmbmsc); printf("cmbsts : %x\n", cmbsts); printf("pmrcap : %x\n", pmrcap); printf("pmrctl : %x\n", pmrctl); printf("pmrsts : %x\n", pmrsts); printf("pmrebs : %x\n", pmrebs); printf("pmrswtp : %x\n", pmrswtp); printf("pmrmscl : %#x\n", pmrmscl); printf("pmrmscu : %#x\n", pmrmscu); } } } void nvme_show_single_property(int offset, uint64_t value64, int human) { uint32_t value32; if (!human) { if (nvme_is_64bit_reg(offset)) printf("property: 0x%02x (%s), value: %"PRIx64"\n", offset, nvme_register_to_string(offset), value64); else printf("property: 0x%02x (%s), value: %x\n", offset, nvme_register_to_string(offset), (uint32_t) value64); return; } value32 = (uint32_t) value64; switch (offset) { case NVME_REG_CAP: printf("cap : %"PRIx64"\n", value64); nvme_show_registers_cap((struct nvme_bar_cap *)&value64); break; case NVME_REG_VS: printf("version : %x\n", value32); nvme_show_registers_version(value32); break; case NVME_REG_CC: printf("cc : %x\n", value32); nvme_show_registers_cc(value32); break; case NVME_REG_CSTS: printf("csts : %x\n", value32); nvme_show_registers_csts(value32); break; case NVME_REG_NSSR: printf("nssr : %x\n", value32); printf("\tNVM Subsystem Reset Control (NSSRC): %u\n\n", value32); break; case NVME_REG_CRTO: printf("crto : %x\n", value32); nvme_show_registers_crto(value32); break; default: printf("unknown property: 0x%02x (%s), value: %"PRIx64"\n", offset, nvme_register_to_string(offset), value64); break; } } void nvme_show_relatives(const char *name) { /* XXX: TBD */ } static void d_json(unsigned char *buf, int len, int width, int group, struct json_object *array) { int i, line_done = 0; char ascii[32 + 1]; assert(width < sizeof(ascii)); for (i = 0; i < len; i++) { line_done = 0; ascii[i % width] = (buf[i] >= '!' && buf[i] <= '~') ? buf[i] : '.'; if (((i + 1) % width) == 0) { ascii[i % width + 1] = '\0'; json_array_add_value_string(array, ascii); line_done = 1; } } if (!line_done) { ascii[i % width + 1] = '\0'; json_array_add_value_string(array, ascii); } } void d(unsigned char *buf, int len, int width, int group) { int i, offset = 0, line_done = 0; char ascii[32 + 1]; assert(width < sizeof(ascii)); printf(" "); for (i = 0; i <= 15; i++) printf("%3x", i); for (i = 0; i < len; i++) { line_done = 0; if (i % width == 0) printf( "\n%04x:", offset); if (i % group == 0) printf( " %02x", buf[i]); else printf( "%02x", buf[i]); ascii[i % width] = (buf[i] >= '!' && buf[i] <= '~') ? buf[i] : '.'; if (((i + 1) % width) == 0) { ascii[i % width + 1] = '\0'; printf( " \"%.*s\"", width, ascii); offset += width; line_done = 1; } } if (!line_done) { unsigned b = width - (i % width); ascii[i % width + 1] = '\0'; printf( " %*s \"%.*s\"", 2 * b + b / group + (b % group ? 1 : 0), "", width, ascii); } printf( "\n"); } void d_raw(unsigned char *buf, unsigned len) { unsigned i; for (i = 0; i < len; i++) putchar(*(buf+i)); } void nvme_show_status(int status) { int val = nvme_status_get_value(status); int type = nvme_status_get_type(status); /* Callers should be checking for negative values first, but provide a * sensible fallback anyway */ if (status < 0) { fprintf(stderr, "Error: %s\n", nvme_strerror(errno)); return; } switch (type) { case NVME_STATUS_TYPE_NVME: fprintf(stderr, "NVMe status: %s(%#x)\n", nvme_status_to_string(val, false), val); break; case NVME_STATUS_TYPE_MI: fprintf(stderr, "NVMe-MI status: %s(%#x)\n", nvme_mi_status_to_string(val), val); break; default: fprintf(stderr, "Unknown status type %d, value %#x\n", type, val); } } static void nvme_show_id_ctrl_cmic(__u8 cmic) { __u8 rsvd = (cmic & 0xF0) >> 4; __u8 ana = (cmic & 0x8) >> 3; __u8 sriov = (cmic & 0x4) >> 2; __u8 mctl = (cmic & 0x2) >> 1; __u8 mp = cmic & 0x1; if (rsvd) printf(" [7:4] : %#x\tReserved\n", rsvd); printf(" [3:3] : %#x\tANA %ssupported\n", ana, ana ? "" : "not "); printf(" [2:2] : %#x\t%s\n", sriov, sriov ? "SR-IOV" : "PCI"); printf(" [1:1] : %#x\t%s Controller\n", mctl, mctl ? "Multi" : "Single"); printf(" [0:0] : %#x\t%s Port\n", mp, mp ? "Multi" : "Single"); printf("\n"); } static void nvme_show_id_ctrl_oaes(__le32 ctrl_oaes) { __u32 oaes = le32_to_cpu(ctrl_oaes); __u32 disc = (oaes >> 31) & 0x1; __u32 rsvd0 = (oaes & 0x70000000) >> 28; __u32 zicn = (oaes & 0x08000000) >> 27; __u32 rsvd1 = (oaes & 0x07FF0000) >> 16; __u32 normal_shn = (oaes >> 15) & 0x1; __u32 egealpcn = (oaes & 0x4000) >> 14; __u32 lbasin = (oaes & 0x2000) >> 13; __u32 plealcn = (oaes & 0x1000) >> 12; __u32 anacn = (oaes & 0x800) >> 11; __u32 rsvd2 = (oaes >> 10) & 0x1; __u32 fan = (oaes & 0x200) >> 9; __u32 nace = (oaes & 0x100) >> 8; __u32 rsvd3 = oaes & 0xFF; printf(" [31:31] : %#x\tDiscovery Log Change Notice %sSupported\n", disc, disc ? "" : "Not "); if (rsvd0) printf(" [30:28] : %#x\tReserved\n", rsvd0); printf(" [27:27] : %#x\tZone Descriptor Changed Notices %sSupported\n", zicn, zicn ? "" : "Not "); if (rsvd1) printf(" [26:16] : %#x\tReserved\n", rsvd1); printf(" [15:15] : %#x\tNormal NSS Shutdown Event %sSupported\n", normal_shn, normal_shn ? "" : "Not "); printf(" [14:14] : %#x\tEndurance Group Event Aggregate Log Page"\ " Change Notice %sSupported\n", egealpcn, egealpcn ? "" : "Not "); printf(" [13:13] : %#x\tLBA Status Information Notices %sSupported\n", lbasin, lbasin ? "" : "Not "); printf(" [12:12] : %#x\tPredictable Latency Event Aggregate Log Change"\ " Notices %sSupported\n", plealcn, plealcn ? "" : "Not "); printf(" [11:11] : %#x\tAsymmetric Namespace Access Change Notices"\ " %sSupported\n", anacn, anacn ? "" : "Not "); if (rsvd2) printf(" [10:10] : %#x\tReserved\n", rsvd2); printf(" [9:9] : %#x\tFirmware Activation Notices %sSupported\n", fan, fan ? "" : "Not "); printf(" [8:8] : %#x\tNamespace Attribute Changed Event %sSupported\n", nace, nace ? "" : "Not "); if (rsvd3) printf(" [7:0] : %#x\tReserved\n", rsvd3); printf("\n"); } static void nvme_show_id_ctrl_ctratt(__le32 ctrl_ctratt) { __u32 ctratt = le32_to_cpu(ctrl_ctratt); __u32 rsvd = ctratt >> 16; __u32 elbas = (ctratt >> 15) & 0x1; __u32 delnvmset = (ctratt >> 14) & 0x1; __u32 delegrp = (ctratt >> 13) & 0x1; __u32 vcap = (ctratt >> 12) & 0x1; __u32 fcap = (ctratt >> 11) & 0x1; __u32 mds = (ctratt >> 10) & 0x1; __u32 hostid128 = (ctratt & NVME_CTRL_CTRATT_128_ID) >> 0; __u32 psp = (ctratt & NVME_CTRL_CTRATT_NON_OP_PSP) >> 1; __u32 sets = (ctratt & NVME_CTRL_CTRATT_NVM_SETS) >> 2; __u32 rrl = (ctratt & NVME_CTRL_CTRATT_READ_RECV_LVLS) >> 3; __u32 eg = (ctratt & NVME_CTRL_CTRATT_ENDURANCE_GROUPS) >> 4; __u32 iod = (ctratt & NVME_CTRL_CTRATT_PREDICTABLE_LAT) >> 5; __u32 tbkas = (ctratt & NVME_CTRL_CTRATT_TBKAS) >> 6; __u32 ng = (ctratt & NVME_CTRL_CTRATT_NAMESPACE_GRANULARITY) >> 7; __u32 sqa = (ctratt & NVME_CTRL_CTRATT_SQ_ASSOCIATIONS) >> 8; __u32 uuidlist = (ctratt & NVME_CTRL_CTRATT_UUID_LIST) >> 9; if (rsvd) printf(" [31:16] : %#x\tReserved\n", rsvd); printf(" [15:15] : %#x\tExtended LBA Formats %sSupported\n", elbas, elbas ? "" : "Not "); printf(" [14:14] : %#x\tDelete NVM Set %sSupported\n", delnvmset, delnvmset ? "" : "Not "); printf(" [13:13] : %#x\tDelete Endurance Group %sSupported\n", delegrp, delegrp ? "" : "Not "); printf(" [12:12] : %#x\tVariable Capacity Management %sSupported\n", vcap, vcap ? "" : "Not "); printf(" [11:11] : %#x\tFixed Capacity Management %sSupported\n", fcap, fcap ? "" : "Not "); printf(" [10:10] : %#x\tMulti Domain Subsystem %sSupported\n", mds, mds ? "" : "Not "); printf(" [9:9] : %#x\tUUID List %sSupported\n", uuidlist, uuidlist ? "" : "Not "); printf(" [8:8] : %#x\tSQ Associations %sSupported\n", sqa, sqa ? "" : "Not "); printf(" [7:7] : %#x\tNamespace Granularity %sSupported\n", ng, ng ? "" : "Not "); printf(" [6:6] : %#x\tTraffic Based Keep Alive %sSupported\n", tbkas, tbkas ? "" : "Not "); printf(" [5:5] : %#x\tPredictable Latency Mode %sSupported\n", iod, iod ? "" : "Not "); printf(" [4:4] : %#x\tEndurance Groups %sSupported\n", eg, eg ? "" : "Not "); printf(" [3:3] : %#x\tRead Recovery Levels %sSupported\n", rrl, rrl ? "" : "Not "); printf(" [2:2] : %#x\tNVM Sets %sSupported\n", sets, sets ? "" : "Not "); printf(" [1:1] : %#x\tNon-Operational Power State Permissive %sSupported\n", psp, psp ? "" : "Not "); printf(" [0:0] : %#x\t128-bit Host Identifier %sSupported\n", hostid128, hostid128 ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_cntrltype(__u8 cntrltype) { __u8 rsvd = (cntrltype & 0xFC) >> 2; __u8 cntrl = cntrltype & 0x3; static const char *type[] = { "Controller type not reported", "I/O Controller", "Discovery Controller", "Administrative Controller" }; printf(" [7:2] : %#x\tReserved\n", rsvd); printf(" [1:0] : %#x\t%s\n", cntrltype, type[cntrl]); } static void nvme_show_id_ctrl_nvmsr(__u8 nvmsr) { __u8 rsvd = (nvmsr >> 2) & 0xfc; __u8 nvmee = (nvmsr >> 1) & 0x1; __u8 nvmesd = nvmsr & 0x1; if (rsvd) printf(" [7:2] : %#x\tReserved\n", rsvd); printf(" [1:1] : %#x\tNVM subsystem %spart of an Enclosure\n", nvmee, nvmee ? "" : "Not "); printf(" [0:0] : %#x\tNVM subsystem %spart of an Storage Device\n", nvmesd, nvmesd ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_vwci(__u8 vwci) { __u8 vwcrv = (vwci >> 7) & 0x1; __u8 vwcr = vwci & 0xfe; printf(" [7:7] : %#x\tVPD Write Cycles Remaining field is %svalid.\n", vwcrv, vwcrv ? "" : "Not "); printf(" [6:0] : %#x\tVPD Write Cycles Remaining \n", vwcr); printf("\n"); } static void nvme_show_id_ctrl_mec(__u8 mec) { __u8 rsvd = (mec >> 2) & 0xfc; __u8 pcieme = (mec >> 1) & 0x1; __u8 smbusme = mec & 0x1; if (rsvd) printf(" [7:2] : %#x\tReserved\n", rsvd); printf(" [1:1] : %#x\tNVM subsystem %scontains a Management Endpoint"\ " on a PCIe port\n", pcieme, pcieme ? "" : "Not "); printf(" [0:0] : %#x\tNVM subsystem %scontains a Management Endpoint"\ " on an SMBus/I2C port\n", smbusme, smbusme ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_oacs(__le16 ctrl_oacs) { __u16 oacs = le16_to_cpu(ctrl_oacs); __u16 rsvd = (oacs & 0xF800) >> 11; __u16 lock = (oacs >> 10) & 0x1; __u16 glbas = (oacs & 0x200) >> 9; __u16 dbc = (oacs & 0x100) >> 8; __u16 vir = (oacs & 0x80) >> 7; __u16 nmi = (oacs & 0x40) >> 6; __u16 dir = (oacs & 0x20) >> 5; __u16 sft = (oacs & 0x10) >> 4; __u16 nsm = (oacs & 0x8) >> 3; __u16 fwc = (oacs & 0x4) >> 2; __u16 fmt = (oacs & 0x2) >> 1; __u16 sec = oacs & 0x1; if (rsvd) printf(" [15:11] : %#x\tReserved\n", rsvd); printf(" [10:10] : %#x\tLockdown Command and Feature %sSupported\n", lock, lock ? "" : "Not "); printf(" [9:9] : %#x\tGet LBA Status Capability %sSupported\n", glbas, glbas ? "" : "Not "); printf(" [8:8] : %#x\tDoorbell Buffer Config %sSupported\n", dbc, dbc ? "" : "Not "); printf(" [7:7] : %#x\tVirtualization Management %sSupported\n", vir, vir ? "" : "Not "); printf(" [6:6] : %#x\tNVMe-MI Send and Receive %sSupported\n", nmi, nmi ? "" : "Not "); printf(" [5:5] : %#x\tDirectives %sSupported\n", dir, dir ? "" : "Not "); printf(" [4:4] : %#x\tDevice Self-test %sSupported\n", sft, sft ? "" : "Not "); printf(" [3:3] : %#x\tNS Management and Attachment %sSupported\n", nsm, nsm ? "" : "Not "); printf(" [2:2] : %#x\tFW Commit and Download %sSupported\n", fwc, fwc ? "" : "Not "); printf(" [1:1] : %#x\tFormat NVM %sSupported\n", fmt, fmt ? "" : "Not "); printf(" [0:0] : %#x\tSecurity Send and Receive %sSupported\n", sec, sec ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_frmw(__u8 frmw) { __u8 rsvd = (frmw & 0xC0) >> 6; __u8 smud = (frmw >> 5) & 0x1; __u8 fawr = (frmw & 0x10) >> 4; __u8 nfws = (frmw & 0xE) >> 1; __u8 s1ro = frmw & 0x1; if (rsvd) printf(" [7:6] : %#x\tReserved\n", rsvd); printf(" [5:5] : %#x\tMultiple FW or Boot Update Detection %sSupported\n", smud, smud ? "" : "Not "); printf(" [4:4] : %#x\tFirmware Activate Without Reset %sSupported\n", fawr, fawr ? "" : "Not "); printf(" [3:1] : %#x\tNumber of Firmware Slots\n", nfws); printf(" [0:0] : %#x\tFirmware Slot 1 Read%s\n", s1ro, s1ro ? "-Only" : "/Write"); printf("\n"); } static void nvme_show_id_ctrl_lpa(__u8 lpa) { __u8 rsvd = (lpa & 0x80) >> 7; __u8 tel = (lpa >> 6) & 0x1; __u8 lid_sup = (lpa >> 5) & 0x1; __u8 persevnt = (lpa & 0x10) >> 4; __u8 telem = (lpa & 0x8) >> 3; __u8 ed = (lpa & 0x4) >> 2; __u8 celp = (lpa & 0x2) >> 1; __u8 smlp = lpa & 0x1; if (rsvd) printf(" [7:7] : %#x\tReserved\n", rsvd); printf(" [6:6] : %#x\tTelemetry Log Data Area 4 %sSupported\n", tel, tel ? "" : "Not "); printf(" [5:5] : %#x\tLID 0x0, Scope of each command in LID 0x5, "\ "0x12, 0x13 %sSupported\n", lid_sup, lid_sup ? "" : "Not "); printf(" [4:4] : %#x\tPersistent Event log %sSupported\n", persevnt, persevnt ? "" : "Not "); printf(" [3:3] : %#x\tTelemetry host/controller initiated log page %sSupported\n", telem, telem ? "" : "Not "); printf(" [2:2] : %#x\tExtended data for Get Log Page %sSupported\n", ed, ed ? "" : "Not "); printf(" [1:1] : %#x\tCommand Effects Log Page %sSupported\n", celp, celp ? "" : "Not "); printf(" [0:0] : %#x\tSMART/Health Log Page per NS %sSupported\n", smlp, smlp ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_elpe(__u8 elpe) { printf(" [7:0] : %d (0's based)\tError Log Page Entries (ELPE)\n", elpe); printf("\n"); } static void nvme_show_id_ctrl_npss(__u8 npss) { printf(" [7:0] : %d (0's based)\tNumber of Power States Support (NPSS)\n", npss); printf("\n"); } static void nvme_show_id_ctrl_avscc(__u8 avscc) { __u8 rsvd = (avscc & 0xFE) >> 1; __u8 fmt = avscc & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tAdmin Vendor Specific Commands uses %s Format\n", fmt, fmt ? "NVMe" : "Vendor Specific"); printf("\n"); } static void nvme_show_id_ctrl_apsta(__u8 apsta) { __u8 rsvd = (apsta & 0xFE) >> 1; __u8 apst = apsta & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tAutonomous Power State Transitions %sSupported\n", apst, apst ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_wctemp(__le16 wctemp) { printf(" [15:0] : %ld°C (%u Kelvin)\tWarning Composite Temperature Threshold (WCTEMP)\n", kelvin_to_celsius(le16_to_cpu(wctemp)), le16_to_cpu(wctemp)); printf("\n"); } static void nvme_show_id_ctrl_cctemp(__le16 cctemp) { printf(" [15:0] : %ld°C (%u Kelvin)\tCritical Composite Temperature Threshold (CCTEMP)\n", kelvin_to_celsius(le16_to_cpu(cctemp)), le16_to_cpu(cctemp)); printf("\n"); } static void nvme_show_id_ctrl_tnvmcap(__u8 *tnvmcap) { printf("[127:0] : %s\n", uint128_t_to_string(le128_to_cpu(tnvmcap))); printf("\tTotal NVM Capacity (TNVMCAP)\n\n"); } static void nvme_show_id_ctrl_unvmcap(__u8 *unvmcap) { printf("[127:0] : %s\n", uint128_t_to_string(le128_to_cpu(unvmcap))); printf("\tUnallocated NVM Capacity (UNVMCAP)\n\n"); } void nvme_show_id_ctrl_rpmbs(__le32 ctrl_rpmbs) { __u32 rpmbs = le32_to_cpu(ctrl_rpmbs); __u32 asz = (rpmbs & 0xFF000000) >> 24; __u32 tsz = (rpmbs & 0xFF0000) >> 16; __u32 rsvd = (rpmbs & 0xFFC0) >> 6; __u32 auth = (rpmbs & 0x38) >> 3; __u32 rpmb = rpmbs & 0x7; printf(" [31:24]: %#x\tAccess Size\n", asz); printf(" [23:16]: %#x\tTotal Size\n", tsz); if (rsvd) printf(" [15:6] : %#x\tReserved\n", rsvd); printf(" [5:3] : %#x\tAuthentication Method\n", auth); printf(" [2:0] : %#x\tNumber of RPMB Units\n", rpmb); printf("\n"); } static void nvme_show_id_ctrl_hctma(__le16 ctrl_hctma) { __u16 hctma = le16_to_cpu(ctrl_hctma); __u16 rsvd = (hctma & 0xFFFE) >> 1; __u16 hctm = hctma & 0x1; if (rsvd) printf(" [15:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tHost Controlled Thermal Management %sSupported\n", hctm, hctm ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_mntmt(__le16 mntmt) { printf(" [15:0] : %ld°C (%u Kelvin)\tMinimum Thermal Management Temperature (MNTMT)\n", kelvin_to_celsius(le16_to_cpu(mntmt)), le16_to_cpu(mntmt)); printf("\n"); } static void nvme_show_id_ctrl_mxtmt(__le16 mxtmt) { printf(" [15:0] : %ld°C (%u Kelvin)\tMaximum Thermal Management Temperature (MXTMT)\n", kelvin_to_celsius(le16_to_cpu(mxtmt)), le16_to_cpu(mxtmt)); printf("\n"); } static void nvme_show_id_ctrl_sanicap(__le32 ctrl_sanicap) { __u32 sanicap = le32_to_cpu(ctrl_sanicap); __u32 rsvd = (sanicap & 0x1FFFFFF8) >> 3; __u32 owr = (sanicap & 0x4) >> 2; __u32 ber = (sanicap & 0x2) >> 1; __u32 cer = sanicap & 0x1; __u32 ndi = (sanicap & 0x20000000) >> 29; __u32 nodmmas = (sanicap & 0xC0000000) >> 30; static const char *modifies_media[] = { "Additional media modification after sanitize operation completes successfully is not defined", "Media is not additionally modified after sanitize operation completes successfully", "Media is additionally modified after sanitize operation completes successfully", "Reserved" }; printf(" [31:30] : %#x\t%s\n", nodmmas, modifies_media[nodmmas]); printf(" [29:29] : %#x\tNo-Deallocate After Sanitize bit in Sanitize command %sSupported\n", ndi, ndi ? "Not " : ""); if (rsvd) printf(" [28:3] : %#x\tReserved\n", rsvd); printf(" [2:2] : %#x\tOverwrite Sanitize Operation %sSupported\n", owr, owr ? "" : "Not "); printf(" [1:1] : %#x\tBlock Erase Sanitize Operation %sSupported\n", ber, ber ? "" : "Not "); printf(" [0:0] : %#x\tCrypto Erase Sanitize Operation %sSupported\n", cer, cer ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_anacap(__u8 anacap) { __u8 nz = (anacap & 0x80) >> 7; __u8 grpid_static = (anacap & 0x40) >> 6; __u8 rsvd = (anacap & 0x20) >> 5; __u8 ana_change = (anacap & 0x10) >> 4; __u8 ana_persist_loss = (anacap & 0x08) >> 3; __u8 ana_inaccessible = (anacap & 0x04) >> 2; __u8 ana_nonopt = (anacap & 0x02) >> 1; __u8 ana_opt = (anacap & 0x01); printf(" [7:7] : %#x\tNon-zero group ID %sSupported\n", nz, nz ? "" : "Not "); printf(" [6:6] : %#x\tGroup ID does %schange\n", grpid_static, grpid_static ? "not " : ""); if (rsvd) printf(" [5:5] : %#x\tReserved\n", rsvd); printf(" [4:4] : %#x\tANA Change state %sSupported\n", ana_change, ana_change ? "" : "Not "); printf(" [3:3] : %#x\tANA Persistent Loss state %sSupported\n", ana_persist_loss, ana_persist_loss ? "" : "Not "); printf(" [2:2] : %#x\tANA Inaccessible state %sSupported\n", ana_inaccessible, ana_inaccessible ? "" : "Not "); printf(" [1:1] : %#x\tANA Non-optimized state %sSupported\n", ana_nonopt, ana_nonopt ? "" : "Not "); printf(" [0:0] : %#x\tANA Optimized state %sSupported\n", ana_opt, ana_opt ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_sqes(__u8 sqes) { __u8 msqes = (sqes & 0xF0) >> 4; __u8 rsqes = sqes & 0xF; printf(" [7:4] : %#x\tMax SQ Entry Size (%d)\n", msqes, 1 << msqes); printf(" [3:0] : %#x\tMin SQ Entry Size (%d)\n", rsqes, 1 << rsqes); printf("\n"); } static void nvme_show_id_ctrl_cqes(__u8 cqes) { __u8 mcqes = (cqes & 0xF0) >> 4; __u8 rcqes = cqes & 0xF; printf(" [7:4] : %#x\tMax CQ Entry Size (%d)\n", mcqes, 1 << mcqes); printf(" [3:0] : %#x\tMin CQ Entry Size (%d)\n", rcqes, 1 << rcqes); printf("\n"); } static void nvme_show_id_ctrl_oncs(__le16 ctrl_oncs) { __u16 oncs = le16_to_cpu(ctrl_oncs); __u16 rsvd = (oncs & 0xFE00) >> 9; __u16 copy = (oncs & 0x100) >> 8; __u16 vrfy = (oncs & 0x80) >> 7; __u16 tmst = (oncs & 0x40) >> 6; __u16 resv = (oncs & 0x20) >> 5; __u16 save = (oncs & 0x10) >> 4; __u16 wzro = (oncs & 0x8) >> 3; __u16 dsms = (oncs & 0x4) >> 2; __u16 wunc = (oncs & 0x2) >> 1; __u16 cmp = oncs & 0x1; if (rsvd) printf(" [15:9] : %#x\tReserved\n", rsvd); printf(" [8:8] : %#x\tCopy %sSupported\n", copy, copy ? "" : "Not "); printf(" [7:7] : %#x\tVerify %sSupported\n", vrfy, vrfy ? "" : "Not "); printf(" [6:6] : %#x\tTimestamp %sSupported\n", tmst, tmst ? "" : "Not "); printf(" [5:5] : %#x\tReservations %sSupported\n", resv, resv ? "" : "Not "); printf(" [4:4] : %#x\tSave and Select %sSupported\n", save, save ? "" : "Not "); printf(" [3:3] : %#x\tWrite Zeroes %sSupported\n", wzro, wzro ? "" : "Not "); printf(" [2:2] : %#x\tData Set Management %sSupported\n", dsms, dsms ? "" : "Not "); printf(" [1:1] : %#x\tWrite Uncorrectable %sSupported\n", wunc, wunc ? "" : "Not "); printf(" [0:0] : %#x\tCompare %sSupported\n", cmp, cmp ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_fuses(__le16 ctrl_fuses) { __u16 fuses = le16_to_cpu(ctrl_fuses); __u16 rsvd = (fuses & 0xFE) >> 1; __u16 cmpw = fuses & 0x1; if (rsvd) printf(" [15:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tFused Compare and Write %sSupported\n", cmpw, cmpw ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_fna(__u8 fna) { __u8 rsvd = (fna & 0xF0) >> 4; __u8 bcnsid = (fna & 0x8) >> 3; __u8 cese = (fna & 0x4) >> 2; __u8 cens = (fna & 0x2) >> 1; __u8 fmns = fna & 0x1; if (rsvd) printf(" [7:4] : %#x\tReserved\n", rsvd); printf(" [3:3] : %#x\tFormat NVM Broadcast NSID (FFFFFFFFh) %sSupported\n", bcnsid, bcnsid ? "Not " : ""); printf(" [2:2] : %#x\tCrypto Erase %sSupported as part of Secure Erase\n", cese, cese ? "" : "Not "); printf(" [1:1] : %#x\tCrypto Erase Applies to %s Namespace(s)\n", cens, cens ? "All" : "Single"); printf(" [0:0] : %#x\tFormat Applies to %s Namespace(s)\n", fmns, fmns ? "All" : "Single"); printf("\n"); } static void nvme_show_id_ctrl_vwc(__u8 vwc) { __u8 rsvd = (vwc & 0xF8) >> 3; __u8 flush = (vwc & 0x6) >> 1; __u8 vwcp = vwc & 0x1; static const char *flush_behavior[] = { "Support for the NSID field set to FFFFFFFFh is not indicated", "Reserved", "The Flush command does not support NSID set to FFFFFFFFh", "The Flush command supports NSID set to FFFFFFFFh" }; if (rsvd) printf(" [7:3] : %#x\tReserved\n", rsvd); printf(" [2:1] : %#x\t%s\n", flush, flush_behavior[flush]); printf(" [0:0] : %#x\tVolatile Write Cache %sPresent\n", vwcp, vwcp ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_icsvscc(__u8 icsvscc) { __u8 rsvd = (icsvscc & 0xFE) >> 1; __u8 fmt = icsvscc & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tNVM Vendor Specific Commands uses %s Format\n", fmt, fmt ? "NVMe" : "Vendor Specific"); printf("\n"); } static void nvme_show_id_ctrl_nwpc(__u8 nwpc) { __u8 no_wp_wp = (nwpc & 0x01); __u8 wp_power_cycle = (nwpc & 0x02) >> 1; __u8 wp_permanent = (nwpc & 0x04) >> 2; __u8 rsvd = (nwpc & 0xF8) >> 3; if (rsvd) printf(" [7:3] : %#x\tReserved\n", rsvd); printf(" [2:2] : %#x\tPermanent Write Protect %sSupported\n", wp_permanent, wp_permanent ? "" : "Not "); printf(" [1:1] : %#x\tWrite Protect Until Power Supply %sSupported\n", wp_power_cycle, wp_power_cycle ? "" : "Not "); printf(" [0:0] : %#x\tNo Write Protect and Write Protect Namespace %sSupported\n", no_wp_wp, no_wp_wp ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_ocfs(__le16 ctrl_ocfs) { __u16 ocfs = le16_to_cpu(ctrl_ocfs); __u16 rsvd = (ocfs & 0xfffc) >> 2; __u8 copy_fmt_1 = (ocfs >> 1) & 0x1; __u8 copy_fmt_0 = ocfs & 0x1; if (rsvd) printf(" [15:2] : %#x\tReserved\n", rsvd); printf(" [1:1] : %#x\tController Copy Format 1h %sSupported\n", copy_fmt_1, copy_fmt_1 ? "" : "Not "); printf(" [0:0] : %#x\tController Copy Format 0h %sSupported\n", copy_fmt_0, copy_fmt_0 ? "" : "Not "); printf("\n"); } static void nvme_show_id_ctrl_sgls(__le32 ctrl_sgls) { __u32 sgls = le32_to_cpu(ctrl_sgls); __u32 rsvd0 = (sgls & 0xFFC00000) >> 22; __u32 trsdbd = (sgls & 0x200000) >> 21; __u32 aofdsl = (sgls & 0x100000) >> 20; __u32 mpcsd = (sgls & 0x80000) >> 19; __u32 sglltb = (sgls & 0x40000) >> 18; __u32 bacmdb = (sgls & 0x20000) >> 17; __u32 bbs = (sgls & 0x10000) >> 16; __u32 sdt = (sgls >> 8) & 0xff; __u32 rsvd1 = (sgls & 0xF8) >> 3; __u32 key = (sgls & 0x4) >> 2; __u32 sglsp = sgls & 0x3; if (rsvd0) printf(" [31:22]: %#x\tReserved\n", rsvd0); if (sglsp || (!sglsp && trsdbd)) printf(" [21:21]: %#x\tTransport SGL Data Block Descriptor %sSupported\n", trsdbd, trsdbd ? "" : "Not "); if (sglsp || (!sglsp && aofdsl)) printf(" [20:20]: %#x\tAddress Offsets %sSupported\n", aofdsl, aofdsl ? "" : "Not "); if (sglsp || (!sglsp && mpcsd)) printf(" [19:19]: %#x\tMetadata Pointer Containing " "SGL Descriptor is %sSupported\n", mpcsd, mpcsd ? "" : "Not "); if (sglsp || (!sglsp && sglltb)) printf(" [18:18]: %#x\tSGL Length Larger than Buffer %sSupported\n", sglltb, sglltb ? "" : "Not "); if (sglsp || (!sglsp && bacmdb)) printf(" [17:17]: %#x\tByte-Aligned Contig. MD Buffer %sSupported\n", bacmdb, bacmdb ? "" : "Not "); if (sglsp || (!sglsp && bbs)) printf(" [16:16]: %#x\tSGL Bit-Bucket %sSupported\n", bbs, bbs ? "" : "Not "); printf(" [15:8] : %#x\tSGL Descriptor Threshold\n", sdt); if (rsvd1) printf(" [7:3] : %#x\tReserved\n", rsvd1); if (sglsp || (!sglsp && key)) printf(" [2:2] : %#x\tKeyed SGL Data Block descriptor %sSupported\n", key, key ? "" : "Not "); if (sglsp == 0x3) printf(" [1:0] : %#x\tReserved\n", sglsp); else if (sglsp == 0x2) printf(" [1:0] : %#x\tScatter-Gather Lists Supported." " Dword alignment required.\n", sglsp); else if (sglsp == 0x1) printf(" [1:0] : %#x\tScatter-Gather Lists Supported." " No Dword alignment required.\n", sglsp); else printf(" [1:0] : %#x\tScatter-Gather Lists Not Supported\n", sglsp); printf("\n"); } static void nvme_show_id_ctrl_fcatt(__u8 fcatt) { __u8 rsvd = (fcatt & 0xFE) >> 1; __u8 scm = fcatt & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\t%s Controller Model\n", scm, scm ? "Static" : "Dynamic"); printf("\n"); } static void nvme_show_id_ctrl_ofcs(__le16 ofcs) { __u16 rsvd = (ofcs & 0xfffe) >> 1; __u8 disconn = ofcs & 0x1; if (rsvd) printf(" [15:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tDisconnect command %s Supported\n", disconn, disconn ? "" : "Not"); printf("\n"); } static void nvme_show_id_ns_nsfeat(__u8 nsfeat) { __u8 rsvd = (nsfeat & 0xE0) >> 5; __u8 ioopt = (nsfeat & 0x10) >> 4; __u8 uidreuse = (nsfeat & 0x8) >> 3; __u8 dulbe = (nsfeat & 0x4) >> 2; __u8 na = (nsfeat & 0x2) >> 1; __u8 thin = nsfeat & 0x1; if (rsvd) printf(" [7:5] : %#x\tReserved\n", rsvd); printf(" [4:4] : %#x\tNPWG, NPWA, NPDG, NPDA, and NOWS are %sSupported\n", ioopt, ioopt ? "" : "Not "); printf(" [3:3] : %#x\tNGUID and EUI64 fields if non-zero, %sReused\n", uidreuse, uidreuse ? "Never " : ""); printf(" [2:2] : %#x\tDeallocated or Unwritten Logical Block error %sSupported\n", dulbe, dulbe ? "" : "Not "); printf(" [1:1] : %#x\tNamespace uses %s\n", na, na ? "NAWUN, NAWUPF, and NACWU" : "AWUN, AWUPF, and ACWU"); printf(" [0:0] : %#x\tThin Provisioning %sSupported\n", thin, thin ? "" : "Not "); printf("\n"); } static void nvme_show_id_ns_flbas(__u8 flbas) { __u8 rsvd = (flbas & 0x80) >> 7; __u8 msb2_lbaf = (flbas & NVME_NS_FLBAS_HIGHER_MASK) >> 5; __u8 mdedata = (flbas & 0x10) >> 4; __u8 lsb4_lbaf = flbas & NVME_NS_FLBAS_LOWER_MASK; if (rsvd) printf(" [7:7] : %#x\tReserved\n", rsvd); printf(" [6:5] : %#x\tMost significant 2 bits of Current LBA Format Selected\n", msb2_lbaf); printf(" [4:4] : %#x\tMetadata Transferred %s\n", mdedata, mdedata ? "at End of Data LBA" : "in Separate Contiguous Buffer"); printf(" [3:0] : %#x\tLeast significant 4 bits of Current LBA Format Selected\n", lsb4_lbaf); printf("\n"); } static void nvme_show_id_ns_mc(__u8 mc) { __u8 rsvd = (mc & 0xFC) >> 2; __u8 mdp = (mc & 0x2) >> 1; __u8 extdlba = mc & 0x1; if (rsvd) printf(" [7:2] : %#x\tReserved\n", rsvd); printf(" [1:1] : %#x\tMetadata Pointer %sSupported\n", mdp, mdp ? "" : "Not "); printf(" [0:0] : %#x\tMetadata as Part of Extended Data LBA %sSupported\n", extdlba, extdlba ? "" : "Not "); printf("\n"); } static void nvme_show_id_ns_dpc(__u8 dpc) { __u8 rsvd = (dpc & 0xE0) >> 5; __u8 pil8 = (dpc & 0x10) >> 4; __u8 pif8 = (dpc & 0x8) >> 3; __u8 pit3 = (dpc & 0x4) >> 2; __u8 pit2 = (dpc & 0x2) >> 1; __u8 pit1 = dpc & 0x1; if (rsvd) printf(" [7:5] : %#x\tReserved\n", rsvd); printf(" [4:4] : %#x\tProtection Information Transferred as Last 8 Bytes of Metadata %sSupported\n", pil8, pil8 ? "" : "Not "); printf(" [3:3] : %#x\tProtection Information Transferred as First 8 Bytes of Metadata %sSupported\n", pif8, pif8 ? "" : "Not "); printf(" [2:2] : %#x\tProtection Information Type 3 %sSupported\n", pit3, pit3 ? "" : "Not "); printf(" [1:1] : %#x\tProtection Information Type 2 %sSupported\n", pit2, pit2 ? "" : "Not "); printf(" [0:0] : %#x\tProtection Information Type 1 %sSupported\n", pit1, pit1 ? "" : "Not "); printf("\n"); } static void nvme_show_id_ns_dps(__u8 dps) { __u8 rsvd = (dps & 0xF0) >> 4; __u8 pif8 = (dps & 0x8) >> 3; __u8 pit = dps & 0x7; if (rsvd) printf(" [7:4] : %#x\tReserved\n", rsvd); printf(" [3:3] : %#x\tProtection Information is Transferred as %s 8 Bytes of Metadata\n", pif8, pif8 ? "First" : "Last"); printf(" [2:0] : %#x\tProtection Information %s\n", pit, pit == 3 ? "Type 3 Enabled" : pit == 2 ? "Type 2 Enabled" : pit == 1 ? "Type 1 Enabled" : pit == 0 ? "Disabled" : "Reserved Enabled"); printf("\n"); } static void nvme_show_id_ns_nmic(__u8 nmic) { __u8 rsvd = (nmic & 0xFE) >> 1; __u8 mp = nmic & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tNamespace Multipath %sCapable\n", mp, mp ? "" : "Not "); printf("\n"); } static void nvme_show_id_ns_rescap(__u8 rescap) { __u8 iekr = (rescap & 0x80) >> 7; __u8 eaar = (rescap & 0x40) >> 6; __u8 wear = (rescap & 0x20) >> 5; __u8 earo = (rescap & 0x10) >> 4; __u8 wero = (rescap & 0x8) >> 3; __u8 ea = (rescap & 0x4) >> 2; __u8 we = (rescap & 0x2) >> 1; __u8 ptpl = rescap & 0x1; printf(" [7:7] : %#x\tIgnore Existing Key - Used as defined in revision %s\n", iekr, iekr ? "1.3 or later" : "1.2.1 or earlier"); printf(" [6:6] : %#x\tExclusive Access - All Registrants %sSupported\n", eaar, eaar ? "" : "Not "); printf(" [5:5] : %#x\tWrite Exclusive - All Registrants %sSupported\n", wear, wear ? "" : "Not "); printf(" [4:4] : %#x\tExclusive Access - Registrants Only %sSupported\n", earo, earo ? "" : "Not "); printf(" [3:3] : %#x\tWrite Exclusive - Registrants Only %sSupported\n", wero, wero ? "" : "Not "); printf(" [2:2] : %#x\tExclusive Access %sSupported\n", ea, ea ? "" : "Not "); printf(" [1:1] : %#x\tWrite Exclusive %sSupported\n", we, we ? "" : "Not "); printf(" [0:0] : %#x\tPersist Through Power Loss %sSupported\n", ptpl, ptpl ? "" : "Not "); printf("\n"); } static void nvme_show_id_ns_fpi(__u8 fpi) { __u8 fpis = (fpi & 0x80) >> 7; __u8 fpii = fpi & 0x7F; printf(" [7:7] : %#x\tFormat Progress Indicator %sSupported\n", fpis, fpis ? "" : "Not "); if (fpis || (!fpis && fpii)) printf(" [6:0] : %#x\tFormat Progress Indicator (Remaining %d%%)\n", fpii, fpii); printf("\n"); } static void nvme_show_id_ns_nsattr(__u8 nsattr) { __u8 rsvd = (nsattr & 0xFE) >> 1; __u8 write_protected = nsattr & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\tNamespace %sWrite Protected\n", write_protected, write_protected ? "" : "Not "); printf("\n"); } static void nvme_show_id_ns_dlfeat(__u8 dlfeat) { __u8 rsvd = (dlfeat & 0xE0) >> 5; __u8 guard = (dlfeat & 0x10) >> 4; __u8 dwz = (dlfeat & 0x8) >> 3; __u8 val = dlfeat & 0x7; if (rsvd) printf(" [7:5] : %#x\tReserved\n", rsvd); printf(" [4:4] : %#x\tGuard Field of Deallocated Logical Blocks is set to %s\n", guard, guard ? "CRC of The Value Read" : "0xFFFF"); printf(" [3:3] : %#x\tDeallocate Bit in the Write Zeroes Command is %sSupported\n", dwz, dwz ? "" : "Not "); printf(" [2:0] : %#x\tBytes Read From a Deallocated Logical Block and its Metadata are %s\n", val, val == 2 ? "0xFF" : val == 1 ? "0x00" : val == 0 ? "Not Reported" : "Reserved Value"); printf("\n"); } void nvme_show_id_ns(struct nvme_id_ns *ns, unsigned int nsid, unsigned int lba_index, bool cap_only, enum nvme_print_flags flags) { bool human = flags & VERBOSE; int vs = flags & VS; int i; __u8 flbas; char *in_use = "(in use)"; if (flags & BINARY) return d_raw((unsigned char *)ns, sizeof(*ns)); if (flags & JSON) return json_nvme_id_ns(ns, cap_only); if (!cap_only) { printf("NVME Identify Namespace %d:\n", nsid); printf("nsze : %#"PRIx64"\n", le64_to_cpu(ns->nsze)); printf("ncap : %#"PRIx64"\n", le64_to_cpu(ns->ncap)); printf("nuse : %#"PRIx64"\n", le64_to_cpu(ns->nuse)); printf("nsfeat : %#x\n", ns->nsfeat); if (human) nvme_show_id_ns_nsfeat(ns->nsfeat); } else printf("NVMe Identify Namespace for LBA format[%d]:\n", lba_index); printf("nlbaf : %d\n", ns->nlbaf); if (!cap_only) { printf("flbas : %#x\n", ns->flbas); if (human) nvme_show_id_ns_flbas(ns->flbas); } else in_use = ""; printf("mc : %#x\n", ns->mc); if (human) nvme_show_id_ns_mc(ns->mc); printf("dpc : %#x\n", ns->dpc); if (human) nvme_show_id_ns_dpc(ns->dpc); if (!cap_only) { printf("dps : %#x\n", ns->dps); if (human) nvme_show_id_ns_dps(ns->dps); printf("nmic : %#x\n", ns->nmic); if (human) nvme_show_id_ns_nmic(ns->nmic); printf("rescap : %#x\n", ns->rescap); if (human) nvme_show_id_ns_rescap(ns->rescap); printf("fpi : %#x\n", ns->fpi); if (human) nvme_show_id_ns_fpi(ns->fpi); printf("dlfeat : %d\n", ns->dlfeat); if (human) nvme_show_id_ns_dlfeat(ns->dlfeat); printf("nawun : %d\n", le16_to_cpu(ns->nawun)); printf("nawupf : %d\n", le16_to_cpu(ns->nawupf)); printf("nacwu : %d\n", le16_to_cpu(ns->nacwu)); printf("nabsn : %d\n", le16_to_cpu(ns->nabsn)); printf("nabo : %d\n", le16_to_cpu(ns->nabo)); printf("nabspf : %d\n", le16_to_cpu(ns->nabspf)); printf("noiob : %d\n", le16_to_cpu(ns->noiob)); printf("nvmcap : %s\n", uint128_t_to_string(le128_to_cpu(ns->nvmcap))); if (ns->nsfeat & 0x10) { printf("npwg : %u\n", le16_to_cpu(ns->npwg)); printf("npwa : %u\n", le16_to_cpu(ns->npwa)); printf("npdg : %u\n", le16_to_cpu(ns->npdg)); printf("npda : %u\n", le16_to_cpu(ns->npda)); printf("nows : %u\n", le16_to_cpu(ns->nows)); } printf("mssrl : %u\n", le16_to_cpu(ns->mssrl)); printf("mcl : %d\n", le32_to_cpu(ns->mcl)); printf("msrc : %u\n", ns->msrc); } printf("nulbaf : %u\n", ns->nulbaf); if (!cap_only) { printf("anagrpid: %u\n", le32_to_cpu(ns->anagrpid)); printf("nsattr : %u\n", ns->nsattr); printf("nvmsetid: %d\n", le16_to_cpu(ns->nvmsetid)); printf("endgid : %d\n", le16_to_cpu(ns->endgid)); printf("nguid : "); for (i = 0; i < 16; i++) printf("%02x", ns->nguid[i]); printf("\n"); printf("eui64 : "); for (i = 0; i < 8; i++) printf("%02x", ns->eui64[i]); printf("\n"); } nvme_id_ns_flbas_to_lbaf_inuse(ns->flbas, &flbas); for (i = 0; i <= ns->nlbaf + ns->nulbaf; i++) { if (human) printf("LBA Format %2d : Metadata Size: %-3d bytes - " "Data Size: %-2d bytes - Relative Performance: %#x %s %s\n", i, le16_to_cpu(ns->lbaf[i].ms), 1 << ns->lbaf[i].ds, ns->lbaf[i].rp, ns->lbaf[i].rp == 3 ? "Degraded" : ns->lbaf[i].rp == 2 ? "Good" : ns->lbaf[i].rp == 1 ? "Better" : "Best", i == flbas ? in_use : ""); else printf("lbaf %2d : ms:%-3d lbads:%-2d rp:%#x %s\n", i, le16_to_cpu(ns->lbaf[i].ms), ns->lbaf[i].ds, ns->lbaf[i].rp, i == flbas ? in_use : ""); } if (vs && !cap_only) { printf("vs[]:\n"); d(ns->vs, sizeof(ns->vs), 16, 1); } } static void nvme_show_cmd_set_independent_id_ns_nsfeat(__u8 nsfeat) { __u8 rsvd5 = (nsfeat & 0xE0) >> 5; __u8 rmedia = (nsfeat & 0x10) >> 4; __u8 uidreuse = (nsfeat & 0x8) >> 3; __u8 rsvd0 = (nsfeat & 0x7); if (rsvd5) printf(" [7:5] : %#x\tReserved\n", rsvd5); printf(" [4:4] : %#x\tNamespace %sstore data on rotational media\n", rmedia, rmedia ? "" : "does not "); printf(" [3:3] : %#x\tNGUID and EUI64 fields if non-zero, %sReused\n", uidreuse, uidreuse ? "Never " : ""); if (rsvd0) printf(" [2:0] : %#x\tReserved\n", rsvd0); printf("\n"); } static void nvme_show_cmd_set_independent_id_ns_nstat(__u8 nstat) { __u8 rsvd1 = (nstat & 0xfe) >> 1; __u8 nrdy = nstat & 0x1; if (rsvd1) printf(" [7:1] : %#x\tReserved\n", rsvd1); printf(" [0:0] : %#x\tName space is %sready\n", nrdy, nrdy ? "" : "not "); printf("\n"); } static void json_nvme_cmd_set_independent_id_ns( struct nvme_id_independent_id_ns *ns) { struct json_object *root; root = json_create_object(); json_object_add_value_int(root, "nsfeat", ns->nsfeat); json_object_add_value_int(root, "nmic", ns->nmic); json_object_add_value_int(root, "rescap", ns->rescap); json_object_add_value_int(root, "fpi", ns->fpi); json_object_add_value_int(root, "anagrpid", le32_to_cpu(ns->anagrpid)); json_object_add_value_int(root, "nsattr", ns->nsattr); json_object_add_value_int(root, "nvmsetid", le16_to_cpu(ns->nvmsetid)); json_object_add_value_int(root, "endgid", le16_to_cpu(ns->endgid)); json_object_add_value_int(root, "nstat", ns->nstat); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_cmd_set_independent_id_ns( struct nvme_id_independent_id_ns *ns, unsigned int nsid, enum nvme_print_flags flags) { int human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)ns, sizeof(*ns)); if (flags & JSON) return json_nvme_cmd_set_independent_id_ns(ns); printf("NVME Identify Command Set Independent Namespace %d:\n", nsid); printf("nsfeat : %#x\n", ns->nsfeat); if (human) nvme_show_cmd_set_independent_id_ns_nsfeat(ns->nsfeat); printf("nmic : %#x\n", ns->nmic); if (human) nvme_show_id_ns_nmic(ns->nmic); printf("rescap : %#x\n", ns->rescap); if (human) nvme_show_id_ns_rescap(ns->rescap); printf("fpi : %#x\n", ns->fpi); if (human) nvme_show_id_ns_fpi(ns->fpi); printf("anagrpid: %u\n", le32_to_cpu(ns->anagrpid)); printf("nsattr : %u\n", ns->nsattr); if (human) nvme_show_id_ns_nsattr(ns->nsattr); printf("nvmsetid: %d\n", le16_to_cpu(ns->nvmsetid)); printf("endgid : %d\n", le16_to_cpu(ns->endgid)); printf("nstat : %#x\n", ns->nstat); if (human) nvme_show_cmd_set_independent_id_ns_nstat(ns->nstat); } static void json_nvme_id_ns_descs(void *data) { /* large enough to hold uuid str (37) or nguid str (32) + zero byte */ char json_str[40]; char *json_str_p; union { __u8 eui64[NVME_NIDT_EUI64_LEN]; __u8 nguid[NVME_NIDT_NGUID_LEN]; __u8 uuid[NVME_UUID_LEN]; __u8 csi; } desc; struct json_object *root; struct json_object *json_array = NULL; off_t off; int pos, len = 0; int i; for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { struct nvme_ns_id_desc *cur = data + pos; const char *nidt_name = NULL; if (cur->nidl == 0) break; memset(json_str, 0, sizeof(json_str)); json_str_p = json_str; off = pos + sizeof(*cur); switch (cur->nidt) { case NVME_NIDT_EUI64: memcpy(desc.eui64, data + off, sizeof(desc.eui64)); for (i = 0; i < sizeof(desc.eui64); i++) json_str_p += sprintf(json_str_p, "%02x", desc.eui64[i]); len = sizeof(desc.eui64); nidt_name = "eui64"; break; case NVME_NIDT_NGUID: memcpy(desc.nguid, data + off, sizeof(desc.nguid)); for (i = 0; i < sizeof(desc.nguid); i++) json_str_p += sprintf(json_str_p, "%02x", desc.nguid[i]); len = sizeof(desc.nguid); nidt_name = "nguid"; break; case NVME_NIDT_UUID: memcpy(desc.uuid, data + off, sizeof(desc.uuid)); nvme_uuid_to_string(desc.uuid, json_str); len = sizeof(desc.uuid); nidt_name = "uuid"; break; case NVME_NIDT_CSI: memcpy(&desc.csi, data + off, sizeof(desc.csi)); sprintf(json_str_p, "%#x", desc.csi); len += sizeof(desc.csi); nidt_name = "csi"; break; default: /* Skip unknown types */ len = cur->nidl; break; } if (nidt_name) { struct json_object *elem = json_create_object(); json_object_add_value_int(elem, "loc", pos); json_object_add_value_int(elem, "nidt", (int)cur->nidt); json_object_add_value_int(elem, "nidl", (int)cur->nidl); json_object_add_value_string(elem, "type", nidt_name); json_object_add_value_string(elem, nidt_name, json_str); if (!json_array) { json_array = json_create_array(); } json_array_add_value_object(json_array, elem); } len += sizeof(*cur); } root = json_create_object(); if (json_array) json_object_add_value_array(root, "ns-descs", json_array); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_id_ns_descs(void *data, unsigned nsid, enum nvme_print_flags flags) { int pos, len = 0; int i; __u8 uuid[NVME_UUID_LEN]; char uuid_str[NVME_UUID_LEN_STRING]; __u8 eui64[8]; __u8 nguid[16]; __u8 csi; if (flags & BINARY) return d_raw((unsigned char *)data, 0x1000); if (flags & JSON) return json_nvme_id_ns_descs(data); printf("NVME Namespace Identification Descriptors NS %d:\n", nsid); for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { struct nvme_ns_id_desc *cur = data + pos; if (cur->nidl == 0) break; switch (cur->nidt) { case NVME_NIDT_EUI64: memcpy(eui64, data + pos + sizeof(*cur), sizeof(eui64)); printf("eui64 : "); for (i = 0; i < 8; i++) printf("%02x", eui64[i]); printf("\n"); len = sizeof(eui64); break; case NVME_NIDT_NGUID: memcpy(nguid, data + pos + sizeof(*cur), sizeof(nguid)); printf("nguid : "); for (i = 0; i < 16; i++) printf("%02x", nguid[i]); printf("\n"); len = sizeof(nguid); break; case NVME_NIDT_UUID: memcpy(uuid, data + pos + sizeof(*cur), 16); nvme_uuid_to_string(uuid, uuid_str); printf("uuid : %s\n", uuid_str); len = sizeof(uuid); break; case NVME_NIDT_CSI: memcpy(&csi, data + pos + sizeof(*cur), 1); printf("csi : %#x\n", csi); len += sizeof(csi); break; default: /* Skip unknown types */ len = cur->nidl; break; } len += sizeof(*cur); } } static void print_psd_workload(__u8 apw) { switch (apw & 0x7) { case NVME_PSD_WORKLOAD_NP: /* Unknown or not provided */ printf("-"); break; case 1: /* Extended idle period with burst of random write */ printf("1MiB 32 RW, 30s idle"); break; case 2: /* Heavy sequential writes */ printf("80K 128KiB SW"); break; default: printf("reserved"); } } static void print_ps_power_and_scale(__le16 ctr_power, __u8 scale) { __u16 power = le16_to_cpu(ctr_power); switch (scale & 0x3) { case NVME_PSD_PS_NOT_REPORTED: /* Not reported for this power state */ printf("-"); break; case NVME_PSD_PS_100_MICRO_WATT: /* Units of 0.0001W */ printf("%01u.%04uW", power / 10000, power % 10000); break; case NVME_PSD_PS_10_MILLI_WATT: /* Units of 0.01W */ printf("%01u.%02uW", power / 100, power % 100); break; default: printf("reserved"); } } static void nvme_show_id_ctrl_power(struct nvme_id_ctrl *ctrl) { int i; for (i = 0; i <= ctrl->npss; i++) { __u16 max_power = le16_to_cpu(ctrl->psd[i].mp); printf("ps %4d : mp:", i); if (ctrl->psd[i].flags & NVME_PSD_FLAGS_MXPS) printf("%01u.%04uW ", max_power / 10000, max_power % 10000); else printf("%01u.%02uW ", max_power / 100, max_power % 100); if (ctrl->psd[i].flags & NVME_PSD_FLAGS_NOPS) printf("non-"); printf("operational enlat:%d exlat:%d rrt:%d rrl:%d\n" " rwt:%d rwl:%d idle_power:", le32_to_cpu(ctrl->psd[i].enlat), le32_to_cpu(ctrl->psd[i].exlat), ctrl->psd[i].rrt, ctrl->psd[i].rrl, ctrl->psd[i].rwt, ctrl->psd[i].rwl); print_ps_power_and_scale(ctrl->psd[i].idlp, nvme_psd_power_scale(ctrl->psd[i].ips)); printf(" active_power:"); print_ps_power_and_scale(ctrl->psd[i].actp, nvme_psd_power_scale(ctrl->psd[i].apws)); printf("\n active_power_workload:"); print_psd_workload(ctrl->psd[i].apws); printf("\n"); } } void nvme_show_id_ctrl(struct nvme_id_ctrl *ctrl, enum nvme_print_flags flags, void (*vendor_show)(__u8 *vs, struct json_object *root)) { bool human = flags & VERBOSE, vs = flags & VS; if (flags & BINARY) return d_raw((unsigned char *)ctrl, sizeof(*ctrl)); else if (flags & JSON) return json_nvme_id_ctrl(ctrl, vendor_show); printf("NVME Identify Controller:\n"); printf("vid : %#x\n", le16_to_cpu(ctrl->vid)); printf("ssvid : %#x\n", le16_to_cpu(ctrl->ssvid)); printf("sn : %-.*s\n", (int)sizeof(ctrl->sn), ctrl->sn); printf("mn : %-.*s\n", (int)sizeof(ctrl->mn), ctrl->mn); printf("fr : %-.*s\n", (int)sizeof(ctrl->fr), ctrl->fr); printf("rab : %d\n", ctrl->rab); printf("ieee : %02x%02x%02x\n", ctrl->ieee[2], ctrl->ieee[1], ctrl->ieee[0]); printf("cmic : %#x\n", ctrl->cmic); if (human) nvme_show_id_ctrl_cmic(ctrl->cmic); printf("mdts : %d\n", ctrl->mdts); printf("cntlid : %#x\n", le16_to_cpu(ctrl->cntlid)); printf("ver : %#x\n", le32_to_cpu(ctrl->ver)); printf("rtd3r : %#x\n", le32_to_cpu(ctrl->rtd3r)); printf("rtd3e : %#x\n", le32_to_cpu(ctrl->rtd3e)); printf("oaes : %#x\n", le32_to_cpu(ctrl->oaes)); if (human) nvme_show_id_ctrl_oaes(ctrl->oaes); printf("ctratt : %#x\n", le32_to_cpu(ctrl->ctratt)); if (human) nvme_show_id_ctrl_ctratt(ctrl->ctratt); printf("rrls : %#x\n", le16_to_cpu(ctrl->rrls)); printf("cntrltype : %d\n", ctrl->cntrltype); if (human) nvme_show_id_ctrl_cntrltype(ctrl->cntrltype); printf("fguid : %s\n", util_uuid_to_string(ctrl->fguid)); printf("crdt1 : %u\n", le16_to_cpu(ctrl->crdt1)); printf("crdt2 : %u\n", le16_to_cpu(ctrl->crdt2)); printf("crdt3 : %u\n", le16_to_cpu(ctrl->crdt3)); printf("nvmsr : %u\n", ctrl->nvmsr); if (human) nvme_show_id_ctrl_nvmsr(ctrl->nvmsr); printf("vwci : %u\n", ctrl->vwci); if (human) nvme_show_id_ctrl_vwci(ctrl->vwci); printf("mec : %u\n", ctrl->mec); if (human) nvme_show_id_ctrl_mec(ctrl->mec); printf("oacs : %#x\n", le16_to_cpu(ctrl->oacs)); if (human) nvme_show_id_ctrl_oacs(ctrl->oacs); printf("acl : %d\n", ctrl->acl); printf("aerl : %d\n", ctrl->aerl); printf("frmw : %#x\n", ctrl->frmw); if (human) nvme_show_id_ctrl_frmw(ctrl->frmw); printf("lpa : %#x\n", ctrl->lpa); if (human) nvme_show_id_ctrl_lpa(ctrl->lpa); printf("elpe : %d\n", ctrl->elpe); if (human) nvme_show_id_ctrl_elpe(ctrl->elpe); printf("npss : %d\n", ctrl->npss); if (human) nvme_show_id_ctrl_npss(ctrl->npss); printf("avscc : %#x\n", ctrl->avscc); if (human) nvme_show_id_ctrl_avscc(ctrl->avscc); printf("apsta : %#x\n", ctrl->apsta); if (human) nvme_show_id_ctrl_apsta(ctrl->apsta); printf("wctemp : %d\n", le16_to_cpu(ctrl->wctemp)); if (human) nvme_show_id_ctrl_wctemp(ctrl->wctemp); printf("cctemp : %d\n", le16_to_cpu(ctrl->cctemp)); if (human) nvme_show_id_ctrl_cctemp(ctrl->cctemp); printf("mtfa : %d\n", le16_to_cpu(ctrl->mtfa)); printf("hmpre : %d\n", le32_to_cpu(ctrl->hmpre)); printf("hmmin : %d\n", le32_to_cpu(ctrl->hmmin)); printf("tnvmcap : %s\n", uint128_t_to_string(le128_to_cpu(ctrl->tnvmcap))); if (human) nvme_show_id_ctrl_tnvmcap(ctrl->tnvmcap); printf("unvmcap : %s\n", uint128_t_to_string(le128_to_cpu(ctrl->unvmcap))); if (human) nvme_show_id_ctrl_unvmcap(ctrl->unvmcap); printf("rpmbs : %#x\n", le32_to_cpu(ctrl->rpmbs)); if (human) nvme_show_id_ctrl_rpmbs(ctrl->rpmbs); printf("edstt : %d\n", le16_to_cpu(ctrl->edstt)); printf("dsto : %d\n", ctrl->dsto); printf("fwug : %d\n", ctrl->fwug); printf("kas : %d\n", le16_to_cpu(ctrl->kas)); printf("hctma : %#x\n", le16_to_cpu(ctrl->hctma)); if (human) nvme_show_id_ctrl_hctma(ctrl->hctma); printf("mntmt : %d\n", le16_to_cpu(ctrl->mntmt)); if (human) nvme_show_id_ctrl_mntmt(ctrl->mntmt); printf("mxtmt : %d\n", le16_to_cpu(ctrl->mxtmt)); if (human) nvme_show_id_ctrl_mxtmt(ctrl->mxtmt); printf("sanicap : %#x\n", le32_to_cpu(ctrl->sanicap)); if (human) nvme_show_id_ctrl_sanicap(ctrl->sanicap); printf("hmminds : %d\n", le32_to_cpu(ctrl->hmminds)); printf("hmmaxd : %d\n", le16_to_cpu(ctrl->hmmaxd)); printf("nsetidmax : %d\n", le16_to_cpu(ctrl->nsetidmax)); printf("endgidmax : %d\n", le16_to_cpu(ctrl->endgidmax)); printf("anatt : %d\n", ctrl->anatt); printf("anacap : %d\n", ctrl->anacap); if (human) nvme_show_id_ctrl_anacap(ctrl->anacap); printf("anagrpmax : %d\n", ctrl->anagrpmax); printf("nanagrpid : %d\n", le32_to_cpu(ctrl->nanagrpid)); printf("pels : %d\n", le32_to_cpu(ctrl->pels)); printf("domainid : %d\n", le16_to_cpu(ctrl->domainid)); printf("megcap : %s\n", uint128_t_to_string(le128_to_cpu(ctrl->megcap))); printf("sqes : %#x\n", ctrl->sqes); if (human) nvme_show_id_ctrl_sqes(ctrl->sqes); printf("cqes : %#x\n", ctrl->cqes); if (human) nvme_show_id_ctrl_cqes(ctrl->cqes); printf("maxcmd : %d\n", le16_to_cpu(ctrl->maxcmd)); printf("nn : %d\n", le32_to_cpu(ctrl->nn)); printf("oncs : %#x\n", le16_to_cpu(ctrl->oncs)); if (human) nvme_show_id_ctrl_oncs(ctrl->oncs); printf("fuses : %#x\n", le16_to_cpu(ctrl->fuses)); if (human) nvme_show_id_ctrl_fuses(ctrl->fuses); printf("fna : %#x\n", ctrl->fna); if (human) nvme_show_id_ctrl_fna(ctrl->fna); printf("vwc : %#x\n", ctrl->vwc); if (human) nvme_show_id_ctrl_vwc(ctrl->vwc); printf("awun : %d\n", le16_to_cpu(ctrl->awun)); printf("awupf : %d\n", le16_to_cpu(ctrl->awupf)); printf("icsvscc : %d\n", ctrl->icsvscc); if (human) nvme_show_id_ctrl_icsvscc(ctrl->icsvscc); printf("nwpc : %d\n", ctrl->nwpc); if (human) nvme_show_id_ctrl_nwpc(ctrl->nwpc); printf("acwu : %d\n", le16_to_cpu(ctrl->acwu)); printf("ocfs : %#x\n", le16_to_cpu(ctrl->ocfs)); if (human) nvme_show_id_ctrl_ocfs(ctrl->ocfs); printf("sgls : %#x\n", le32_to_cpu(ctrl->sgls)); if (human) nvme_show_id_ctrl_sgls(ctrl->sgls); printf("mnan : %d\n", le32_to_cpu(ctrl->mnan)); printf("maxdna : %s\n", uint128_t_to_string(le128_to_cpu(ctrl->maxdna))); printf("maxcna : %d\n", le32_to_cpu(ctrl->maxcna)); printf("subnqn : %-.*s\n", (int)sizeof(ctrl->subnqn), ctrl->subnqn); printf("ioccsz : %d\n", le32_to_cpu(ctrl->ioccsz)); printf("iorcsz : %d\n", le32_to_cpu(ctrl->iorcsz)); printf("icdoff : %d\n", le16_to_cpu(ctrl->icdoff)); printf("fcatt : %#x\n", ctrl->fcatt); if (human) nvme_show_id_ctrl_fcatt(ctrl->fcatt); printf("msdbd : %d\n", ctrl->msdbd); printf("ofcs : %d\n", le16_to_cpu(ctrl->ofcs)); if (human) nvme_show_id_ctrl_ofcs(ctrl->ofcs); nvme_show_id_ctrl_power(ctrl); if (vendor_show) vendor_show(ctrl->vs, NULL); else if (vs) { printf("vs[]:\n"); d(ctrl->vs, sizeof(ctrl->vs), 16, 1); } } static void json_nvme_id_ctrl_nvm(struct nvme_id_ctrl_nvm *ctrl_nvm) { struct json_object *root; root = json_create_object(); json_object_add_value_uint(root, "vsl", ctrl_nvm->vsl); json_object_add_value_uint(root, "wzsl", ctrl_nvm->wzsl); json_object_add_value_uint(root, "wusl", ctrl_nvm->wusl); json_object_add_value_uint(root, "dmrl", ctrl_nvm->dmrl); json_object_add_value_uint(root, "dmrsl", le32_to_cpu(ctrl_nvm->dmrsl)); json_object_add_value_uint64(root, "dmsl", le64_to_cpu(ctrl_nvm->dmsl)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_id_ctrl_nvm(struct nvme_id_ctrl_nvm *ctrl_nvm, enum nvme_print_flags flags) { if (flags & BINARY) return d_raw((unsigned char *)ctrl_nvm, sizeof(*ctrl_nvm)); else if (flags & JSON) return json_nvme_id_ctrl_nvm(ctrl_nvm); printf("NVMe Identify Controller NVM:\n"); printf("vsl : %u\n", ctrl_nvm->vsl); printf("wzsl : %u\n", ctrl_nvm->wzsl); printf("wusl : %u\n", ctrl_nvm->wusl); printf("dmrl : %u\n", ctrl_nvm->dmrl); printf("dmrsl : %u\n", le32_to_cpu(ctrl_nvm->dmrsl)); printf("dmsl : %"PRIu64"\n", le64_to_cpu(ctrl_nvm->dmsl)); } static void json_nvme_nvm_id_ns(struct nvme_nvm_id_ns *nvm_ns, struct nvme_id_ns *ns, bool cap_only) { struct json_object *root; struct json_object *elbafs; int i; root = json_create_object(); if (!cap_only) { json_object_add_value_uint64(root, "lbstm", le64_to_cpu(nvm_ns->lbstm)); } json_object_add_value_int(root, "pic", nvm_ns->pic); elbafs = json_create_array(); json_object_add_value_array(root, "elbafs", elbafs); for (i = 0; i <= ns->nlbaf; i++) { struct json_object *elbaf = json_create_object(); unsigned int elbaf_val = le32_to_cpu(nvm_ns->elbaf[i]); json_object_add_value_int(elbaf, "sts", elbaf_val & 0x7F); json_object_add_value_int(elbaf, "pif", (elbaf_val >> 7) & 0x3); json_array_add_value_object(elbafs, elbaf); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void nvme_show_nvm_id_ns_pic(__u8 pic) { __u8 rsvd = (pic & 0xF8) >> 3; __u8 stcrs = (pic & 0x3) >> 2; __u8 pic_16bpistm = (pic & 0x2) >> 1; __u8 pic_16bpists = pic & 0x1; if (rsvd) printf(" [7:3] : %#x\tReserved\n", rsvd); printf(" [2:2] : %#x\tStorage Tag Check Read Support\n", stcrs); printf(" [1:1] : %#x\t16b Guard Protection Information Storage Tag Mask\n", pic_16bpistm); printf(" [0:0] : %#x\t16b Guard Protection Information Storage Tag Support\n", pic_16bpists); printf("\n"); } void nvme_show_nvm_id_ns(struct nvme_nvm_id_ns *nvm_ns, unsigned int nsid, struct nvme_id_ns *ns, unsigned int lba_index, bool cap_only, enum nvme_print_flags flags) { int i, verbose = flags & VERBOSE; __u32 elbaf; int pif, sts; char *in_use = "(in use)"; if (flags & BINARY) return d_raw((unsigned char *)nvm_ns, sizeof(*nvm_ns)); else if (flags & JSON) return json_nvme_nvm_id_ns(nvm_ns, ns, cap_only); if (!cap_only) { printf("NVMe NVM Identify Namespace %d:\n", nsid); printf("lbstm : %#"PRIx64"\n", le64_to_cpu(nvm_ns->lbstm)); } else { printf("NVMe NVM Identify Namespace for LBA format[%d]:\n", lba_index); in_use = ""; } printf("pic : %#x\n", nvm_ns->pic); if (verbose) nvme_show_nvm_id_ns_pic(nvm_ns->pic); for (i = 0; i <= ns->nlbaf + ns->nulbaf; i++) { elbaf = le32_to_cpu(nvm_ns->elbaf[i]); pif = (elbaf >> 7) & 0x3; sts = elbaf & 0x7f; if (verbose) printf("Extended LBA Format %2d : Protection Information Format: " "%s(%d) - Storage Tag Size (MSB): %-2d %s\n", i, pif == 3 ? "Reserved" : pif == 2 ? "64b Guard" : pif == 1 ? "32b Guard" : "16b Guard", pif, sts, i == (ns->flbas & 0xf) ? in_use : ""); else printf("elbaf %2d : pif:%d lbads:%-2d %s\n", i, pif, sts, i == (ns->flbas & 0xf) ? in_use : ""); } } static void json_nvme_zns_id_ctrl(struct nvme_zns_id_ctrl *ctrl) { struct json_object *root; root = json_create_object(); json_object_add_value_int(root, "zasl", ctrl->zasl); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_zns_id_ctrl(struct nvme_zns_id_ctrl *ctrl, unsigned int mode) { if (mode & BINARY) return d_raw((unsigned char *)ctrl, sizeof(*ctrl)); else if (mode & JSON) return json_nvme_zns_id_ctrl(ctrl); printf("NVMe ZNS Identify Controller:\n"); printf("zasl : %u\n", ctrl->zasl); } static void json_nvme_zns_id_ns(struct nvme_zns_id_ns *ns, struct nvme_id_ns *id_ns) { struct json_object *root; struct json_object *lbafs; int i; root = json_create_object(); json_object_add_value_int(root, "zoc", le16_to_cpu(ns->zoc)); json_object_add_value_int(root, "ozcs", le16_to_cpu(ns->ozcs)); json_object_add_value_int(root, "mar", le32_to_cpu(ns->mar)); json_object_add_value_int(root, "mor", le32_to_cpu(ns->mor)); json_object_add_value_int(root, "rrl", le32_to_cpu(ns->rrl)); json_object_add_value_int(root, "frl", le32_to_cpu(ns->frl)); json_object_add_value_int(root, "rrl1", le32_to_cpu(ns->rrl1)); json_object_add_value_int(root, "rrl2", le32_to_cpu(ns->rrl2)); json_object_add_value_int(root, "rrl3", le32_to_cpu(ns->rrl3)); json_object_add_value_int(root, "frl1", le32_to_cpu(ns->frl1)); json_object_add_value_int(root, "frl2", le32_to_cpu(ns->frl2)); json_object_add_value_int(root, "frl3", le32_to_cpu(ns->frl3)); json_object_add_value_int(root, "numzrwa", le32_to_cpu(ns->numzrwa)); json_object_add_value_int(root, "zrwafg", le16_to_cpu(ns->zrwafg)); json_object_add_value_int(root, "zrwasz", le16_to_cpu(ns->zrwasz)); json_object_add_value_int(root, "zrwacap", ns->zrwacap); lbafs = json_create_array(); json_object_add_value_array(root, "lbafe", lbafs); for (i = 0; i <= id_ns->nlbaf; i++) { struct json_object *lbaf = json_create_object(); json_object_add_value_int(lbaf, "zsze", le64_to_cpu(ns->lbafe[i].zsze)); json_object_add_value_int(lbaf, "zdes", ns->lbafe[i].zdes); json_array_add_value_object(lbafs, lbaf); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void show_nvme_id_ns_zoned_zoc(__le16 ns_zoc) { __u16 zoc = le16_to_cpu(ns_zoc); __u8 rsvd = (zoc & 0xfffc) >> 2; __u8 ze = (zoc & 0x2) >> 1; __u8 vzc = zoc & 0x1; if (rsvd) printf(" [15:2] : %#x\tReserved\n", rsvd); printf(" [1:1] : %#x\t Zone Active Excursions: %s\n", ze, ze ? "Yes (Host support required)" : "No"); printf(" [0:0] : %#x\t Variable Zone Capacity: %s\n", vzc, vzc ? "Yes (Host support required)" : "No"); printf("\n"); } static void show_nvme_id_ns_zoned_ozcs(__le16 ns_ozcs) { __u16 ozcs = le16_to_cpu(ns_ozcs); __u8 rsvd = (ozcs & 0xfffc) >> 2; __u8 razb = ozcs & 0x1; __u8 zrwasup = (ozcs & 0x2) >> 1; if (rsvd) printf(" [15:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\t Read Across Zone Boundaries: %s\n", razb, razb ? "Yes" : "No"); printf(" [1:1] : %#x\t Zone Random Write Area: %s\n", zrwasup, zrwasup ? "Yes" : "No"); } static void nvme_show_zns_id_ns_recommended_limit(__le32 ns_rl, int human, const char *target_limit) { unsigned int recommended_limit = le32_to_cpu(ns_rl); if (!recommended_limit && human) printf("%s : Not Reported\n", target_limit); else printf("%s : %u\n", target_limit, recommended_limit); } static void nvme_show_zns_id_ns_zrwacap(__u8 zrwacap) { __u8 rsvd = (zrwacap & 0xfe) >> 1; __u8 expflushsup = zrwacap & 0x1; if (rsvd) printf(" [7:1] : %#x\tReserved\n", rsvd); printf(" [0:0] : %#x\t Explicit ZRWA Flush Operations: %s\n", expflushsup, expflushsup ? "Yes" : "No"); } void nvme_show_zns_id_ns(struct nvme_zns_id_ns *ns, struct nvme_id_ns *id_ns, unsigned long flags) { int human = flags & VERBOSE, vs = flags & VS; uint8_t lbaf; int i; nvme_id_ns_flbas_to_lbaf_inuse(id_ns->flbas, &lbaf); if (flags & BINARY) return d_raw((unsigned char *)ns, sizeof(*ns)); else if (flags & JSON) return json_nvme_zns_id_ns(ns, id_ns); printf("ZNS Command Set Identify Namespace:\n"); if (human) { printf("zoc : %u\tZone Operation Characteristics\n", le16_to_cpu(ns->zoc)); show_nvme_id_ns_zoned_zoc(ns->zoc); } else { printf("zoc : %u\n", le16_to_cpu(ns->zoc)); } if (human) { printf("ozcs : %u\tOptional Zoned Command Support\n", le16_to_cpu(ns->ozcs)); show_nvme_id_ns_zoned_ozcs(ns->ozcs); } else { printf("ozcs : %u\n", le16_to_cpu(ns->ozcs)); } if (human) { if (ns->mar == 0xffffffff) { printf("mar : No Active Resource Limit\n"); } else { printf("mar : %u\tActive Resources\n", le32_to_cpu(ns->mar) + 1); } } else { printf("mar : %#x\n", le32_to_cpu(ns->mar)); } if (human) { if (ns->mor == 0xffffffff) { printf("mor : No Open Resource Limit\n"); } else { printf("mor : %u\tOpen Resources\n", le32_to_cpu(ns->mor) + 1); } } else { printf("mor : %#x\n", le32_to_cpu(ns->mor)); } nvme_show_zns_id_ns_recommended_limit(ns->rrl, human, "rrl "); nvme_show_zns_id_ns_recommended_limit(ns->frl, human, "frl "); nvme_show_zns_id_ns_recommended_limit(ns->rrl1, human, "rrl1"); nvme_show_zns_id_ns_recommended_limit(ns->rrl2, human, "rrl2"); nvme_show_zns_id_ns_recommended_limit(ns->rrl3, human, "rrl3"); nvme_show_zns_id_ns_recommended_limit(ns->frl, human, "frl1"); nvme_show_zns_id_ns_recommended_limit(ns->frl, human, "frl2"); nvme_show_zns_id_ns_recommended_limit(ns->frl, human, "frl3"); printf("numzrwa : %#x\n", le32_to_cpu(ns->numzrwa)); printf("zrwafg : %u\n", le16_to_cpu(ns->zrwafg)); printf("zrwasz : %u\n", le16_to_cpu(ns->zrwasz)); if (human) { printf("zrwacap : %u\tZone Random Write Area Capability\n", ns->zrwacap); nvme_show_zns_id_ns_zrwacap(ns->zrwacap); } else { printf("zrwacap : %u\n", ns->zrwacap); } for (i = 0; i <= id_ns->nlbaf; i++){ if (human) printf("LBA Format Extension %2d : Zone Size: 0x%"PRIx64" LBAs - " "Zone Descriptor Extension Size: %-1d bytes%s\n", i, le64_to_cpu(ns->lbafe[i].zsze), ns->lbafe[i].zdes << 6, i == lbaf ? " (in use)" : ""); else printf("lbafe %2d: zsze:0x%"PRIx64" zdes:%u%s\n", i, (uint64_t)le64_to_cpu(ns->lbafe[i].zsze), ns->lbafe[i].zdes, i == lbaf ? " (in use)" : ""); } if (vs) { printf("vs[] :\n"); d(ns->vs, sizeof(ns->vs), 16, 1); } } static void json_nvme_list_ns(struct nvme_ns_list *ns_list) { struct json_object *root; struct json_object *valid_attrs; struct json_object *valid; int i; root = json_create_object(); valid = json_create_array(); for (i = 0; i < 1024; i++) { if (ns_list->ns[i]) { valid_attrs = json_create_object(); json_object_add_value_uint(valid_attrs, "nsid", le32_to_cpu(ns_list->ns[i])); json_array_add_value_object(valid, valid_attrs); } } json_object_add_value_array(root, "nsid_list", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_list_ns(struct nvme_ns_list *ns_list, enum nvme_print_flags flags) { int i; if (flags & JSON) return json_nvme_list_ns(ns_list); for (i = 0; i < 1024; i++) { if (ns_list->ns[i]) printf("[%4u]:%#x\n", i, le32_to_cpu(ns_list->ns[i])); } } void nvme_show_zns_changed(struct nvme_zns_changed_zone_log *log, unsigned long flags) { uint16_t nrzid; int i; if (flags & BINARY) return d_raw((unsigned char *)log, sizeof(*log)); nrzid = le16_to_cpu(log->nrzid); printf("NVMe Changed Zone List:\n"); if (nrzid == 0xFFFF) { printf("Too many zones have changed to fit into the log. Use report zones for changes.\n"); return; } printf("nrzid: %u\n", nrzid); for (i = 0; i < nrzid; i++) printf("zid %03d: %"PRIu64"\n", i, (uint64_t)le64_to_cpu(log->zid[i])); } static char *zone_type_to_string(__u8 cond) { switch (cond) { case NVME_ZONE_TYPE_SEQWRITE_REQ: return "SEQWRITE_REQ"; default: return "Unknown"; } } static char *zone_state_to_string(__u8 state) { switch (state) { case NVME_ZNS_ZS_EMPTY: return "EMPTY"; case NVME_ZNS_ZS_IMPL_OPEN: return "IMP_OPENED"; case NVME_ZNS_ZS_EXPL_OPEN: return "EXP_OPENED"; case NVME_ZNS_ZS_CLOSED: return "CLOSED"; case NVME_ZNS_ZS_READ_ONLY: return "READONLY"; case NVME_ZNS_ZS_FULL: return "FULL"; case NVME_ZNS_ZS_OFFLINE: return "OFFLINE"; default: return "Unknown State"; } } void json_nvme_finish_zone_list(__u64 nr_zones, struct json_object *zone_list) { struct json_object *root = json_create_object(); json_object_add_value_uint(root, "nr_zones", nr_zones); json_object_add_value_array(root, "zone_list", zone_list); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void json_nvme_zns_report_zones(void *report, __u32 descs, __u8 ext_size, __u32 report_size, struct json_object *zone_list) { struct json_object *zone; struct json_object *ext_data; struct nvme_zone_report *r = report; struct nvme_zns_desc *desc; int i; for (i = 0; i < descs; i++) { desc = (struct nvme_zns_desc *) (report + sizeof(*r) + i * (sizeof(*desc) + ext_size)); zone = json_create_object(); json_object_add_value_uint64(zone, "slba", le64_to_cpu(desc->zslba)); json_object_add_value_uint64(zone, "wp", le64_to_cpu(desc->wp)); json_object_add_value_uint64(zone, "cap", le64_to_cpu(desc->zcap)); json_object_add_value_string(zone, "state", zone_state_to_string(desc->zs >> 4)); json_object_add_value_string(zone, "type", zone_type_to_string(desc->zt)); json_object_add_value_uint(zone, "attrs", desc->za); json_object_add_value_uint(zone, "attrs", desc->zai); if (ext_size) { if (desc->za & NVME_ZNS_ZA_ZDEV) { ext_data = json_create_array(); d_json((unsigned char *)desc + sizeof(*desc), ext_size, 16, 1, ext_data); json_object_add_value_array(zone, "ext_data", ext_data); } else { json_object_add_value_string(zone, "ext_data", "Not valid"); } } json_array_add_value_object(zone_list, zone); } } static void nvme_show_zns_report_zone_attributes(__u8 za, __u8 zai) { const char *const recommended_limit[4] = {"","1","2","3"}; printf("Attrs: Zone Descriptor Extension is %sVaild\n", (za & NVME_ZNS_ZA_ZDEV)? "" : "Not "); if(za & NVME_ZNS_ZA_RZR) { printf(" Reset Zone Recommended with Reset Recommended Limit%s\n", recommended_limit[(zai&0xd)>>2]); } if (za & NVME_ZNS_ZA_FZR) { printf(" Finish Zone Recommended with Finish Recommended Limit%s\n", recommended_limit[zai&0x3]); } if (za & NVME_ZNS_ZA_ZFC) { printf(" Zone Finished by Controller\n"); } } void nvme_show_zns_report_zones(void *report, __u32 descs, __u8 ext_size, __u32 report_size, unsigned long flags, struct json_object *zone_list) { struct nvme_zone_report *r = report; struct nvme_zns_desc *desc; int i, verbose = flags & VERBOSE; __u64 nr_zones = le64_to_cpu(r->nr_zones); if (nr_zones < descs) descs = nr_zones; if (flags & BINARY) return d_raw((unsigned char *)report, report_size); else if (flags & JSON) return json_nvme_zns_report_zones(report, descs, ext_size, report_size, zone_list); for (i = 0; i < descs; i++) { desc = (struct nvme_zns_desc *) (report + sizeof(*r) + i * (sizeof(*desc) + ext_size)); if(verbose) { printf("SLBA: %#-10"PRIx64" WP: %#-10"PRIx64" Cap: %#-10"PRIx64" State: %-12s Type: %-14s\n", (uint64_t)le64_to_cpu(desc->zslba), (uint64_t)le64_to_cpu(desc->wp), (uint64_t)le64_to_cpu(desc->zcap), zone_state_to_string(desc->zs >> 4), zone_type_to_string(desc->zt)); nvme_show_zns_report_zone_attributes(desc->za, desc->zai); } else { printf("SLBA: %#-10"PRIx64" WP: %#-10"PRIx64" Cap: %#-10"PRIx64" State: %#-4x Type: %#-4x Attrs: %#-4x AttrsInfo: %#-4x\n", (uint64_t)le64_to_cpu(desc->zslba), (uint64_t)le64_to_cpu(desc->wp), (uint64_t)le64_to_cpu(desc->zcap), desc->zs, desc->zt, desc->za, desc->zai); } if (ext_size && (desc->za & NVME_ZNS_ZA_ZDEV)) { printf("Extension Data: "); d((unsigned char *)desc + sizeof(*desc), ext_size, 16, 1); printf("..\n"); } } } static void json_nvme_list_ctrl(struct nvme_ctrl_list *ctrl_list, __u16 num) { struct json_object *root; struct json_object *valid_attrs; struct json_object *valid; int i; root = json_create_object(); valid = json_create_array(); json_object_add_value_uint(root, "num_ctrl", le16_to_cpu(ctrl_list->num)); for (i = 0; i < min(num, 2047); i++) { valid_attrs = json_create_object(); json_object_add_value_uint(valid_attrs, "ctrl_id", le16_to_cpu(ctrl_list->identifier[i])); json_array_add_value_object(valid, valid_attrs); } json_object_add_value_array(root, "ctrl_list", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_list_ctrl(struct nvme_ctrl_list *ctrl_list, enum nvme_print_flags flags) { int i; __u16 num = le16_to_cpu(ctrl_list->num); if (flags & BINARY) return d_raw((unsigned char *)ctrl_list, sizeof(*ctrl_list)); if (flags & JSON) return json_nvme_list_ctrl(ctrl_list, num); printf("num of ctrls present: %u\n", num); for (i = 0; i < min(num, 2047); i++) { printf("[%4u]:%#x\n", i, le16_to_cpu(ctrl_list->identifier[i])); } } static void json_nvme_id_nvmset(struct nvme_id_nvmset_list *nvmset) { __u32 nent = nvmset->nid; struct json_object *entries; struct json_object *root; int i; root = json_create_object(); json_object_add_value_int(root, "nid", nent); entries = json_create_array(); for (i = 0; i < nent; i++) { struct json_object *entry = json_create_object(); json_object_add_value_int(entry, "nvmset_id", le16_to_cpu(nvmset->ent[i].nvmsetid)); json_object_add_value_int(entry, "endurance_group_id", le16_to_cpu(nvmset->ent[i].endgid)); json_object_add_value_int(entry, "random_4k_read_typical", le32_to_cpu(nvmset->ent[i].rr4kt)); json_object_add_value_int(entry, "optimal_write_size", le32_to_cpu(nvmset->ent[i].ows)); json_object_add_value_uint128(entry, "total_nvmset_cap", le128_to_cpu(nvmset->ent[i].tnvmsetcap)); json_object_add_value_uint128(entry, "unalloc_nvmset_cap", le128_to_cpu(nvmset->ent[i].unvmsetcap)); json_array_add_value_object(entries, entry); } json_object_add_value_array(root, "NVMSet", entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_id_nvmset(struct nvme_id_nvmset_list *nvmset, unsigned nvmset_id, enum nvme_print_flags flags) { int i; if (flags & BINARY) return d_raw((unsigned char *)nvmset, sizeof(*nvmset)); if (flags & JSON) return json_nvme_id_nvmset(nvmset); printf("NVME Identify NVM Set List %d:\n", nvmset_id); printf("nid : %d\n", nvmset->nid); printf(".................\n"); for (i = 0; i < nvmset->nid; i++) { printf(" NVM Set Attribute Entry[%2d]\n", i); printf(".................\n"); printf("nvmset_id : %d\n", le16_to_cpu(nvmset->ent[i].endgid)); printf("endurance_group_id : %d\n", le16_to_cpu(nvmset->ent[i].endgid)); printf("random_4k_read_typical : %u\n", le32_to_cpu(nvmset->ent[i].rr4kt)); printf("optimal_write_size : %u\n", le32_to_cpu(nvmset->ent[i].ows)); printf("total_nvmset_cap : %s\n", uint128_t_to_string( le128_to_cpu(nvmset->ent[i].tnvmsetcap))); printf("unalloc_nvmset_cap : %s\n", uint128_t_to_string( le128_to_cpu(nvmset->ent[i].unvmsetcap))); printf(".................\n"); } } static void json_nvme_primary_ctrl_cap(const struct nvme_primary_ctrl_cap *caps) { struct json_object *root; root = json_create_object(); json_object_add_value_uint(root, "cntlid", le16_to_cpu(caps->cntlid)); json_object_add_value_uint(root, "portid", le16_to_cpu(caps->portid)); json_object_add_value_uint(root, "crt", caps->crt); json_object_add_value_int(root, "vqfrt", le32_to_cpu(caps->vqfrt)); json_object_add_value_int(root, "vqrfa", le32_to_cpu(caps->vqrfa)); json_object_add_value_int(root, "vqrfap", le16_to_cpu(caps->vqrfap)); json_object_add_value_int(root, "vqprt", le16_to_cpu(caps->vqprt)); json_object_add_value_int(root, "vqfrsm", le16_to_cpu(caps->vqfrsm)); json_object_add_value_int(root, "vqgran", le16_to_cpu(caps->vqgran)); json_object_add_value_int(root, "vifrt", le32_to_cpu(caps->vifrt)); json_object_add_value_int(root, "virfa", le32_to_cpu(caps->virfa)); json_object_add_value_int(root, "virfap", le16_to_cpu(caps->virfap)); json_object_add_value_int(root, "viprt", le16_to_cpu(caps->viprt)); json_object_add_value_int(root, "vifrsm", le16_to_cpu(caps->vifrsm)); json_object_add_value_int(root, "vigran", le16_to_cpu(caps->vigran)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void nvme_show_primary_ctrl_caps_crt(__u8 crt) { __u8 rsvd = (crt & 0xFC) >> 2; __u8 vi = (crt & 0x2) >> 1; __u8 vq = crt & 0x1; if (rsvd) printf(" [7:2] : %#x\tReserved\n", rsvd); printf(" [1:1] %#x\tVI Resources are %ssupported\n", vi, vi ? "" : "not "); printf(" [0:0] %#x\tVQ Resources are %ssupported\n", vq, vq ? "" : "not "); } void nvme_show_primary_ctrl_cap(const struct nvme_primary_ctrl_cap *caps, enum nvme_print_flags flags) { int human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)caps, sizeof(*caps)); else if (flags & JSON) return json_nvme_primary_ctrl_cap(caps); printf("NVME Identify Primary Controller Capabilities:\n"); printf("cntlid : %#x\n", le16_to_cpu(caps->cntlid)); printf("portid : %#x\n", le16_to_cpu(caps->portid)); printf("crt : %#x\n", caps->crt); if (human) nvme_show_primary_ctrl_caps_crt(caps->crt); printf("vqfrt : %d\n", le32_to_cpu(caps->vqfrt)); printf("vqrfa : %d\n", le32_to_cpu(caps->vqrfa)); printf("vqrfap : %d\n", le16_to_cpu(caps->vqrfap)); printf("vqprt : %d\n", le16_to_cpu(caps->vqprt)); printf("vqfrsm : %d\n", le16_to_cpu(caps->vqfrsm)); printf("vqgran : %d\n", le16_to_cpu(caps->vqgran)); printf("vifrt : %d\n", le32_to_cpu(caps->vifrt)); printf("virfa : %d\n", le32_to_cpu(caps->virfa)); printf("virfap : %d\n", le16_to_cpu(caps->virfap)); printf("viprt : %d\n", le16_to_cpu(caps->viprt)); printf("vifrsm : %d\n", le16_to_cpu(caps->vifrsm)); printf("vigran : %d\n", le16_to_cpu(caps->vigran)); } static void json_nvme_list_secondary_ctrl(const struct nvme_secondary_ctrl_list *sc_list, __u32 count) { const struct nvme_secondary_ctrl *sc_entry = &sc_list->sc_entry[0]; __u32 nent = min(sc_list->num, count); struct json_object *entries; struct json_object *root; int i; root = json_create_object(); json_object_add_value_int(root, "num", nent); entries = json_create_array(); for (i = 0; i < nent; i++) { struct json_object *entry = json_create_object(); json_object_add_value_int(entry, "secondary-controller-identifier", le16_to_cpu(sc_entry[i].scid)); json_object_add_value_int(entry, "primary-controller-identifier", le16_to_cpu(sc_entry[i].pcid)); json_object_add_value_int(entry, "secondary-controller-state", sc_entry[i].scs); json_object_add_value_int(entry, "virtual-function-number", le16_to_cpu(sc_entry[i].vfn)); json_object_add_value_int(entry, "num-virtual-queues", le16_to_cpu(sc_entry[i].nvq)); json_object_add_value_int(entry, "num-virtual-interrupts", le16_to_cpu(sc_entry[i].nvi)); json_array_add_value_object(entries, entry); } json_object_add_value_array(root, "secondary-controllers", entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_list_secondary_ctrl( const struct nvme_secondary_ctrl_list *sc_list, __u32 count, enum nvme_print_flags flags) { const struct nvme_secondary_ctrl *sc_entry = &sc_list->sc_entry[0]; static const char * const state_desc[] = { "Offline", "Online" }; __u16 num = sc_list->num; __u32 entries = min(num, count); int i; if (flags & BINARY) return d_raw((unsigned char *)sc_list, sizeof(*sc_list)); if (flags & JSON) return json_nvme_list_secondary_ctrl(sc_list, entries); printf("Identify Secondary Controller List:\n"); printf(" NUMID : Number of Identifiers : %d\n", num); for (i = 0; i < entries; i++) { printf(" SCEntry[%-3d]:\n", i); printf("................\n"); printf(" SCID : Secondary Controller Identifier : 0x%.04x\n", le16_to_cpu(sc_entry[i].scid)); printf(" PCID : Primary Controller Identifier : 0x%.04x\n", le16_to_cpu(sc_entry[i].pcid)); printf(" SCS : Secondary Controller State : 0x%.04x (%s)\n", sc_entry[i].scs, state_desc[sc_entry[i].scs & 0x1]); printf(" VFN : Virtual Function Number : 0x%.04x\n", le16_to_cpu(sc_entry[i].vfn)); printf(" NVQ : Num VQ Flex Resources Assigned : 0x%.04x\n", le16_to_cpu(sc_entry[i].nvq)); printf(" NVI : Num VI Flex Resources Assigned : 0x%.04x\n", le16_to_cpu(sc_entry[i].nvi)); } } static void json_nvme_id_ns_granularity_list( const struct nvme_id_ns_granularity_list *glist) { int i; struct json_object *root; struct json_object *entries; root = json_create_object(); json_object_add_value_int(root, "attributes", glist->attributes); json_object_add_value_int(root, "num-descriptors", glist->num_descriptors); entries = json_create_array(); for (i = 0; i <= glist->num_descriptors; i++) { struct json_object *entry = json_create_object(); json_object_add_value_uint64(entry, "namespace-size-granularity", le64_to_cpu(glist->entry[i].nszegran)); json_object_add_value_uint64(entry, "namespace-capacity-granularity", le64_to_cpu(glist->entry[i].ncapgran)); json_array_add_value_object(entries, entry); } json_object_add_value_array(root, "namespace-granularity-list", entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_id_ns_granularity_list(const struct nvme_id_ns_granularity_list *glist, enum nvme_print_flags flags) { int i; if (flags & BINARY) return d_raw((unsigned char *)glist, sizeof(*glist)); if (flags & JSON) return json_nvme_id_ns_granularity_list(glist); printf("Identify Namespace Granularity List:\n"); printf(" ATTR : Namespace Granularity Attributes: 0x%x\n", glist->attributes); printf(" NUMD : Number of Descriptors : %d\n", glist->num_descriptors); /* Number of Descriptors is a 0's based value */ for (i = 0; i <= glist->num_descriptors; i++) { printf("\n Entry[%2d] :\n", i); printf("................\n"); printf(" NSG : Namespace Size Granularity : 0x%"PRIx64"\n", le64_to_cpu(glist->entry[i].nszegran)); printf(" NCG : Namespace Capacity Granularity : 0x%"PRIx64"\n", le64_to_cpu(glist->entry[i].ncapgran)); } } static void json_nvme_id_uuid_list(const struct nvme_id_uuid_list *uuid_list) { struct json_object *root; struct json_object *entries; int i; root = json_create_object(); entries = json_create_array(); /* The 0th entry is reserved */ for (i = 1; i < NVME_ID_UUID_LIST_MAX; i++) { __u8 uuid[NVME_UUID_LEN]; struct json_object *entry = json_create_object(); /* The list is terminated by a zero UUID value */ if (memcmp(uuid_list->entry[i].uuid, zero_uuid, sizeof(zero_uuid)) == 0) break; memcpy(&uuid, uuid_list->entry[i].uuid, sizeof(uuid)); json_object_add_value_int(entry, "association", uuid_list->entry[i].header & 0x3); json_object_add_value_string(entry, "uuid", util_uuid_to_string(uuid)); json_array_add_value_object(entries, entry); } json_object_add_value_array(root, "UUID-list", entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_id_uuid_list(const struct nvme_id_uuid_list *uuid_list, enum nvme_print_flags flags) { int i, human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)uuid_list, sizeof(*uuid_list)); if (flags & JSON) return json_nvme_id_uuid_list(uuid_list); /* The 0th entry is reserved */ printf("NVME Identify UUID:\n"); for (i = 0; i < NVME_ID_UUID_LIST_MAX; i++) { __u8 uuid[NVME_UUID_LEN]; char *association = ""; uint8_t identifier_association = uuid_list->entry[i].header & 0x3; /* The list is terminated by a zero UUID value */ if (memcmp(uuid_list->entry[i].uuid, zero_uuid, NVME_UUID_LEN) == 0) break; memcpy(&uuid, uuid_list->entry[i].uuid, NVME_UUID_LEN); if (human) { switch (identifier_association) { case 0x0: association = "No association reported"; break; case 0x1: association = "associated with PCI Vendor ID"; break; case 0x2: association = "associated with PCI Subsystem Vendor ID"; break; default: association = "Reserved"; break; } } printf(" Entry[%3d]\n", i+1); printf(".................\n"); printf("association : 0x%x %s\n", identifier_association, association); printf("UUID : %s", util_uuid_to_string(uuid)); if (memcmp(uuid_list->entry[i].uuid, invalid_uuid, sizeof(zero_uuid)) == 0) printf(" (Invalid UUID)"); printf("\n.................\n"); } } static void json_id_domain_list(struct nvme_id_domain_list *id_dom) { struct json_object *root; struct json_object *entries; struct json_object *entry; int i; nvme_uint128_t dom_cap, unalloc_dom_cap, max_egrp_dom_cap; root = json_create_object(); entries = json_create_array(); json_object_add_value_uint(root, "num_dom_entries", id_dom->num); for (i = 0; i < id_dom->num; i++) { entry = json_create_object(); dom_cap = le128_to_cpu(id_dom->domain_attr[i].dom_cap); unalloc_dom_cap = le128_to_cpu(id_dom->domain_attr[i].unalloc_dom_cap); max_egrp_dom_cap = le128_to_cpu(id_dom->domain_attr[i].max_egrp_dom_cap); json_object_add_value_uint(entry, "dom_id", le16_to_cpu(id_dom->domain_attr[i].dom_id)); json_object_add_value_uint128(entry, "dom_cap", dom_cap); json_object_add_value_uint128(entry, "unalloc_dom_cap", unalloc_dom_cap); json_object_add_value_uint128(entry, "max_egrp_dom_cap", max_egrp_dom_cap); json_array_add_value_object(entries, entry); } json_object_add_value_array(root, "domain_list", entries); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_id_domain_list(struct nvme_id_domain_list *id_dom, enum nvme_print_flags flags) { int i; if (flags & BINARY) return d_raw((unsigned char *)id_dom, sizeof(*id_dom)); else if (flags & JSON) return json_id_domain_list(id_dom); printf("Number of Domain Entries: %u\n", id_dom->num); for (i = 0; i < id_dom->num; i++) { printf("Domain Id for Attr Entry[%u]: %u\n", i, le16_to_cpu(id_dom->domain_attr[i].dom_id)); printf("Domain Capacity for Attr Entry[%u]: %s\n", i, uint128_t_to_string( le128_to_cpu(id_dom->domain_attr[i].dom_cap))); printf("Unallocated Domain Capacity for Attr Entry[%u]: %s\n", i, uint128_t_to_string( le128_to_cpu(id_dom->domain_attr[i].unalloc_dom_cap))); printf("Max Endurance Group Domain Capacity for Attr Entry[%u]: %s\n", i, uint128_t_to_string( le128_to_cpu(id_dom->domain_attr[i].max_egrp_dom_cap))); } } static void json_nvme_endurance_group_list(struct nvme_id_endurance_group_list *endgrp_list) { struct json_object *root; struct json_object *valid_attrs; struct json_object *valid; int i; root = json_create_object(); valid = json_create_array(); json_object_add_value_uint(root, "num_endgrp_id", le16_to_cpu(endgrp_list->num)); for (i = 0; i < min(le16_to_cpu(endgrp_list->num), 2047); i++) { valid_attrs = json_create_object(); json_object_add_value_uint(valid_attrs, "endgrp_id", le16_to_cpu(endgrp_list->identifier[i])); json_array_add_value_object(valid, valid_attrs); } json_object_add_value_array(root, "endgrp_list", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_endurance_group_list(struct nvme_id_endurance_group_list *endgrp_list, enum nvme_print_flags flags) { int i; __u16 num = le16_to_cpu(endgrp_list->num); if (flags & JSON) return json_nvme_endurance_group_list(endgrp_list); printf("num of endurance group ids: %u\n", num); for (i = 0; i < min(num, 2047); i++) { printf("[%4u]:%#x\n", i, le16_to_cpu(endgrp_list->identifier[i])); } } void nvme_show_id_iocs(struct nvme_id_iocs *iocs) { __u16 i; for (i = 0; i < 512; i++) if (iocs->iocsc[i]) printf("I/O Command Set Combination[%u]:%"PRIx64"\n", i, (uint64_t)le64_to_cpu(iocs->iocsc[i])); } static const char *nvme_trtype_to_string(__u8 trtype) { switch (trtype) { case 0: return "The transport type is not indicated or the error "\ "is not transport related."; case 1: return "RDMA Transport error."; case 2: return "Fibre Channel Transport error."; case 3: return "TCP Transport error."; case 254: return "Intra-host Transport error."; default: return "Reserved"; }; } void nvme_show_error_log(struct nvme_error_log_page *err_log, int entries, const char *devname, enum nvme_print_flags flags) { int i; if (flags & BINARY) return d_raw((unsigned char *)err_log, entries * sizeof(*err_log)); else if (flags & JSON) return json_error_log(err_log, entries); printf("Error Log Entries for device:%s entries:%d\n", devname, entries); printf(".................\n"); for (i = 0; i < entries; i++) { __u16 status = le16_to_cpu(err_log[i].status_field) >> 0x1; printf(" Entry[%2d] \n", i); printf(".................\n"); printf("error_count : %"PRIu64"\n", le64_to_cpu(err_log[i].error_count)); printf("sqid : %d\n", err_log[i].sqid); printf("cmdid : %#x\n", err_log[i].cmdid); printf("status_field : %#x(%s)\n", status, nvme_status_to_string(status, false)); printf("phase_tag : %#x\n", le16_to_cpu(err_log[i].status_field & 0x1)); printf("parm_err_loc : %#x\n", err_log[i].parm_error_location); printf("lba : %#"PRIx64"\n", le64_to_cpu(err_log[i].lba)); printf("nsid : %#x\n", err_log[i].nsid); printf("vs : %d\n", err_log[i].vs); printf("trtype : %s\n", nvme_trtype_to_string(err_log[i].trtype)); printf("cs : %#"PRIx64"\n", le64_to_cpu(err_log[i].cs)); printf("trtype_spec_info: %#x\n", err_log[i].trtype_spec_info); printf(".................\n"); } } void nvme_show_resv_report(struct nvme_resv_status *status, int bytes, bool eds, enum nvme_print_flags flags) { int i, j, regctl, entries; if (flags & BINARY) return d_raw((unsigned char *)status, bytes); else if (flags & JSON) return json_nvme_resv_report(status, bytes, eds); regctl = status->regctl[0] | (status->regctl[1] << 8); printf("\nNVME Reservation status:\n\n"); printf("gen : %d\n", le32_to_cpu(status->gen)); printf("rtype : %d\n", status->rtype); printf("regctl : %d\n", regctl); printf("ptpls : %d\n", status->ptpls); /* check Extended Data Structure bit */ if (!eds) { /* * if status buffer was too small, don't loop past the end of * the buffer */ entries = (bytes - 24) / 24; if (entries < regctl) regctl = entries; for (i = 0; i < regctl; i++) { printf("regctl[%d] :\n", i); printf(" cntlid : %x\n", le16_to_cpu(status->regctl_ds[i].cntlid)); printf(" rcsts : %x\n", status->regctl_ds[i].rcsts); printf(" hostid : %"PRIx64"\n", le64_to_cpu(status->regctl_ds[i].hostid)); printf(" rkey : %"PRIx64"\n", le64_to_cpu(status->regctl_ds[i].rkey)); } } else { /* if status buffer was too small, don't loop past the end of the buffer */ entries = (bytes - 64) / 64; if (entries < regctl) regctl = entries; for (i = 0; i < regctl; i++) { printf("regctlext[%d] :\n", i); printf(" cntlid : %x\n", le16_to_cpu(status->regctl_eds[i].cntlid)); printf(" rcsts : %x\n", status->regctl_eds[i].rcsts); printf(" rkey : %"PRIx64"\n", le64_to_cpu(status->regctl_eds[i].rkey)); printf(" hostid : "); for (j = 0; j < 16; j++) printf("%x", status->regctl_eds[i].hostid[j]); printf("\n"); } } printf("\n"); } void nvme_show_fw_log(struct nvme_firmware_slot *fw_log, const char *devname, enum nvme_print_flags flags) { int i; __le64 *frs; if (flags & BINARY) return d_raw((unsigned char *)fw_log, sizeof(*fw_log)); if (flags & JSON) return json_fw_log(fw_log, devname); printf("Firmware Log for device:%s\n", devname); printf("afi : %#x\n", fw_log->afi); for (i = 0; i < 7; i++) { if (fw_log->frs[i][0]) { frs = (__le64 *)&fw_log->frs[i]; printf("frs%d : %#016"PRIx64" (%s)\n", i + 1, le64_to_cpu(*frs), util_fw_to_string(fw_log->frs[i])); } } } void nvme_show_changed_ns_list_log(struct nvme_ns_list *log, const char *devname, enum nvme_print_flags flags) { __u32 nsid; int i; if (flags & BINARY) return d_raw((unsigned char *)log, sizeof(*log)); else if (flags & JSON) return json_changed_ns_list_log(log, devname); if (log->ns[0] != cpu_to_le32(NVME_NSID_ALL)) { for (i = 0; i < NVME_ID_NS_LIST_MAX; i++) { nsid = le32_to_cpu(log->ns[i]); if (nsid == 0) break; printf("[%4u]:%#x\n", i, nsid); } } else printf("more than %d ns changed\n", NVME_ID_NS_LIST_MAX); } static void nvme_show_effects_log_human(FILE *stream, __u32 effect) { const char *set = "+"; const char *clr = "-"; fprintf(stream, " CSUPP+"); fprintf(stream, " LBCC%s", (effect & NVME_CMD_EFFECTS_LBCC) ? set : clr); fprintf(stream, " NCC%s", (effect & NVME_CMD_EFFECTS_NCC) ? set : clr); fprintf(stream, " NIC%s", (effect & NVME_CMD_EFFECTS_NIC) ? set : clr); fprintf(stream, " CCC%s", (effect & NVME_CMD_EFFECTS_CCC) ? set : clr); fprintf(stream, " USS%s", (effect & NVME_CMD_EFFECTS_UUID_SEL) ? set : clr); if ((effect & NVME_CMD_EFFECTS_CSE_MASK) >> 16 == 0) fprintf(stream, " No command restriction\n"); else if ((effect & NVME_CMD_EFFECTS_CSE_MASK) >> 16 == 1) fprintf(stream, " No other command for same namespace\n"); else if ((effect & NVME_CMD_EFFECTS_CSE_MASK) >> 16 == 2) fprintf(stream, " No other command for any namespace\n"); else fprintf(stream, " Reserved CSE\n"); } void nvme_print_effects_entry(FILE* stream, int admin, int index, __le32 entry, unsigned int human) { __u32 effect; char *format_string; format_string = admin ? "ACS%-6d[%-32s] %08x" : "IOCS%-5d[%-32s] %08x"; effect = le32_to_cpu(entry); if (effect & NVME_CMD_EFFECTS_CSUPP) { fprintf(stream, format_string, index, nvme_cmd_to_string(admin, index), effect); if (human) nvme_show_effects_log_human(stream, effect); else fprintf(stream, "\n"); } } void nvme_print_effects_log_segment(int admin, int a, int b, struct nvme_cmd_effects_log *effects, char* header, int human) { FILE *stream; char *stream_location; size_t stream_size; stream = open_memstream(&stream_location, &stream_size); if (!stream) { perror("Failed to open stream"); return; } for (int i = a; i < b; i++) { if (admin) { nvme_print_effects_entry(stream, admin, i, effects->acs[i], human); } else { nvme_print_effects_entry(stream, admin, i, effects->iocs[i], human); } } fclose(stream); if (stream_size && header) { printf("%s\n", header); fwrite(stream_location, stream_size, 1, stdout); printf("\n"); } free(stream_location); } void nvme_print_effects_log_page(enum nvme_csi csi, struct nvme_cmd_effects_log *effects, int flags) { int human = flags & VERBOSE; switch (csi) { case NVME_CSI_NVM: printf("NVM Command Set Log Page\n"); printf("%-.80s\n", dash); break; case NVME_CSI_ZNS: printf("ZNS Command Set Log Page\n"); printf("%-.80s\n", dash); break; default: printf("Unknown Command Set Log Page\n"); printf("%-.80s\n", dash); break; } nvme_print_effects_log_segment(1, 0, 0xbf, effects, "Admin Commands", human); nvme_print_effects_log_segment(1, 0xc0, 0xff, effects, "Vendor Specific Admin Commands", human); nvme_print_effects_log_segment(0, 0, 0x80, effects, "I/O Commands", human); nvme_print_effects_log_segment(0, 0x80, 0x100, effects, "Vendor Specific I/O Commands", human); } void nvme_print_effects_log_pages(struct list_head *list, int flags) { if (flags & JSON) return json_effects_log_list(list); nvme_effects_log_node_t *node; list_for_each(list, node, node) { if (flags & BINARY) { d_raw((unsigned char *)&node->effects, sizeof(node->effects)); } else { nvme_print_effects_log_page(node->csi, &node->effects, flags); } } } const char *nvme_log_to_string(__u8 lid) { switch (lid) { case NVME_LOG_LID_SUPPORTED_LOG_PAGES: return "Supported Log Pages"; case NVME_LOG_LID_ERROR: return "Error Information"; case NVME_LOG_LID_SMART: return "SMART / Health Information"; case NVME_LOG_LID_FW_SLOT: return "Firmware Slot Information"; case NVME_LOG_LID_CHANGED_NS: return "Changed Namespace List"; case NVME_LOG_LID_CMD_EFFECTS: return "Commands Supported and Effects"; case NVME_LOG_LID_DEVICE_SELF_TEST: return "Device Self-test"; case NVME_LOG_LID_TELEMETRY_HOST: return "Telemetry Host-Initiated"; case NVME_LOG_LID_TELEMETRY_CTRL: return "Telemetry Controller-Initiated"; case NVME_LOG_LID_ENDURANCE_GROUP: return "Endurance Group Information"; case NVME_LOG_LID_PREDICTABLE_LAT_NVMSET: return "Predictable Latency Per NVM Set"; case NVME_LOG_LID_PREDICTABLE_LAT_AGG: return "Predictable Latency Event Aggregate"; case NVME_LOG_LID_ANA: return "Asymmetric Namespace Access"; case NVME_LOG_LID_PERSISTENT_EVENT: return "Persistent Event Log"; case NVME_LOG_LID_LBA_STATUS: return "LBA Status Information"; case NVME_LOG_LID_ENDURANCE_GRP_EVT: return "Endurance Group Event Aggregate"; case NVME_LOG_LID_FID_SUPPORTED_EFFECTS: return "Feature Identifiers Supported and Effects"; case NVME_LOG_LID_BOOT_PARTITION: return "Boot Partition"; case NVME_LOG_LID_DISCOVER: return "Discovery"; case NVME_LOG_LID_RESERVATION: return "Reservation Notification"; case NVME_LOG_LID_SANITIZE: return "Sanitize Status"; case NVME_LOG_LID_ZNS_CHANGED_ZONES: return "Changed Zone List"; default: return "Unknown"; } } static void nvme_show_support_log_human(__u32 support, __u8 lid) { const char *set = "supported"; const char *clr = "not supported"; printf(" LSUPP is %s\n", (support & 0x1) ? set : clr); printf(" IOS is %s\n", ((support >> 0x1) & 0x1) ? set : clr); if (lid == NVME_LOG_LID_PERSISTENT_EVENT) { printf(" Establish Context and Read 512 Bytes of Header is %s\n", ((support >> 0x16) & 0x1) ? set : clr); } } static void json_support_log(struct nvme_supported_log_pages *support_log) { struct json_object *root; struct json_object *valid; struct json_object *valid_attrs; unsigned int lid; char key[128]; __u32 support; root = json_create_object(); valid = json_create_object(); for (lid = 0; lid < 256; lid++) { support = le32_to_cpu(support_log->lid_support[lid]); if (support & 0x1) { valid_attrs = json_create_object(); sprintf(key, "lid_0x%x ", lid); json_object_add_value_uint(valid_attrs, key, support); json_array_add_value_object(valid, valid_attrs); } } json_object_add_value_object(root, "supported_logs", valid); json_print_object(root, NULL); printf("\n"); json_free_object(root); } void nvme_show_supported_log(struct nvme_supported_log_pages *support_log, const char *devname, enum nvme_print_flags flags) { int lid, human = flags & VERBOSE; __u32 support = 0; if (flags & BINARY) return d_raw((unsigned char *)support_log, sizeof(*support_log)); else if (flags & JSON) return json_support_log(support_log); printf("Support Log Pages Details for %s:\n", devname); for (lid = 0; lid < 256; lid++) { support = le32_to_cpu(support_log->lid_support[lid]); if (support & 0x1) { printf("LID 0x%x (%s), supports 0x%x\n", lid, nvme_log_to_string(lid), support); if (human) nvme_show_support_log_human(support, lid); else printf("\n"); } } } void nvme_show_endurance_log(struct nvme_endurance_group_log *endurance_log, __u16 group_id, const char *devname, enum nvme_print_flags flags) { if (flags & BINARY) return d_raw((unsigned char *)endurance_log, sizeof(*endurance_log)); else if (flags & JSON) return json_endurance_log(endurance_log, group_id); printf("Endurance Group Log for NVME device:%s Group ID:%x\n", devname, group_id); printf("critical warning : %u\n", endurance_log->critical_warning); printf("avl_spare : %u\n", endurance_log->avl_spare); printf("avl_spare_threshold : %u\n", endurance_log->avl_spare_threshold); printf("percent_used : %u%%\n", endurance_log->percent_used); printf("endurance_estimate : %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->endurance_estimate))); printf("data_units_read : %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->data_units_read))); printf("data_units_written : %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->data_units_written))); printf("media_units_written : %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->media_units_written))); printf("host_read_cmds : %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->host_read_cmds))); printf("host_write_cmds : %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->host_write_cmds))); printf("media_data_integrity_err: %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->media_data_integrity_err))); printf("num_err_info_log_entries: %s\n", uint128_t_to_string( le128_to_cpu(endurance_log->num_err_info_log_entries))); } void nvme_show_smart_log(struct nvme_smart_log *smart, unsigned int nsid, const char *devname, enum nvme_print_flags flags) { __u16 temperature = smart->temperature[1] << 8 | smart->temperature[0]; int i; bool human = flags & VERBOSE; if (flags & BINARY) return d_raw((unsigned char *)smart, sizeof(*smart)); else if (flags & JSON) return json_smart_log(smart, nsid, flags); printf("Smart Log for NVME device:%s namespace-id:%x\n", devname, nsid); printf("critical_warning : %#x\n", smart->critical_warning); if (human) { printf(" Available Spare[0] : %d\n", smart->critical_warning & 0x01); printf(" Temp. Threshold[1] : %d\n", (smart->critical_warning & 0x02) >> 1); printf(" NVM subsystem Reliability[2] : %d\n", (smart->critical_warning & 0x04) >> 2); printf(" Read-only[3] : %d\n", (smart->critical_warning & 0x08) >> 3); printf(" Volatile mem. backup failed[4] : %d\n", (smart->critical_warning & 0x10) >> 4); printf(" Persistent Mem. RO[5] : %d\n", (smart->critical_warning & 0x20) >> 5); } printf("temperature : %ld°C (%u Kelvin)\n", kelvin_to_celsius(temperature), temperature); printf("available_spare : %u%%\n", smart->avail_spare); printf("available_spare_threshold : %u%%\n", smart->spare_thresh); printf("percentage_used : %u%%\n", smart->percent_used); printf("endurance group critical warning summary: %#x\n", smart->endu_grp_crit_warn_sumry); printf("data_units_read : %s\n", uint128_t_to_string(le128_to_cpu(smart->data_units_read))); printf("data_units_written : %s\n", uint128_t_to_string(le128_to_cpu(smart->data_units_written))); printf("host_read_commands : %s\n", uint128_t_to_string(le128_to_cpu(smart->host_reads))); printf("host_write_commands : %s\n", uint128_t_to_string(le128_to_cpu(smart->host_writes))); printf("controller_busy_time : %s\n", uint128_t_to_string(le128_to_cpu(smart->ctrl_busy_time))); printf("power_cycles : %s\n", uint128_t_to_string(le128_to_cpu(smart->power_cycles))); printf("power_on_hours : %s\n", uint128_t_to_string(le128_to_cpu(smart->power_on_hours))); printf("unsafe_shutdowns : %s\n", uint128_t_to_string(le128_to_cpu(smart->unsafe_shutdowns))); printf("media_errors : %s\n", uint128_t_to_string(le128_to_cpu(smart->media_errors))); printf("num_err_log_entries : %s\n", uint128_t_to_string(le128_to_cpu(smart->num_err_log_entries))); printf("Warning Temperature Time : %u\n", le32_to_cpu(smart->warning_temp_time)); printf("Critical Composite Temperature Time : %u\n", le32_to_cpu(smart->critical_comp_time)); for (i = 0; i < 8; i++) { __s32 temp = le16_to_cpu(smart->temp_sensor[i]); if (temp == 0) continue; printf("Temperature Sensor %d : %ld°C (%u Kelvin)\n", i + 1, kelvin_to_celsius(temp), temp); } printf("Thermal Management T1 Trans Count : %u\n", le32_to_cpu(smart->thm_temp1_trans_count)); printf("Thermal Management T2 Trans Count : %u\n", le32_to_cpu(smart->thm_temp2_trans_count)); printf("Thermal Management T1 Total Time : %u\n", le32_to_cpu(smart->thm_temp1_total_time)); printf("Thermal Management T2 Total Time : %u\n", le32_to_cpu(smart->thm_temp2_total_time)); } void nvme_show_ana_log(struct nvme_ana_log *ana_log, const char *devname, enum nvme_print_flags flags, size_t len) { int offset = sizeof(struct nvme_ana_log); struct nvme_ana_log *hdr = ana_log; struct nvme_ana_group_desc *desc; size_t nsid_buf_size; void *base = ana_log; __u32 nr_nsids; int i, j; if (flags & BINARY) return d_raw((unsigned char *)ana_log, len); else if (flags & JSON) return json_ana_log(ana_log, devname); printf("Asymmetric Namespace Access Log for NVMe device: %s\n", devname); printf("ANA LOG HEADER :-\n"); printf("chgcnt : %"PRIu64"\n", le64_to_cpu(hdr->chgcnt)); printf("ngrps : %u\n", le16_to_cpu(hdr->ngrps)); printf("ANA Log Desc :-\n"); for (i = 0; i < le16_to_cpu(ana_log->ngrps); i++) { desc = base + offset; nr_nsids = le32_to_cpu(desc->nnsids); nsid_buf_size = nr_nsids * sizeof(__le32); offset += sizeof(*desc); printf("grpid : %u\n", le32_to_cpu(desc->grpid)); printf("nnsids : %u\n", le32_to_cpu(desc->nnsids)); printf("chgcnt : %"PRIu64"\n", le64_to_cpu(desc->chgcnt)); printf("state : %s\n", nvme_ana_state_to_string(desc->state)); for (j = 0; j < le32_to_cpu(desc->nnsids); j++) printf(" nsid : %u\n", le32_to_cpu(desc->nsids[j])); printf("\n"); offset += nsid_buf_size; } } static void nvme_show_self_test_result(struct nvme_st_result *res, enum nvme_print_flags flags) { static const char *const test_res[] = { "Operation completed without error", "Operation was aborted by a Device Self-test command", "Operation was aborted by a Controller Level Reset", "Operation was aborted due to a removal of a namespace from the namespace inventory", "Operation was aborted due to the processing of a Format NVM command", "A fatal error or unknown test error occurred while the controller was executing the"\ " device self-test operation and the operation did not complete", "Operation completed with a segment that failed and the segment that failed is not known", "Operation completed with one or more failed segments and the first segment that failed "\ "is indicated in the SegmentNumber field", "Operation was aborted for unknown reason", "Operation was aborted due to a sanitize operation", "Reserved", [NVME_ST_RESULT_NOT_USED] = "Entry not used (does not contain a result)", }; __u8 op, code; op = res->dsts & NVME_ST_RESULT_MASK; printf(" Operation Result : %#x", op); if (flags & VERBOSE) printf(" %s", (op < ARRAY_SIZE(test_res) && test_res[op]) ? test_res[op] : test_res[ARRAY_SIZE(test_res) - 1]); printf("\n"); if (op == NVME_ST_RESULT_NOT_USED) return; code = res->dsts >> NVME_ST_CODE_SHIFT; printf(" Self Test Code : %x", code); if (flags & VERBOSE) { switch (code) { case NVME_ST_CODE_SHORT: printf(" Short device self-test operation"); break; case NVME_ST_CODE_EXTENDED: printf(" Extended device self-test operation"); break; case NVME_ST_CODE_VS: printf(" Vendor specific"); break; default: printf(" Reserved"); break; } } printf("\n"); if (op == NVME_ST_RESULT_KNOWN_SEG_FAIL) printf(" Segment Number : %#x\n", res->seg); printf(" Valid Diagnostic Information : %#x\n", res->vdi); printf(" Power on hours (POH) : %#"PRIx64"\n", (uint64_t)le64_to_cpu(res->poh)); if (res->vdi & NVME_ST_VALID_DIAG_INFO_NSID) printf(" Namespace Identifier : %#x\n", le32_to_cpu(res->nsid)); if (res->vdi & NVME_ST_VALID_DIAG_INFO_FLBA) printf(" Failing LBA : %#"PRIx64"\n", (uint64_t)le64_to_cpu(res->flba)); if (res->vdi & NVME_ST_VALID_DIAG_INFO_SCT) printf(" Status Code Type : %#x\n", res->sct); if (res->vdi & NVME_ST_VALID_DIAG_INFO_SC) { printf(" Status Code : %#x", res->sc); if (flags & VERBOSE) printf(" %s", nvme_status_to_string( (res->sct & 7) << 8 | res->sc, false)); printf("\n"); } printf(" Vendor Specific : %#x %#x\n", res->vs[0], res->vs[1]); } void nvme_show_self_test_log(struct nvme_self_test_log *self_test, __u8 dst_entries, __u32 size, const char *devname, enum nvme_print_flags flags) { int i; __u8 num_entries; if (flags & BINARY) return d_raw((unsigned char *)self_test, size); if (flags & JSON) return json_self_test_log(self_test, dst_entries); printf("Device Self Test Log for NVME device:%s\n", devname); printf("Current operation : %#x\n", self_test->current_operation); printf("Current Completion : %u%%\n", self_test->completion); num_entries = min(dst_entries, NVME_LOG_ST_MAX_RESULTS); for (i = 0; i < num_entries; i++) { printf("Self Test Result[%d]:\n", i); nvme_show_self_test_result(&self_test->result[i], flags); } } static void nvme_show_sanitize_log_sprog(__u32 sprog) { double percent; percent = (((double)sprog * 100) / 0x10000); printf("\t(%f%%)\n", percent); } static void nvme_show_sanitize_log_sstat(__u16 status) { const char *str = get_sanitize_log_sstat_status_str(status); printf("\t[2:0]\t%s\n", str); str = "Number of completed passes if most recent operation was overwrite"; printf("\t[7:3]\t%s:\t%u\n", str, (status >> NVME_SANITIZE_SSTAT_COMPLETED_PASSES_SHIFT) & NVME_SANITIZE_SSTAT_COMPLETED_PASSES_MASK); printf("\t [8]\t"); if (status & NVME_SANITIZE_SSTAT_GLOBAL_DATA_ERASED) str = "Global Data Erased set: no NS LB in the NVM subsystem "\ "has been written to and no PMR in the NVM subsystem "\ "has been enabled"; else str = "Global Data Erased cleared: a NS LB in the NVM "\ "subsystem has been written to or a PMR in the NVM "\ "subsystem has been enabled"; printf("%s\n", str); } static void nvme_show_estimate_sanitize_time(const char *text, uint32_t value) { printf("%s: %u%s\n", text, value, value == 0xffffffff ? " (No time period reported)" : ""); } void nvme_show_sanitize_log(struct nvme_sanitize_log_page *sanitize, const char *devname, enum nvme_print_flags flags) { int human = flags & VERBOSE; __u16 status = le16_to_cpu(sanitize->sstat) & NVME_SANITIZE_SSTAT_STATUS_MASK; if (flags & BINARY) d_raw((unsigned char *)sanitize, sizeof(*sanitize)); else if (flags & JSON) { json_sanitize_log(sanitize, devname); return; } printf("Sanitize Progress (SPROG) : %u", le16_to_cpu(sanitize->sprog)); if (human && status == NVME_SANITIZE_SSTAT_STATUS_IN_PROGESS) nvme_show_sanitize_log_sprog(le16_to_cpu(sanitize->sprog)); else printf("\n"); printf("Sanitize Status (SSTAT) : %#x\n", le16_to_cpu(sanitize->sstat) & NVME_SANITIZE_SSTAT_STATUS_MASK); if (human) nvme_show_sanitize_log_sstat(le16_to_cpu(sanitize->sstat)); printf("Sanitize Command Dword 10 Information (SCDW10) : %#x\n", le32_to_cpu(sanitize->scdw10)); nvme_show_estimate_sanitize_time("Estimated Time For Overwrite ", le32_to_cpu(sanitize->eto)); nvme_show_estimate_sanitize_time("Estimated Time For Block Erase ", le32_to_cpu(sanitize->etbe)); nvme_show_estimate_sanitize_time("Estimated Time For Crypto Erase ", le32_to_cpu(sanitize->etce)); nvme_show_estimate_sanitize_time("Estimated Time For Overwrite (No-Deallocate) ", le32_to_cpu(sanitize->etond)); nvme_show_estimate_sanitize_time("Estimated Time For Block Erase (No-Deallocate) ", le32_to_cpu(sanitize->etbend)); nvme_show_estimate_sanitize_time("Estimated Time For Crypto Erase (No-Deallocate)", le32_to_cpu(sanitize->etcend)); } const char *nvme_feature_to_string(enum nvme_features_id feature) { switch (feature) { case NVME_FEAT_FID_ARBITRATION: return "Arbitration"; case NVME_FEAT_FID_POWER_MGMT: return "Power Management"; case NVME_FEAT_FID_LBA_RANGE: return "LBA Range Type"; case NVME_FEAT_FID_TEMP_THRESH: return "Temperature Threshold"; case NVME_FEAT_FID_ERR_RECOVERY:return "Error Recovery"; case NVME_FEAT_FID_VOLATILE_WC: return "Volatile Write Cache"; case NVME_FEAT_FID_NUM_QUEUES: return "Number of Queues"; case NVME_FEAT_FID_IRQ_COALESCE:return "Interrupt Coalescing"; case NVME_FEAT_FID_IRQ_CONFIG: return "Interrupt Vector Configuration"; case NVME_FEAT_FID_WRITE_ATOMIC:return "Write Atomicity Normal"; case NVME_FEAT_FID_ASYNC_EVENT: return "Async Event Configuration"; case NVME_FEAT_FID_AUTO_PST: return "Autonomous Power State Transition"; case NVME_FEAT_FID_HOST_MEM_BUF:return "Host Memory Buffer"; case NVME_FEAT_FID_TIMESTAMP: return "Timestamp"; case NVME_FEAT_FID_KATO: return "Keep Alive Timer"; case NVME_FEAT_FID_HCTM: return "Host Controlled Thermal Management"; case NVME_FEAT_FID_NOPSC: return "Non-Operational Power State Config"; case NVME_FEAT_FID_RRL: return "Read Recovery Level"; case NVME_FEAT_FID_PLM_CONFIG: return "Predictable Latency Mode Config"; case NVME_FEAT_FID_PLM_WINDOW: return "Predictable Latency Mode Window"; case NVME_FEAT_FID_LBA_STS_INTERVAL: return "LBA Status Interval"; case NVME_FEAT_FID_HOST_BEHAVIOR: return "Host Behavior"; case NVME_FEAT_FID_SANITIZE: return "Sanitize"; case NVME_FEAT_FID_ENDURANCE_EVT_CFG: return "Endurance Event Group Configuration"; case NVME_FEAT_FID_IOCS_PROFILE: return "I/O Command Set Profile"; case NVME_FEAT_FID_SPINUP_CONTROL: return "Spinup Control"; case NVME_FEAT_FID_ENH_CTRL_METADATA: return "Enhanced Controller Metadata"; case NVME_FEAT_FID_CTRL_METADATA: return "Controller Metadata"; case NVME_FEAT_FID_NS_METADATA: return "Namespace Metadata"; case NVME_FEAT_FID_SW_PROGRESS: return "Software Progress"; case NVME_FEAT_FID_HOST_ID: return "Host Identifier"; case NVME_FEAT_FID_RESV_MASK: return "Reservation Notification Mask"; case NVME_FEAT_FID_RESV_PERSIST:return "Reservation Persistence"; case NVME_FEAT_FID_WRITE_PROTECT: return "Namespace Write Protect"; } /* * We don't use the "default:" statement to let the compiler warning if * some values of the enum nvme_features_id are missing in the switch(). * The following return is acting as the default: statement. */ return "Unknown"; } const char *nvme_register_to_string(int reg) { switch (reg) { case NVME_REG_CAP: return "Controller Capabilities"; case NVME_REG_VS: return "Version"; case NVME_REG_INTMS: return "Interrupt Vector Mask Set"; case NVME_REG_INTMC: return "Interrupt Vector Mask Clear"; case NVME_REG_CC: return "Controller Configuration"; case NVME_REG_CSTS: return "Controller Status"; case NVME_REG_NSSR: return "NVM Subsystem Reset"; case NVME_REG_AQA: return "Admin Queue Attributes"; case NVME_REG_ASQ: return "Admin Submission Queue Base Address"; case NVME_REG_ACQ: return "Admin Completion Queue Base Address"; case NVME_REG_CMBLOC: return "Controller Memory Buffer Location"; case NVME_REG_CMBSZ: return "Controller Memory Buffer Size"; default: return "Unknown"; } } const char *nvme_select_to_string(int sel) { switch (sel) { case 0: return "Current"; case 1: return "Default"; case 2: return "Saved"; case 3: return "Supported capabilities"; case 8: return "Changed"; default: return "Reserved"; } } void nvme_show_select_result(__u32 result) { if (result & 0x1) printf(" Feature is saveable\n"); if (result & 0x2) printf(" Feature is per-namespace\n"); if (result & 0x4) printf(" Feature is changeable\n"); } static const char *nvme_feature_lba_type_to_string(__u8 type) { switch (type) { case 0: return "Reserved"; case 1: return "Filesystem"; case 2: return "RAID"; case 3: return "Cache"; case 4: return "Page / Swap file"; default: if (type >= 0x05 && type <= 0x7f) return "Reserved"; else return "Vendor Specific"; } } void nvme_show_lba_range(struct nvme_lba_range_type *lbrt, int nr_ranges) { int i, j; for (i = 0; i <= nr_ranges; i++) { printf("\ttype : %#x - %s\n", lbrt->entry[i].type, nvme_feature_lba_type_to_string(lbrt->entry[i].type)); printf("\tattributes : %#x - %s, %s\n", lbrt->entry[i].attributes, (lbrt->entry[i].attributes & 0x0001) ? "LBA range may be overwritten" : "LBA range should not be overwritten", ((lbrt->entry[i].attributes & 0x0002) >> 1) ? "LBA range should be hidden from the OS/EFI/BIOS" : "LBA range should be visible from the OS/EFI/BIOS"); printf("\tslba : %#"PRIx64"\n", le64_to_cpu(lbrt->entry[i].slba)); printf("\tnlb : %#"PRIx64"\n", le64_to_cpu(lbrt->entry[i].nlb)); printf("\tguid : "); for (j = 0; j < 16; j++) printf("%02x", lbrt->entry[i].guid[j]); printf("\n"); } } static const char *nvme_feature_wl_hints_to_string(__u8 wh) { switch (wh) { case 0: return "No Workload"; case 1: return "Extended Idle Period with a Burst of Random Writes"; case 2: return "Heavy Sequential Writes"; default:return "Reserved"; } } static const char *nvme_feature_temp_type_to_string(__u8 type) { switch (type) { case 0: return "Over Temperature Threshold"; case 1: return "Under Temperature Threshold"; default:return "Reserved"; } } static const char *nvme_feature_temp_sel_to_string(__u8 sel) { switch (sel) { case 0: return "Composite Temperature"; case 1: return "Temperature Sensor 1"; case 2: return "Temperature Sensor 2"; case 3: return "Temperature Sensor 3"; case 4: return "Temperature Sensor 4"; case 5: return "Temperature Sensor 5"; case 6: return "Temperature Sensor 6"; case 7: return "Temperature Sensor 7"; case 8: return "Temperature Sensor 8"; default:return "Reserved"; } } static void nvme_show_auto_pst(struct nvme_feat_auto_pst *apst) { int i; __u64 value; printf( "\tAuto PST Entries"); printf("\t.................\n"); for (i = 0; i < 32; i++) { value = le64_to_cpu(apst->apst_entry[i]); printf("\tEntry[%2d] \n", i); printf("\t.................\n"); printf("\tIdle Time Prior to Transition (ITPT): %u ms\n", (__u32)(value >> NVME_APST_ENTRY_ITPT_SHIFT) & NVME_APST_ENTRY_ITPT_MASK); printf("\tIdle Transition Power State (ITPS): %u\n", (__u32)(value >> NVME_APST_ENTRY_ITPS_SHIFT ) & NVME_APST_ENTRY_ITPS_MASK); printf("\t.................\n"); } } static void nvme_show_timestamp(struct nvme_timestamp *ts) { struct tm *tm; char buffer[320]; time_t timestamp = int48_to_long(ts->timestamp) / 1000; tm = localtime(×tamp); printf("\tThe timestamp is : %'"PRIu64" (%s)\n", int48_to_long(ts->timestamp), strftime(buffer, sizeof(buffer), "%c %Z", tm) ? buffer : "-"); printf("\t%s\n", (ts->attr & 2) ? "The Timestamp field was initialized with a "\ "Timestamp value using a Set Features command." : "The Timestamp field was initialized "\ "to ‘0’ by a Controller Level Reset."); printf("\t%s\n", (ts->attr & 1) ? "The controller may have stopped counting during vendor specific "\ "intervals after the Timestamp value was initialized" : "The controller counted time in milliseconds "\ "continuously since the Timestamp value was initialized."); } static void nvme_show_host_mem_buffer(struct nvme_host_mem_buf_attrs *hmb) { printf("\tHost Memory Descriptor List Entry Count (HMDLEC): %u\n", le32_to_cpu(hmb->hmdlec)); printf("\tHost Memory Descriptor List Address (HMDLAU): 0x%x\n", le32_to_cpu(hmb->hmdlau)); printf("\tHost Memory Descriptor List Address (HMDLAL): 0x%x\n", le32_to_cpu(hmb->hmdlal)); printf("\tHost Memory Buffer Size (HSIZE): %u\n", le32_to_cpu(hmb->hsize)); } static const char *nvme_show_ns_wp_cfg(enum nvme_ns_write_protect_cfg state) { switch (state) { case NVME_NS_WP_CFG_NONE: return "No Write Protect"; case NVME_NS_WP_CFG_PROTECT: return "Write Protect"; case NVME_NS_WP_CFG_PROTECT_POWER_CYCLE: return "Write Protect Until Power Cycle"; case NVME_NS_WP_CFG_PROTECT_PERMANENT: return "Permanent Write Protect"; default: return "Reserved"; } } static void nvme_directive_show_fields(__u8 dtype, __u8 doper, unsigned int result, unsigned char *buf) { __u8 *field = buf; int count, i; switch (dtype) { case NVME_DIRECTIVE_DTYPE_IDENTIFY: switch (doper) { case NVME_DIRECTIVE_RECEIVE_IDENTIFY_DOPER_PARAM: printf("\tDirective support \n"); printf("\t\tIdentify Directive : %s\n", (*field & 0x1) ? "supported":"not supported"); printf("\t\tStream Directive : %s\n", (*field & 0x2) ? "supported":"not supported"); printf("\tDirective status \n"); printf("\t\tIdentify Directive : %s\n", (*(field + 32) & 0x1) ? "enabled" : "disabled"); printf("\t\tStream Directive : %s\n", (*(field + 32) & 0x2) ? "enabled" : "disabled"); break; default: fprintf(stderr, "invalid directive operations for Identify Directives\n"); } break; case NVME_DIRECTIVE_DTYPE_STREAMS: switch (doper) { case NVME_DIRECTIVE_RECEIVE_STREAMS_DOPER_PARAM: printf("\tMax Streams Limit (MSL): %u\n", *(__u16 *) field); printf("\tNVM Subsystem Streams Available (NSSA): %u\n", *(__u16 *) (field + 2)); printf("\tNVM Subsystem Streams Open (NSSO): %u\n", *(__u16 *) (field + 4)); printf("\tNVM Subsystem Stream Capability (NSSC): %u\n", *(__u16 *) (field + 6)); printf("\tStream Write Size (in unit of LB size) (SWS): %u\n", *(__u32 *) (field + 16)); printf("\tStream Granularity Size (in unit of SWS) (SGS): %u\n", *(__u16 *) (field + 20)); printf("\tNamespace Streams Allocated (NSA): %u\n", *(__u16 *) (field + 22)); printf("\tNamespace Streams Open (NSO): %u\n", *(__u16 *) (field + 24)); break; case NVME_DIRECTIVE_RECEIVE_STREAMS_DOPER_STATUS: count = *(__u16 *) field; printf("\tOpen Stream Count : %u\n", *(__u16 *) field); for ( i = 0; i < count; i++ ) { printf("\tStream Identifier %.6u : %u\n", i + 1, *(__u16 *) (field + ((i + 1) * 2))); } break; case NVME_DIRECTIVE_RECEIVE_STREAMS_DOPER_RESOURCE: printf("\tNamespace Streams Allocated (NSA): %u\n", result & 0xffff); break; default: fprintf(stderr, "invalid directive operations for Streams Directives\n"); } break; default: fprintf(stderr, "invalid directive type\n"); break; } return; } void nvme_directive_show(__u8 type, __u8 oper, __u16 spec, __u32 nsid, __u32 result, void *buf, __u32 len, enum nvme_print_flags flags) { if (flags & BINARY) { if (buf) return d_raw(buf, len); return; } printf("dir-receive: type:%#x operation:%#x spec:%#x nsid:%#x result:%#x\n", type, oper, spec, nsid, result); if (flags & VERBOSE) nvme_directive_show_fields(type, oper, result, buf); else if (buf) d(buf, len, 16, 1); } static const char *nvme_plm_window(__u32 plm) { switch (plm & 0x7) { case 1: return "Deterministic Window (DTWIN)"; case 2: return "Non-deterministic Window (NDWIN)"; default: return "Reserved"; } } void nvme_show_lba_status_info(__u32 result) { printf("\tLBA Status Information Poll Interval (LSIPI) : %u\n", (result >> 16) & 0xffff); printf("\tLBA Status Information Report Interval (LSIRI): %u\n", result & 0xffff); } static void nvme_show_plm_config(struct nvme_plm_config *plmcfg) { printf("\tEnable Event :%04x\n", le16_to_cpu(plmcfg->ee)); printf("\tDTWIN Reads Threshold :%"PRIu64"\n", le64_to_cpu(plmcfg->dtwinrt)); printf("\tDTWIN Writes Threshold:%"PRIu64"\n", le64_to_cpu(plmcfg->dtwinwt)); printf("\tDTWIN Time Threshold :%"PRIu64"\n", le64_to_cpu(plmcfg->dtwintt)); } static char *nvme_show_host_metadata_type_to_string(enum nvme_features_id fid, __u8 type) { switch (fid) { case NVME_FEAT_FID_ENH_CTRL_METADATA: case NVME_FEAT_FID_CTRL_METADATA: switch (type) { case NVME_CTRL_METADATA_OS_CTRL_NAME: return "Operating System Controller Name"; case NVME_CTRL_METADATA_OS_DRIVER_NAME: return "Operating System Driver Name"; case NVME_CTRL_METADATA_OS_DRIVER_VER: return "Operating System Driver Version"; case NVME_CTRL_METADATA_PRE_BOOT_CTRL_NAME: return "Pre-boot Controller Name"; case NVME_CTRL_METADATA_PRE_BOOT_DRIVER_NAME: return "Pre-boot Driver Name"; case NVME_CTRL_METADATA_PRE_BOOT_DRIVER_VER: return "Pre-boot Driver Version"; case NVME_CTRL_METADATA_SYS_PROC_MODEL: return "System Processor Model"; case NVME_CTRL_METADATA_CHIPSET_DRV_NAME: return "Chipset Driver Name"; case NVME_CTRL_METADATA_CHIPSET_DRV_VERSION: return "Chipset Driver Version"; case NVME_CTRL_METADATA_OS_NAME_AND_BUILD: return "Operating System Name and Build"; case NVME_CTRL_METADATA_SYS_PROD_NAME: return "System Product Name"; case NVME_CTRL_METADATA_FIRMWARE_VERSION: return "Firmware Version"; case NVME_CTRL_METADATA_OS_DRIVER_FILENAME: return "Operating System Driver Filename"; case NVME_CTRL_METADATA_DISPLAY_DRV_NAME: return "Display Driver Name"; case NVME_CTRL_METADATA_DISPLAY_DRV_VERSION: return "Display Driver Version"; case NVME_CTRL_METADATA_HOST_DET_FAIL_REC: return "Host-Determined Failure Record"; default: return "Unknown Controller Type"; } case NVME_FEAT_FID_NS_METADATA: switch (type) { case NVME_NS_METADATA_OS_NS_NAME: return "Operating System Namespace Name"; case NVME_NS_METADATA_PRE_BOOT_NS_NAME: return "Pre-boot Namespace Name"; case NVME_NS_METADATA_OS_NS_QUAL_1: return "Operating System Namespace Name Qualifier 1"; case NVME_NS_METADATA_OS_NS_QUAL_2: return "Operating System Namespace Name Qualifier 2"; default: return "Unknown Namespace Type"; } default: return "Unknown Feature"; } } static void nvme_show_host_metadata(enum nvme_features_id fid, struct nvme_host_metadata *data) { struct nvme_metadata_element_desc *desc = &data->descs[0]; int i; char val[4096]; __u16 len; printf("\tNum Metadata Element Descriptors: %d\n", data->ndesc); for (i = 0; i < data->ndesc; i++) { len = le16_to_cpu(desc->len); strncpy(val, (char *)desc->val, min(sizeof(val) - 1, len)); printf("\tElement[%-3d]:\n", i); printf("\t\tType : 0x%02x (%s)\n", desc->type, nvme_show_host_metadata_type_to_string(fid, desc->type)); printf("\t\tRevision : %d\n", desc->rev); printf("\t\tLength : %d\n", len); printf("\t\tValue : %s\n", val); desc = (struct nvme_metadata_element_desc *) &desc->val[desc->len]; } } void nvme_feature_show_fields(enum nvme_features_id fid, unsigned int result, unsigned char *buf) { __u8 field; uint64_t ull; switch (fid) { case NVME_FEAT_FID_ARBITRATION: printf("\tHigh Priority Weight (HPW): %u\n", ((result & 0xff000000) >> 24) + 1); printf("\tMedium Priority Weight (MPW): %u\n", ((result & 0x00ff0000) >> 16) + 1); printf("\tLow Priority Weight (LPW): %u\n", ((result & 0x0000ff00) >> 8) + 1); printf("\tArbitration Burst (AB): "); if ((result & 0x00000007) == 7) printf("No limit\n"); else printf("%u\n", 1 << (result & 0x00000007)); break; case NVME_FEAT_FID_POWER_MGMT: field = (result & 0x000000E0) >> 5; printf("\tWorkload Hint (WH): %u - %s\n", field, nvme_feature_wl_hints_to_string(field)); printf("\tPower State (PS): %u\n", result & 0x0000001f); break; case NVME_FEAT_FID_LBA_RANGE: field = result & 0x0000003f; printf("\tNumber of LBA Ranges (NUM): %u\n", field + 1); if (buf) nvme_show_lba_range((struct nvme_lba_range_type *)buf, field); break; case NVME_FEAT_FID_TEMP_THRESH: field = (result & 0x00300000) >> 20; printf("\tThreshold Type Select (THSEL): %u - %s\n", field, nvme_feature_temp_type_to_string(field)); field = (result & 0x000f0000) >> 16; printf("\tThreshold Temperature Select (TMPSEL): %u - %s\n", field, nvme_feature_temp_sel_to_string(field)); printf("\tTemperature Threshold (TMPTH): %ld°C (%u Kelvin)\n", kelvin_to_celsius(result & 0x0000ffff), result & 0x0000ffff); break; case NVME_FEAT_FID_ERR_RECOVERY: printf("\tDeallocated or Unwritten Logical Block Error Enable (DULBE): %s\n", ((result & 0x00010000) >> 16) ? "Enabled":"Disabled"); printf("\tTime Limited Error Recovery (TLER): %u ms\n", (result & 0x0000ffff) * 100); break; case NVME_FEAT_FID_VOLATILE_WC: printf("\tVolatile Write Cache Enable (WCE): %s\n", (result & 0x00000001) ? "Enabled":"Disabled"); break; case NVME_FEAT_FID_NUM_QUEUES: printf("\tNumber of IO Completion Queues Allocated (NCQA): %u\n", ((result & 0xffff0000) >> 16) + 1); printf("\tNumber of IO Submission Queues Allocated (NSQA): %u\n", (result & 0x0000ffff) + 1); break; case NVME_FEAT_FID_IRQ_COALESCE: printf("\tAggregation Time (TIME): %u usec\n", ((result & 0x0000ff00) >> 8) * 100); printf("\tAggregation Threshold (THR): %u\n", (result & 0x000000ff) + 1); break; case NVME_FEAT_FID_IRQ_CONFIG: printf("\tCoalescing Disable (CD): %s\n", ((result & 0x00010000) >> 16) ? "True":"False"); printf("\tInterrupt Vector (IV): %u\n", result & 0x0000ffff); break; case NVME_FEAT_FID_WRITE_ATOMIC: printf("\tDisable Normal (DN): %s\n", (result & 0x00000001) ? "True":"False"); break; case NVME_FEAT_FID_ASYNC_EVENT: printf("\tDiscovery Log Page Change Notices : %s\n", ((result & 0x80000000) >> 31) ? "Send async event":"Do not send async event"); printf("\tEndurance Group Event Aggregate Log Change Notices : %s\n", ((result & 0x00004000) >> 14) ? "Send async event":"Do not send async event"); printf("\tLBA Status Information Notices : %s\n", ((result & 0x00002000) >> 13) ? "Send async event":"Do not send async event"); printf("\tPredictable Latency Event Aggregate Log Change Notices : %s\n", ((result & 0x00001000) >> 12) ? "Send async event":"Do not send async event"); printf("\tAsymmetric Namespace Access Change Notices : %s\n", ((result & 0x00000800) >> 11) ? "Send async event":"Do not send async event"); printf("\tTelemetry Log Notices : %s\n", ((result & 0x00000400) >> 10) ? "Send async event":"Do not send async event"); printf("\tFirmware Activation Notices : %s\n", ((result & 0x00000200) >> 9) ? "Send async event":"Do not send async event"); printf("\tNamespace Attribute Notices : %s\n", ((result & 0x00000100) >> 8) ? "Send async event":"Do not send async event"); printf("\tSMART / Health Critical Warnings : %s\n", (result & 0x000000ff) ? "Send async event":"Do not send async event"); break; case NVME_FEAT_FID_AUTO_PST: printf("\tAutonomous Power State Transition Enable (APSTE): %s\n", (result & 0x00000001) ? "Enabled":"Disabled"); if (buf) nvme_show_auto_pst((struct nvme_feat_auto_pst *)buf); break; case NVME_FEAT_FID_HOST_MEM_BUF: printf("\tEnable Host Memory (EHM): %s\n", (result & 0x00000001) ? "Enabled":"Disabled"); if (buf) nvme_show_host_mem_buffer((struct nvme_host_mem_buf_attrs *)buf); break; case NVME_FEAT_FID_TIMESTAMP: if (buf) nvme_show_timestamp((struct nvme_timestamp *)buf); break; case NVME_FEAT_FID_KATO: printf("\tKeep Alive Timeout (KATO) in milliseconds: %u\n", result); break; case NVME_FEAT_FID_HCTM: printf("\tThermal Management Temperature 1 (TMT1) : %u Kelvin (%ld°C)\n", result >> 16, kelvin_to_celsius(result >> 16)); printf("\tThermal Management Temperature 2 (TMT2) : %u Kelvin (%ld°C)\n", result & 0x0000ffff, kelvin_to_celsius(result & 0x0000ffff)); break; case NVME_FEAT_FID_NOPSC: printf("\tNon-Operational Power State Permissive Mode Enable (NOPPME): %s\n", (result & 1) ? "True" : "False"); break; case NVME_FEAT_FID_RRL: printf("\tRead Recovery Level (RRL): %u\n", result & 0xf); break; case NVME_FEAT_FID_PLM_CONFIG: printf("\tPredictable Latency Window Enabled: %s\n", result & 0x1 ? "True":"False"); if (buf) nvme_show_plm_config((struct nvme_plm_config *)buf); break; case NVME_FEAT_FID_PLM_WINDOW: printf("\tWindow Select: %s", nvme_plm_window(result)); break; case NVME_FEAT_FID_LBA_STS_INTERVAL: nvme_show_lba_status_info(result); break; case NVME_FEAT_FID_HOST_BEHAVIOR: if (buf) printf("\tHost Behavior Support: %s\n", (buf[0] & 0x1) ? "True" : "False"); break; case NVME_FEAT_FID_SANITIZE: printf("\tNo-Deallocate Response Mode (NODRM) : %u\n", result & 0x1); break; case NVME_FEAT_FID_ENDURANCE_EVT_CFG: printf("\tEndurance Group Identifier (ENDGID): %u\n", result & 0xffff); printf("\tEndurance Group Critical Warnings : %u\n", (result >> 16) & 0xff); break; case NVME_FEAT_FID_IOCS_PROFILE: printf("\tI/O Command Set Profile: %s\n", result & 0x1 ? "True":"False"); break; case NVME_FEAT_FID_SPINUP_CONTROL: printf("\tSpinup control feature Enabled: %s\n", (result & 1) ? "True" : "False"); break; case NVME_FEAT_FID_ENH_CTRL_METADATA: case NVME_FEAT_FID_CTRL_METADATA: case NVME_FEAT_FID_NS_METADATA: if (buf) nvme_show_host_metadata(fid, (struct nvme_host_metadata *)buf); break; case NVME_FEAT_FID_SW_PROGRESS: printf("\tPre-boot Software Load Count (PBSLC): %u\n", result & 0x000000ff); break; case NVME_FEAT_FID_HOST_ID: if (buf) { ull = buf[7]; ull <<= 8; ull |= buf[6]; ull <<= 8; ull |= buf[5]; ull <<= 8; ull |= buf[4]; ull <<= 8; ull |= buf[3]; ull <<= 8; ull |= buf[2]; ull <<= 8; ull |= buf[1]; ull <<= 8; ull |= buf[0]; printf("\tHost Identifier (HOSTID): %" PRIu64 "\n", ull); } break; case NVME_FEAT_FID_RESV_MASK: printf("\tMask Reservation Preempted Notification (RESPRE): %s\n", ((result & 0x00000008) >> 3) ? "True":"False"); printf("\tMask Reservation Released Notification (RESREL): %s\n", ((result & 0x00000004) >> 2) ? "True":"False"); printf("\tMask Registration Preempted Notification (REGPRE): %s\n", ((result & 0x00000002) >> 1) ? "True":"False"); break; case NVME_FEAT_FID_RESV_PERSIST: printf("\tPersist Through Power Loss (PTPL): %s\n", (result & 0x00000001) ? "True":"False"); break; case NVME_FEAT_FID_WRITE_PROTECT: printf("\tNamespace Write Protect: %s\n", nvme_show_ns_wp_cfg(result)); break; default: break; } } void nvme_show_lba_status(struct nvme_lba_status *list, unsigned long len, enum nvme_print_flags flags) { int idx; if (flags & BINARY) return d_raw((unsigned char *)list, len); printf("Number of LBA Status Descriptors(NLSD): %" PRIu32 "\n", le32_to_cpu(list->nlsd)); printf("Completion Condition(CMPC): %u\n", list->cmpc); switch (list->cmpc) { case 1: printf("\tCompleted due to transferring the amount of data"\ " specified in the MNDW field\n"); break; case 2: printf("\tCompleted due to having performed the action\n"\ "\tspecified in the Action Type field over the\n"\ "\tnumber of logical blocks specified in the\n"\ "\tRange Length field\n"); break; } for (idx = 0; idx < list->nlsd; idx++) { struct nvme_lba_status_desc *e = &list->descs[idx]; printf("{ DSLBA: 0x%016"PRIu64", NLB: 0x%08x, Status: 0x%02x }\n", le64_to_cpu(e->dslba), le32_to_cpu(e->nlb), e->status); } } static void nvme_dev_full_path(nvme_ns_t n, char *path, size_t len) { struct stat st; snprintf(path, len, "/dev/%s", nvme_ns_get_name(n)); if (stat(path, &st) == 0) return; snprintf(path, len, "/dev/spdk/%s", nvme_ns_get_name(n)); if (stat(path, &st) == 0) return; /* * We could start trying to search for it but let's make * it simple and just don't show the path at all. */ snprintf(path, len, "%s", nvme_ns_get_name(n)); } static void nvme_generic_full_path(nvme_ns_t n, char *path, size_t len) { int head_instance; int instance; struct stat st; sscanf(nvme_ns_get_name(n), "nvme%dn%d", &instance, &head_instance); snprintf(path, len, "/dev/ng%dn%d", instance, head_instance); if (stat(path, &st) == 0) return; snprintf(path, len, "/dev/spkd/ng%dn%d", instance, head_instance); if (stat(path, &st) == 0) return; /* * We could start trying to search for it but let's make * it simple and just don't show the path at all. */ snprintf(path, len, "ng%dn%d", instance, head_instance); } void nvme_show_list_item(nvme_ns_t n) { char usage[128] = { 0 }, format[128] = { 0 }; char devname[128] = { 0 }; char genname[128] = { 0 }; long long lba = nvme_ns_get_lba_size(n); double nsze = nvme_ns_get_lba_count(n) * lba; double nuse = nvme_ns_get_lba_util(n) * lba; const char *s_suffix = suffix_si_get(&nsze); const char *u_suffix = suffix_si_get(&nuse); const char *l_suffix = suffix_binary_get(&lba); snprintf(usage, sizeof(usage), "%6.2f %2sB / %6.2f %2sB", nuse, u_suffix, nsze, s_suffix); snprintf(format, sizeof(format), "%3.0f %2sB + %2d B", (double)lba, l_suffix, nvme_ns_get_meta_size(n)); nvme_dev_full_path(n, devname, sizeof(devname)); nvme_generic_full_path(n, genname, sizeof(genname)); printf("%-21s %-21s %-20s %-40s %-9d %-26s %-16s %-8s\n", devname, genname, nvme_ns_get_serial(n), nvme_ns_get_model(n), nvme_ns_get_nsid(n), usage, format, nvme_ns_get_firmware(n)); } static void nvme_show_simple_list(nvme_root_t r) { nvme_host_t h; nvme_subsystem_t s; nvme_ctrl_t c; nvme_ns_t n; printf("%-21s %-21s %-20s %-40s %-9s %-26s %-16s %-8s\n", "Node", "Generic", "SN", "Model", "Namespace", "Usage", "Format", "FW Rev"); printf("%-.21s %-.21s %-.20s %-.40s %-.9s %-.26s %-.16s %-.8s\n", dash, dash, dash, dash, dash, dash, dash, dash); nvme_for_each_host(r, h) { nvme_for_each_subsystem(h, s) { nvme_subsystem_for_each_ns(s, n) nvme_show_list_item(n); nvme_subsystem_for_each_ctrl(s, c) nvme_ctrl_for_each_ns(c, n) nvme_show_list_item(n); } } } static void nvme_show_ns_details(nvme_ns_t n) { char usage[128] = { 0 }, format[128] = { 0 }; char devname[128] = { 0 }, genname[128] = { 0 }; long long lba = nvme_ns_get_lba_size(n); double nsze = nvme_ns_get_lba_count(n) * lba; double nuse = nvme_ns_get_lba_util(n) * lba; const char *s_suffix = suffix_si_get(&nsze); const char *u_suffix = suffix_si_get(&nuse); const char *l_suffix = suffix_binary_get(&lba); sprintf(usage,"%6.2f %2sB / %6.2f %2sB", nuse, u_suffix, nsze, s_suffix); sprintf(format,"%3.0f %2sB + %2d B", (double)lba, l_suffix, nvme_ns_get_meta_size(n)); nvme_dev_full_path(n, devname, sizeof(devname)); nvme_generic_full_path(n, genname, sizeof(genname)); printf("%-12s %-12s %-8x %-26s %-16s ", devname, genname, nvme_ns_get_nsid(n), usage, format); } static void nvme_show_detailed_list(nvme_root_t r) { nvme_host_t h; nvme_subsystem_t s; nvme_ctrl_t c; nvme_path_t p; nvme_ns_t n; printf("%-16s %-96s %-.16s\n", "Subsystem", "Subsystem-NQN", "Controllers"); printf("%-.16s %-.96s %-.16s\n", dash, dash, dash); nvme_for_each_host(r, h) { nvme_for_each_subsystem(h, s) { bool first = true; printf("%-16s %-96s ", nvme_subsystem_get_name(s), nvme_subsystem_get_nqn(s)); nvme_subsystem_for_each_ctrl(s, c) { printf("%s%s", first ? "": ", ", nvme_ctrl_get_name(c)); first = false; } printf("\n"); } } printf("\n"); printf("%-8s %-20s %-40s %-8s %-6s %-14s %-12s %-16s\n", "Device", "SN", "MN", "FR", "TxPort", "Address", "Subsystem", "Namespaces"); printf("%-.8s %-.20s %-.40s %-.8s %-.6s %-.14s %-.12s %-.16s\n", dash, dash, dash, dash, dash, dash, dash, dash); nvme_for_each_host(r, h) { nvme_for_each_subsystem(h, s) { nvme_subsystem_for_each_ctrl(s, c) { bool first = true; printf("%-8s %-20s %-40s %-8s %-6s %-14s %-12s ", nvme_ctrl_get_name(c), nvme_ctrl_get_serial(c), nvme_ctrl_get_model(c), nvme_ctrl_get_firmware(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c), nvme_subsystem_get_name(s)); nvme_ctrl_for_each_ns(c, n) { printf("%s%s", first ? "": ", ", nvme_ns_get_name(n)); first = false; } nvme_ctrl_for_each_path(c, p) { n = nvme_path_get_ns(p); if (!n) continue; printf("%s%s", first ? "": ", ", nvme_ns_get_name(n)); first = false; } printf("\n"); } } } printf("\n"); printf("%-12s %-12s %-8s %-26s %-16s %-16s\n", "Device", "Generic", "NSID", "Usage", "Format", "Controllers"); printf("%-.12s %-.12s %-.8s %-.26s %-.16s %-.16s\n", dash, dash, dash, dash, dash, dash); nvme_for_each_host(r, h) { nvme_for_each_subsystem(h, s) { nvme_subsystem_for_each_ctrl(s, c) { nvme_ctrl_for_each_ns(c, n) { nvme_show_ns_details(n); printf("%s\n", nvme_ctrl_get_name(c)); } } nvme_subsystem_for_each_ns(s, n) { bool first = true; nvme_show_ns_details(n); nvme_subsystem_for_each_ctrl(s, c) { printf("%s%s", first ? "" : ", ", nvme_ctrl_get_name(c)); first = false; } printf("\n"); } } } } static void json_detail_list(nvme_root_t r) { struct json_object *jroot = json_create_object(); struct json_object *jdev = json_create_array(); nvme_host_t h; nvme_subsystem_t s; nvme_ctrl_t c; nvme_path_t p; nvme_ns_t n; nvme_for_each_host(r, h) { struct json_object *hss = json_create_object(); struct json_object *jsslist = json_create_array(); const char *hostid; json_object_add_value_string(hss, "HostNQN", nvme_host_get_hostnqn(h)); hostid = nvme_host_get_hostid(h); if (hostid) json_object_add_value_string(hss, "HostID", hostid); nvme_for_each_subsystem(h , s) { struct json_object *jss = json_create_object(); struct json_object *jctrls = json_create_array(); struct json_object *jnss = json_create_array(); json_object_add_value_string(jss, "Subsystem", nvme_subsystem_get_name(s)); json_object_add_value_string(jss, "SubsystemNQN", nvme_subsystem_get_nqn(s)); nvme_subsystem_for_each_ctrl(s, c) { struct json_object *jctrl = json_create_object(); struct json_object *jnss = json_create_array(); struct json_object *jpaths = json_create_array(); json_object_add_value_string(jctrl, "Controller", nvme_ctrl_get_name(c)); json_object_add_value_string(jctrl, "SerialNumber", nvme_ctrl_get_serial(c)); json_object_add_value_string(jctrl, "ModelNumber", nvme_ctrl_get_model(c)); json_object_add_value_string(jctrl, "Firmware", nvme_ctrl_get_firmware(c)); json_object_add_value_string(jctrl, "Transport", nvme_ctrl_get_transport(c)); json_object_add_value_string(jctrl, "Address", nvme_ctrl_get_address(c)); nvme_ctrl_for_each_ns(c, n) { struct json_object *jns = json_create_object(); long long lba = nvme_ns_get_lba_size(n); double nsze = nvme_ns_get_lba_count(n) * lba; double nuse = nvme_ns_get_lba_util(n) * lba; json_object_add_value_string(jns, "NameSpace", nvme_ns_get_name(n)); json_object_add_value_int(jns, "NSID", nvme_ns_get_nsid(n)); json_object_add_value_int(jns, "UsedBytes", nuse); json_object_add_value_int(jns, "MaximumLBA", nvme_ns_get_lba_count(n)); json_object_add_value_int(jns, "PhysicalSize", nsze); json_object_add_value_int(jns, "SectorSize", lba); json_array_add_value_object(jnss, jns); } json_object_add_value_object(jctrl, "Namespaces", jnss); nvme_ctrl_for_each_path(c, p) { struct json_object *jpath = json_create_object(); json_object_add_value_string(jpath, "Path", nvme_path_get_name(p)); json_object_add_value_string(jpath, "ANAState", nvme_path_get_ana_state(p)); json_array_add_value_object(jpaths, jpath); } json_object_add_value_object(jctrl, "Paths", jpaths); json_array_add_value_object(jctrls, jctrl); } json_object_add_value_object(jss, "Controllers", jctrls); nvme_subsystem_for_each_ns(s, n) { struct json_object *jns = json_create_object(); long long lba = nvme_ns_get_lba_size(n); double nsze = nvme_ns_get_lba_count(n) * lba; double nuse = nvme_ns_get_lba_util(n) * lba; json_object_add_value_string(jns, "NameSpace", nvme_ns_get_name(n)); json_object_add_value_int(jns, "NSID", nvme_ns_get_nsid(n)); json_object_add_value_int(jns, "UsedBytes", nuse); json_object_add_value_int(jns, "MaximumLBA", nvme_ns_get_lba_count(n)); json_object_add_value_int(jns, "PhysicalSize", nsze); json_object_add_value_int(jns, "SectorSize", lba); json_array_add_value_object(jnss, jns); } json_object_add_value_object(jss, "Namespaces", jnss); json_array_add_value_object(jsslist, jss); } json_object_add_value_object(hss, "Subsystems", jsslist); json_array_add_value_object(jdev, hss); } json_object_add_value_array(jroot, "Devices", jdev); json_print_object(jroot, NULL); printf("\n"); json_free_object(jroot); } static struct json_object *json_list_item(nvme_ns_t n) { struct json_object *jdevice = json_create_object(); char devname[128] = { 0 }; long long lba = nvme_ns_get_lba_size(n); double nsze = nvme_ns_get_lba_count(n) * lba; double nuse = nvme_ns_get_lba_util(n) * lba; nvme_dev_full_path(n, devname, sizeof(devname)); json_object_add_value_int(jdevice, "NameSpace", nvme_ns_get_nsid(n)); json_object_add_value_string(jdevice, "DevicePath", devname); json_object_add_value_string(jdevice, "Firmware", nvme_ns_get_firmware(n)); json_object_add_value_string(jdevice, "ModelNumber", nvme_ns_get_model(n)); json_object_add_value_string(jdevice, "SerialNumber", nvme_ns_get_serial(n)); json_object_add_value_int(jdevice, "UsedBytes", nuse); json_object_add_value_int(jdevice, "MaximumLBA", nvme_ns_get_lba_count(n)); json_object_add_value_int(jdevice, "PhysicalSize", nsze); json_object_add_value_int(jdevice, "SectorSize", lba); return jdevice; } static void json_simple_list(nvme_root_t r) { struct json_object *jroot = json_create_object(); struct json_object *jdevices = json_create_array(); nvme_host_t h; nvme_subsystem_t s; nvme_ctrl_t c; nvme_ns_t n; nvme_for_each_host(r, h) { nvme_for_each_subsystem(h, s) { nvme_subsystem_for_each_ns(s, n) json_array_add_value_object(jdevices, json_list_item(n)); nvme_subsystem_for_each_ctrl(s, c) nvme_ctrl_for_each_ns(c, n) json_array_add_value_object(jdevices, json_list_item(n)); } } json_object_add_value_array(jroot, "Devices", jdevices); json_print_object(jroot, NULL); printf("\n"); json_free_object(jroot); } static void json_print_list_items(nvme_root_t r, enum nvme_print_flags flags) { if (flags & VERBOSE) json_detail_list(r); else json_simple_list(r); } void nvme_show_list_items(nvme_root_t r, enum nvme_print_flags flags) { if (flags & JSON) json_print_list_items(r, flags); else if (flags & VERBOSE) nvme_show_detailed_list(r); else nvme_show_simple_list(r); } static unsigned int json_subsystem_topology_multipath(nvme_subsystem_t s, json_object *namespaces) { nvme_ns_t n; nvme_path_t p; unsigned int i = 0; nvme_subsystem_for_each_ns(s, n) { struct json_object *ns_attrs; struct json_object *paths; ns_attrs = json_create_object(); json_object_add_value_int(ns_attrs, "NSID", nvme_ns_get_nsid(n)); paths = json_create_array(); nvme_namespace_for_each_path(n, p) { struct json_object *path_attrs; nvme_ctrl_t c = nvme_path_get_ctrl(p); path_attrs = json_create_object(); json_object_add_value_string(path_attrs, "Name", nvme_ctrl_get_name(c)); json_object_add_value_string(path_attrs, "Transport", nvme_ctrl_get_transport(c)); json_object_add_value_string(path_attrs, "Address", nvme_ctrl_get_address(c)); json_object_add_value_string(path_attrs, "State", nvme_ctrl_get_state(c)); json_object_add_value_string(path_attrs, "ANAState", nvme_path_get_ana_state(p)); json_array_add_value_object(paths, path_attrs); } json_object_add_value_array(ns_attrs, "Paths", paths); json_array_add_value_object(namespaces, ns_attrs); i++; } return i; } static void json_print_nvme_subsystem_topology(nvme_subsystem_t s, json_object *namespaces) { nvme_ctrl_t c; nvme_ns_t n; nvme_subsystem_for_each_ctrl(s, c) { nvme_ctrl_for_each_ns(c, n) { struct json_object *ctrl_attrs; struct json_object *ns_attrs; struct json_object *ctrl; ns_attrs = json_create_object(); json_object_add_value_int(ns_attrs, "NSID", nvme_ns_get_nsid(n)); ctrl = json_create_array(); ctrl_attrs = json_create_object(); json_object_add_value_string(ctrl_attrs, "Name", nvme_ctrl_get_name(c)); json_object_add_value_string(ctrl_attrs, "Transport", nvme_ctrl_get_transport(c)); json_object_add_value_string(ctrl_attrs, "Address", nvme_ctrl_get_address(c)); json_object_add_value_string(ctrl_attrs, "State", nvme_ctrl_get_state(c)); json_array_add_value_object(ctrl, ctrl_attrs); json_object_add_value_array(ns_attrs, "Controller", ctrl); json_array_add_value_object(namespaces, ns_attrs); } } } static void json_simple_topology(nvme_root_t r) { struct json_object *host_attrs, *subsystem_attrs; struct json_object *subsystems, *namespaces; struct json_object *root; nvme_host_t h; root = json_create_array(); nvme_for_each_host(r, h) { nvme_subsystem_t s; const char *hostid; host_attrs = json_create_object(); json_object_add_value_string(host_attrs, "HostNQN", nvme_host_get_hostnqn(h)); hostid = nvme_host_get_hostid(h); if (hostid) json_object_add_value_string(host_attrs, "HostID", hostid); subsystems = json_create_array(); nvme_for_each_subsystem(h, s) { subsystem_attrs = json_create_object(); json_object_add_value_string(subsystem_attrs, "Name", nvme_subsystem_get_name(s)); json_object_add_value_string(subsystem_attrs, "NQN", nvme_subsystem_get_nqn(s)); json_array_add_value_object(subsystems, subsystem_attrs); namespaces = json_create_array(); if (!json_subsystem_topology_multipath(s, namespaces)) json_print_nvme_subsystem_topology(s, namespaces); json_object_add_value_array(subsystem_attrs, "Namespaces", namespaces); } json_object_add_value_array(host_attrs, "Subsystems", subsystems); json_array_add_value_object(root, host_attrs); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static bool nvme_is_multipath(nvme_subsystem_t s) { nvme_ns_t n; nvme_path_t p; nvme_subsystem_for_each_ns(s, n) nvme_namespace_for_each_path(n, p) return true; return false; } static void nvme_show_subsystem_topology_multipath(nvme_subsystem_t s, enum nvme_cli_topo_ranking ranking) { nvme_ns_t n; nvme_path_t p; nvme_ctrl_t c; if (ranking == NVME_CLI_TOPO_NAMESPACE) { nvme_subsystem_for_each_ns(s, n) { printf(" +- ns %d\n", nvme_ns_get_nsid(n)); printf(" \\\n"); nvme_namespace_for_each_path(n, p) { c = nvme_path_get_ctrl(p); printf(" +- %s %s %s %s %s\n", nvme_ctrl_get_name(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c), nvme_ctrl_get_state(c), nvme_path_get_ana_state(p)); } } } else { /* NVME_CLI_TOPO_CTRL */ nvme_subsystem_for_each_ctrl(s, c) { printf(" +- %s %s %s\n", nvme_ctrl_get_name(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c)); printf(" \\\n"); nvme_subsystem_for_each_ns(s, n) { nvme_namespace_for_each_path(n, p) { if (nvme_path_get_ctrl(p) != c) continue; printf(" +- ns %d %s %s\n", nvme_ns_get_nsid(n), nvme_ctrl_get_state(c), nvme_path_get_ana_state(p)); } } } } } static void nvme_show_subsystem_topology(nvme_subsystem_t s, enum nvme_cli_topo_ranking ranking) { nvme_ctrl_t c; nvme_ns_t n; if (ranking == NVME_CLI_TOPO_NAMESPACE) { nvme_subsystem_for_each_ctrl(s, c) { nvme_ctrl_for_each_ns(c, n) { printf(" +- ns %d\n", nvme_ns_get_nsid(n)); printf(" \\\n"); printf(" +- %s %s %s %s\n", nvme_ctrl_get_name(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c), nvme_ctrl_get_state(c)); } } } else { /* NVME_CLI_TOPO_CTRL */ nvme_subsystem_for_each_ctrl(s, c) { printf(" +- %s %s %s\n", nvme_ctrl_get_name(c), nvme_ctrl_get_transport(c), nvme_ctrl_get_address(c)); printf(" \\\n"); nvme_ctrl_for_each_ns(c, n) { printf(" +- ns %d %s\n", nvme_ns_get_nsid(n), nvme_ctrl_get_state(c)); } } } } static void nvme_show_simple_topology(nvme_root_t r, enum nvme_cli_topo_ranking ranking) { nvme_host_t h; nvme_subsystem_t s; nvme_for_each_host(r, h) { nvme_for_each_subsystem(h, s) { printf("%s - NQN=%s\n", nvme_subsystem_get_name(s), nvme_subsystem_get_nqn(s)); printf("\\\n"); if (nvme_is_multipath(s)) nvme_show_subsystem_topology_multipath(s, ranking); else nvme_show_subsystem_topology(s, ranking); } } } void nvme_show_topology(nvme_root_t r, enum nvme_print_flags flags, enum nvme_cli_topo_ranking ranking) { if (flags & JSON) json_simple_topology(r); else nvme_show_simple_topology(r, ranking); }