/* * Copyright (c) 2015-2018 Western Digital Corporation or its affiliates. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. * * Author: Chaitanya Kulkarni , * Dong Ho , * Jeff Lien */ #include #include #include #include #include #include #include #include #include "linux/nvme_ioctl.h" #include "common.h" #include "nvme.h" #include "nvme-print.h" #include "nvme-ioctl.h" #include "plugin.h" #include "json.h" #include "argconfig.h" #include "suffix.h" #include #define CREATE_CMD #include "wdc-nvme.h" #include "wdc-utils.h" #define WRITE_SIZE (sizeof(__u8) * 4096) #define WDC_NVME_SUBCMD_SHIFT 8 #define WDC_NVME_LOG_SIZE_DATA_LEN 0x08 #define WDC_NVME_LOG_SIZE_HDR_LEN 0x08 /* Device Config */ #define WDC_NVME_VID 0x1c58 #define WDC_NVME_VID_2 0x1b96 #define WDC_NVME_SNDK_VID 0x15b7 #define WDC_NVME_SN100_DEV_ID 0x0003 #define WDC_NVME_SN200_DEV_ID 0x0023 #define WDC_NVME_SN630_DEV_ID 0x2200 #define WDC_NVME_SN630_DEV_ID_1 0x2201 #define WDC_NVME_SN840_DEV_ID 0x2300 #define WDC_NVME_SN840_DEV_ID_1 0x2500 #define WDC_NVME_SN640_DEV_ID 0x2400 #define WDC_NVME_SN640_DEV_ID_1 0x2401 #define WDC_NVME_SN640_DEV_ID_2 0x2402 #define WDC_NVME_SN640_DEV_ID_3 0x2404 #define WDC_NVME_ZN440_DEV_ID 0x2600 #define WDC_NVME_SN440_DEV_ID 0x2610 #define WDC_NVME_SN7GC_DEV_ID 0x2700 #define WDC_NVME_SN7GC_DEV_ID_1 0x2701 #define WDC_NVME_SN7GC_DEV_ID_2 0x2702 #define WDC_NVME_SXSLCL_DEV_ID 0x2001 #define WDC_NVME_SN520_DEV_ID 0x5003 #define WDC_NVME_SN520_DEV_ID_1 0x5004 #define WDC_NVME_SN520_DEV_ID_2 0x5005 #define WDC_NVME_SN720_DEV_ID 0x5002 #define WDC_NVME_SN730A_DEV_ID 0x5006 #define WDC_NVME_SN730B_DEV_ID 0x3714 #define WDC_NVME_SN730B_DEV_ID_1 0x3734 #define WDC_NVME_SN340_DEV_ID 0x500d #define WDC_DRIVE_CAP_CAP_DIAG 0x0000000000000001 #define WDC_DRIVE_CAP_INTERNAL_LOG 0x0000000000000002 #define WDC_DRIVE_CAP_C1_LOG_PAGE 0x0000000000000004 #define WDC_DRIVE_CAP_CA_LOG_PAGE 0x0000000000000008 #define WDC_DRIVE_CAP_D0_LOG_PAGE 0x0000000000000010 #define WDC_DRIVE_CAP_DRIVE_STATUS 0x0000000000000020 #define WDC_DRIVE_CAP_CLEAR_ASSERT 0x0000000000000040 #define WDC_DRIVE_CAP_CLEAR_PCIE 0x0000000000000080 #define WDC_DRIVE_CAP_RESIZE 0x0000000000000100 #define WDC_DRIVE_CAP_NAND_STATS 0x0000000000000200 #define WDC_DRIVE_CAP_DRIVE_LOG 0x0000000000000400 #define WDC_DRIVE_CAP_CRASH_DUMP 0x0000000000000800 #define WDC_DRIVE_CAP_PFAIL_DUMP 0x0000000000001000 #define WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY 0x0000000000002000 #define WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY 0x0000000000004000 #define WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG 0x0000000000008000 #define WDC_DRIVE_CAP_REASON_ID 0x0000000000010000 #define WDC_DRIVE_CAP_LOG_PAGE_DIR 0x0000000000020000 #define WDC_DRIVE_CAP_NS_RESIZE 0x0000000000040000 #define WDC_DRIVE_CAP_INFO 0x0000000000080000 #define WDC_DRIVE_CAP_DRIVE_ESSENTIALS 0x0000000100000000 #define WDC_DRIVE_CAP_DUI_DATA 0x0000000200000000 #define WDC_SN730B_CAP_VUC_LOG 0x0000000400000000 #define WDC_DRIVE_CAP_SN340_DUI 0x0000000800000000 #define WDC_DRIVE_CAP_SMART_LOG_MASK (WDC_DRIVE_CAP_C1_LOG_PAGE | WDC_DRIVE_CAP_CA_LOG_PAGE | \ WDC_DRIVE_CAP_D0_LOG_PAGE) /* SN730 Get Log Capabilities */ #define SN730_NVME_GET_LOG_OPCODE 0xc2 #define SN730_GET_FULL_LOG_LENGTH 0x00080009 #define SN730_GET_KEY_LOG_LENGTH 0x00090009 #define SN730_GET_COREDUMP_LOG_LENGTH 0x00120009 #define SN730_GET_EXTENDED_LOG_LENGTH 0x00420009 #define SN730_GET_FULL_LOG_SUBOPCODE 0x00010009 #define SN730_GET_KEY_LOG_SUBOPCODE 0x00020009 #define SN730_GET_CORE_LOG_SUBOPCODE 0x00030009 #define SN730_GET_EXTEND_LOG_SUBOPCODE 0x00040009 #define SN730_LOG_CHUNK_SIZE 0x1000 /* Customer ID's */ #define WDC_CUSTOMER_ID_GN 0x0001 #define WDC_CUSTOMER_ID_GD 0x0101 #define WDC_CUSTOMER_ID_0x1004 0x1004 #define WDC_CUSTOMER_ID_0x1005 0x1005 /* Drive Resize */ #define WDC_NVME_DRIVE_RESIZE_OPCODE 0xCC #define WDC_NVME_DRIVE_RESIZE_CMD 0x03 #define WDC_NVME_DRIVE_RESIZE_SUBCMD 0x01 /* Namespace Resize */ #define WDC_NVME_NAMESPACE_RESIZE_OPCODE 0xFB /* Drive Info */ #define WDC_NVME_DRIVE_INFO_OPCODE 0xC6 #define WDC_NVME_DRIVE_INFO_CMD 0x22 #define WDC_NVME_DRIVE_INFO_SUBCMD 0x06 /* Capture Diagnostics */ #define WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE WDC_NVME_LOG_SIZE_DATA_LEN #define WDC_NVME_CAP_DIAG_OPCODE 0xE6 #define WDC_NVME_CAP_DIAG_CMD_OPCODE 0xC6 #define WDC_NVME_CAP_DIAG_SUBCMD 0x00 #define WDC_NVME_CAP_DIAG_CMD 0x00 #define WDC_NVME_CRASH_DUMP_TYPE 1 #define WDC_NVME_PFAIL_DUMP_TYPE 2 /* Capture Device Unit Info */ #define WDC_NVME_CAP_DUI_HEADER_SIZE 0x400 #define WDC_NVME_CAP_DUI_OPCODE 0xFA #define WDC_NVME_CAP_DUI_DISABLE_IO 0x01 #define WDC_NVME_DUI_MAX_SECTION 0x3A #define WDC_NVME_DUI_MAX_SECTION_V2 0x26 #define WDC_NVME_DUI_MAX_SECTION_V3 0x23 #define WDC_NVME_DUI_MAX_DATA_AREA 0x05 /* Telemtery types for vs-internal-log command */ #define WDC_TELEMETRY_TYPE_NONE 0x0 #define WDC_TELEMETRY_TYPE_HOST 0x1 #define WDC_TELEMETRY_TYPE_CONTROLLER 0x2 #define WDC_TELEMETRY_HEADER_LENGTH 512 #define WDC_TELEMETRY_BLOCK_SIZE 512 /* Crash dump */ #define WDC_NVME_CRASH_DUMP_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_DATA_LEN #define WDC_NVME_CRASH_DUMP_SIZE_NDT 0x02 #define WDC_NVME_CRASH_DUMP_SIZE_CMD 0x20 #define WDC_NVME_CRASH_DUMP_SIZE_SUBCMD 0x03 #define WDC_NVME_CRASH_DUMP_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE #define WDC_NVME_CRASH_DUMP_CMD 0x20 #define WDC_NVME_CRASH_DUMP_SUBCMD 0x04 /* PFail Crash dump */ #define WDC_NVME_PF_CRASH_DUMP_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_HDR_LEN #define WDC_NVME_PF_CRASH_DUMP_SIZE_NDT 0x02 #define WDC_NVME_PF_CRASH_DUMP_SIZE_CMD 0x20 #define WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD 0x05 #define WDC_NVME_PF_CRASH_DUMP_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE #define WDC_NVME_PF_CRASH_DUMP_CMD 0x20 #define WDC_NVME_PF_CRASH_DUMP_SUBCMD 0x06 /* Drive Log */ #define WDC_NVME_DRIVE_LOG_SIZE_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE #define WDC_NVME_DRIVE_LOG_SIZE_DATA_LEN WDC_NVME_LOG_SIZE_DATA_LEN #define WDC_NVME_DRIVE_LOG_SIZE_NDT 0x02 #define WDC_NVME_DRIVE_LOG_SIZE_CMD 0x20 #define WDC_NVME_DRIVE_LOG_SIZE_SUBCMD 0x01 #define WDC_NVME_DRIVE_LOG_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE #define WDC_NVME_DRIVE_LOG_CMD 0x20 #define WDC_NVME_DRIVE_LOG_SUBCMD 0x00 /* Purge and Purge Monitor */ #define WDC_NVME_PURGE_CMD_OPCODE 0xDD #define WDC_NVME_PURGE_MONITOR_OPCODE 0xDE #define WDC_NVME_PURGE_MONITOR_DATA_LEN 0x2F #define WDC_NVME_PURGE_MONITOR_CMD_CDW10 0x0000000C #define WDC_NVME_PURGE_MONITOR_TIMEOUT 0x7530 #define WDC_NVME_PURGE_CMD_SEQ_ERR 0x0C #define WDC_NVME_PURGE_INT_DEV_ERR 0x06 #define WDC_NVME_PURGE_STATE_IDLE 0x00 #define WDC_NVME_PURGE_STATE_DONE 0x01 #define WDC_NVME_PURGE_STATE_BUSY 0x02 #define WDC_NVME_PURGE_STATE_REQ_PWR_CYC 0x03 #define WDC_NVME_PURGE_STATE_PWR_CYC_PURGE 0x04 /* Clear dumps */ #define WDC_NVME_CLEAR_DUMP_OPCODE 0xFF #define WDC_NVME_CLEAR_CRASH_DUMP_CMD 0x03 #define WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD 0x05 #define WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD 0x06 /* Clear FW Activate History */ #define WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE 0xC6 #define WDC_NVME_CLEAR_FW_ACT_HIST_CMD 0x23 #define WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD 0x05 /* Additional Smart Log */ #define WDC_ADD_LOG_BUF_LEN 0x4000 #define WDC_NVME_ADD_LOG_OPCODE 0xC1 #define WDC_GET_LOG_PAGE_SSD_PERFORMANCE 0x37 #define WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME 0x0F /* C2 Log Page */ #define WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE 0xC2 #define WDC_C2_LOG_BUF_LEN 0x1000 #define WDC_C2_LOG_PAGES_SUPPORTED_ID 0x08 #define WDC_C2_CUSTOMER_ID_ID 0x15 #define WDC_C2_THERMAL_THROTTLE_STATUS_ID 0x18 #define WDC_C2_ASSERT_DUMP_PRESENT_ID 0x19 #define WDC_C2_USER_EOL_STATUS_ID 0x1A #define WDC_C2_USER_EOL_STATE_ID 0x1C #define WDC_C2_SYSTEM_EOL_STATE_ID 0x1D #define WDC_C2_FORMAT_CORRUPT_REASON_ID 0x1E #define WDC_EOL_STATUS_NORMAL cpu_to_le32(0x00000000) #define WDC_EOL_STATUS_END_OF_LIFE cpu_to_le32(0x00000001) #define WDC_EOL_STATUS_READ_ONLY cpu_to_le32(0x00000002) #define WDC_ASSERT_DUMP_NOT_PRESENT cpu_to_le32(0x00000000) #define WDC_ASSERT_DUMP_PRESENT cpu_to_le32(0x00000001) #define WDC_THERMAL_THROTTLING_OFF cpu_to_le32(0x00000000) #define WDC_THERMAL_THROTTLING_ON cpu_to_le32(0x00000001) #define WDC_THERMAL_THROTTLING_UNAVAILABLE cpu_to_le32(0x00000002) #define WDC_FORMAT_NOT_CORRUPT cpu_to_le32(0x00000000) #define WDC_FORMAT_CORRUPT_FW_ASSERT cpu_to_le32(0x00000001) #define WDC_FORMAT_CORRUPT_UNKNOWN cpu_to_le32(0x000000FF) /* CA Log Page */ #define WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE 0xCA #define WDC_FB_CA_LOG_BUF_LEN 0x80 #define WDC_BD_CA_LOG_BUF_LEN 0x9C /* C0 EOL Status Log Page */ #define WDC_NVME_GET_EOL_STATUS_LOG_OPCODE 0xC0 #define WDC_NVME_EOL_STATUS_LOG_LEN 0x200 /* CB - FW Activate History Log Page */ #define WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID 0xCB #define WDC_FW_ACT_HISTORY_LOG_BUF_LEN 0x3d0 /* D0 Smart Log Page */ #define WDC_NVME_GET_VU_SMART_LOG_OPCODE 0xD0 #define WDC_NVME_VU_SMART_LOG_LEN 0x200 /* Log Page Directory defines */ #define NVME_LOG_PERSISTENT_EVENT 0x0D #define WDC_LOG_ID_C0 0xC0 #define WDC_LOG_ID_C2 WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE #define WDC_LOG_ID_C4 0xC4 #define WDC_LOG_ID_C5 0xC5 #define WDC_LOG_ID_C6 0xC6 #define WDC_LOG_ID_CA WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE #define WDC_LOG_ID_CB WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID #define WDC_LOG_ID_D0 WDC_NVME_GET_VU_SMART_LOG_OPCODE #define WDC_LOG_ID_D6 0xD6 #define WDC_LOG_ID_D7 0xD7 #define WDC_LOG_ID_D8 0xD8 #define WDC_LOG_ID_DE 0xDE #define WDC_LOG_ID_F0 0xF0 #define WDC_LOG_ID_F1 0xF1 #define WDC_LOG_ID_F2 0xF2 #define WDC_LOG_ID_FA 0xFA /* Clear PCIe Correctable Errors */ #define WDC_NVME_CLEAR_PCIE_CORR_OPCODE WDC_NVME_CAP_DIAG_CMD_OPCODE #define WDC_NVME_CLEAR_PCIE_CORR_CMD 0x22 #define WDC_NVME_CLEAR_PCIE_CORR_SUBCMD 0x04 /* Clear Assert Dump Status */ #define WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE 0xD8 #define WDC_NVME_CLEAR_ASSERT_DUMP_CMD 0x03 #define WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD 0x05 #define WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID 0xD2 /* Drive Essentials */ #define WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES 64 #define WDC_DE_GENERIC_BUFFER_SIZE 80 #define WDC_DE_GLOBAL_NSID 0xFFFFFFFF #define WDC_DE_DEFAULT_NAMESPACE_ID 0x01 #define WDC_DE_PATH_SEPARATOR "/" #define WDC_DE_TAR_FILES "*.bin" #define WDC_DE_TAR_FILE_EXTN ".tar.gz" #define WDC_DE_TAR_CMD "tar -czf" /* VS NAND Stats */ #define WDC_NVME_NAND_STATS_LOG_ID 0xFB #define WDC_NVME_NAND_STATS_SIZE 0x200 /* VU Opcodes */ #define WDC_DE_VU_READ_SIZE_OPCODE 0xC0 #define WDC_DE_VU_READ_BUFFER_OPCODE 0xC2 #define WDC_DE_FILE_HEADER_SIZE 4 #define WDC_DE_FILE_OFFSET_SIZE 2 #define WDC_DE_FILE_NAME_SIZE 32 #define WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET 0x8000 #define WDC_DE_READ_MAX_TRANSFER_SIZE 0x8000 #define WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME "manufacturing_info" /* Unique log entry page name. */ #define WDC_DE_CORE_DUMP_FILE_NAME "core_dump" #define WDC_DE_EVENT_LOG_FILE_NAME "event_log" #define WDC_DE_DESTN_SPI 1 #define WDC_DE_DUMPTRACE_DESTINATION 6 typedef enum _NVME_FEATURES_SELECT { FS_CURRENT = 0, FS_DEFAULT = 1, FS_SAVED = 2, FS_SUPPORTED_CAPBILITIES = 3 } NVME_FEATURES_SELECT; typedef enum _NVME_FEATURE_IDENTIFIERS { FID_ARBITRATION = 0x01, FID_POWER_MANAGEMENT = 0x02, FID_LBA_RANGE_TYPE = 0x03, FID_TEMPERATURE_THRESHOLD = 0x04, FID_ERROR_RECOVERY = 0x05, FID_VOLATILE_WRITE_CACHE = 0x06, FID_NUMBER_OF_QUEUES = 0x07, FID_INTERRUPT_COALESCING = 0x08, FID_INTERRUPT_VECTOR_CONFIGURATION = 0x09, FID_WRITE_ATOMICITY = 0x0A, FID_ASYNCHRONOUS_EVENT_CONFIGURATION = 0x0B, FID_AUTONOMOUS_POWER_STATE_TRANSITION = 0x0C, /*Below FID's are NVM Command Set Specific*/ FID_SOFTWARE_PROGRESS_MARKER = 0x80, FID_HOST_IDENTIFIER = 0x81, FID_RESERVATION_NOTIFICATION_MASK = 0x82, FID_RESERVATION_PERSISTENCE = 0x83 } NVME_FEATURE_IDENTIFIERS; typedef enum { WDC_DE_TYPE_IDENTIFY = 0x1, WDC_DE_TYPE_SMARTATTRIBUTEDUMP = 0x2, WDC_DE_TYPE_EVENTLOG = 0x4, WDC_DE_TYPE_DUMPTRACE = 0x8, WDC_DE_TYPE_DUMPSNAPSHOT = 0x10, WDC_DE_TYPE_ATA_LOGS = 0x20, WDC_DE_TYPE_SMART_LOGS = 0x40, WDC_DE_TYPE_SCSI_LOGS = 0x80, WDC_DE_TYPE_SCSI_MODE_PAGES = 0x100, WDC_DE_TYPE_NVMe_FEATURES = 0x200, WDC_DE_TYPE_DUMPSMARTERRORLOG3 = 0x400, WDC_DE_TYPE_DUMPLOG3E = 0x800, WDC_DE_TYPE_DUMPSCRAM = 0x1000, WDC_DE_TYPE_PCU_LOG = 0x2000, WDC_DE_TYPE_DUMP_ERROR_LOGS = 0x4000, WDC_DE_TYPE_FW_SLOT_LOGS = 0x8000, WDC_DE_TYPE_MEDIA_SETTINGS = 0x10000, WDC_DE_TYPE_SMART_DATA = 0x20000, WDC_DE_TYPE_NVME_SETTINGS = 0x40000, WDC_DE_TYPE_NVME_ERROR_LOGS = 0x80000, WDC_DE_TYPE_NVME_LOGS = 0x100000, WDC_DE_TYPE_UART_LOGS = 0x200000, WDC_DE_TYPE_DLOGS_SPI = 0x400000, WDC_DE_TYPE_DLOGS_RAM = 0x800000, WDC_DE_TYPE_NVME_MANF_INFO = 0x2000000, WDC_DE_TYPE_NONE = 0x1000000, WDC_DE_TYPE_ALL = 0xFFFFFFF, } WDC_DRIVE_ESSENTIAL_TYPE; typedef struct __attribute__((__packed__)) _WDC_DE_VU_FILE_META_DATA { __u8 fileName[WDC_DE_FILE_NAME_SIZE]; __u16 fileID; __u64 fileSize; } WDC_DE_VU_FILE_META_DATA, *PWDC_DE_VU_FILE_META_DATA; typedef struct _WDC_DRIVE_ESSENTIALS { WDC_DE_VU_FILE_META_DATA metaData; WDC_DRIVE_ESSENTIAL_TYPE essentialType; } WDC_DRIVE_ESSENTIALS; typedef struct _WDC_DE_VU_LOG_DIRECTORY { WDC_DRIVE_ESSENTIALS *logEntry; /* Caller to allocate memory */ __u32 maxNumLogEntries; /* Caller to input memory allocated */ __u32 numOfValidLogEntries; /* API will output this value */ } WDC_DE_VU_LOG_DIRECTORY,*PWDC_DE_VU_LOG_DIRECTORY; typedef struct _WDC_DE_CSA_FEATURE_ID_LIST { NVME_FEATURE_IDENTIFIERS featureId; __u8 featureName[WDC_DE_GENERIC_BUFFER_SIZE]; } WDC_DE_CSA_FEATURE_ID_LIST; typedef struct tarfile_metadata { char fileName[MAX_PATH_LEN]; int8_t bufferFolderPath[MAX_PATH_LEN]; char bufferFolderName[MAX_PATH_LEN]; char tarFileName[MAX_PATH_LEN]; char tarFiles[MAX_PATH_LEN]; char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN]; char currDir[MAX_PATH_LEN]; UtilsTimeInfo timeInfo; uint8_t* timeString[MAX_PATH_LEN]; } tarfile_metadata; static WDC_DE_CSA_FEATURE_ID_LIST deFeatureIdList[] = { {0x00 , "Dummy Placeholder"}, {FID_ARBITRATION , "Arbitration"}, {FID_POWER_MANAGEMENT , "PowerMgmnt"}, {FID_LBA_RANGE_TYPE , "LbaRangeType"}, {FID_TEMPERATURE_THRESHOLD , "TempThreshold"}, {FID_ERROR_RECOVERY , "ErrorRecovery"}, {FID_VOLATILE_WRITE_CACHE , "VolatileWriteCache"}, {FID_NUMBER_OF_QUEUES , "NumOfQueues"}, {FID_INTERRUPT_COALESCING , "InterruptCoalesing"}, {FID_INTERRUPT_VECTOR_CONFIGURATION , "InterruptVectorConfig"}, {FID_WRITE_ATOMICITY , "WriteAtomicity"}, {FID_ASYNCHRONOUS_EVENT_CONFIGURATION , "AsynEventConfig"}, {FID_AUTONOMOUS_POWER_STATE_TRANSITION , "AutonomousPowerState"}, }; typedef enum _NVME_VU_DE_LOGPAGE_NAMES { NVME_DE_LOGPAGE_E3 = 0x01, NVME_DE_LOGPAGE_C0 = 0x02 } NVME_VU_DE_LOGPAGE_NAMES; typedef struct _NVME_VU_DE_LOGPAGE_LIST { NVME_VU_DE_LOGPAGE_NAMES logPageName; __u32 logPageId; __u32 logPageLen; char logPageIdStr[5]; } NVME_VU_DE_LOGPAGE_LIST, *PNVME_VU_DE_LOGPAGE_LIST; typedef struct _WDC_NVME_DE_VU_LOGPAGES { NVME_VU_DE_LOGPAGE_NAMES vuLogPageReqd; __u32 numOfVULogPages; } WDC_NVME_DE_VU_LOGPAGES, *PWDC_NVME_DE_VU_LOGPAGES; static NVME_VU_DE_LOGPAGE_LIST deVULogPagesList[] = { { NVME_DE_LOGPAGE_E3, 0xE3, 1072, "0xe3"}, { NVME_DE_LOGPAGE_C0, 0xC0, 512, "0xc0"} }; static int wdc_get_serial_name(int fd, char *file, size_t len, const char *suffix); static int wdc_create_log_file(char *file, __u8 *drive_log_data, __u32 drive_log_length); static int wdc_do_clear_dump(int fd, __u8 opcode, __u32 cdw12); static int wdc_do_dump(int fd, __u32 opcode,__u32 data_len, __u32 cdw12, char *file, __u32 xfer_size); static int wdc_do_crash_dump(int fd, char *file, int type); static int wdc_crash_dump(int fd, char *file, int type); static int wdc_get_crash_dump(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_do_drive_log(int fd, char *file); static int wdc_drive_log(int argc, char **argv, struct command *command, struct plugin *plugin); static const char* wdc_purge_mon_status_to_string(__u32 status); static int wdc_purge(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_purge_monitor(int argc, char **argv, struct command *command, struct plugin *plugin); static bool wdc_nvme_check_supported_log_page(int fd, __u8 log_id); static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_do_drive_essentials(int fd, char *dir, char *key); static int wdc_drive_essentials(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_drive_status(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_clear_assert_dump(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_drive_resize(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_do_drive_resize(int fd, uint64_t new_size); static int wdc_namespace_resize(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_do_namespace_resize(int fd, __u32 nsid, __u32 op_option); static int wdc_reason_identifier(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_do_get_reason_id(int fd, char *file, int log_id); static int wdc_save_reason_id(int fd, __u8 *rsn_ident, int size); static int wdc_clear_reason_id(int fd); static int wdc_dump_telemetry_hdr(int fd, int log_id, struct nvme_telemetry_log_page_hdr *log_hdr); static int wdc_log_page_directory(int argc, char **argv, struct command *command, struct plugin *plugin); static int wdc_do_drive_info(int fd, __u32 *result); static int wdc_vs_drive_info(int argc, char **argv, struct command *command, struct plugin *plugin); /* Drive log data size */ struct wdc_log_size { __le32 log_size; }; /* E6 log header */ struct wdc_e6_log_hdr { __le32 eye_catcher; __u8 log_size[4]; }; /* DUI log header */ struct wdc_dui_log_section { __le16 section_type; __le16 data_area_id; __le32 section_size; }; /* DUI log header V2 */ struct __attribute__((__packed__)) wdc_dui_log_section_v2 { __le16 section_type; __le16 data_area_id; __le64 section_size; }; struct wdc_dui_log_hdr { __u8 telemetry_hdr[512]; __le16 hdr_version; __le16 section_count; __le32 log_size; struct wdc_dui_log_section log_section[WDC_NVME_DUI_MAX_SECTION]; __u8 log_data[40]; }; struct __attribute__((__packed__)) wdc_dui_log_hdr_v2 { __u8 telemetry_hdr[512]; __u8 hdr_version; __u8 product_id; __le16 section_count; __le64 log_size; struct wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V2]; __u8 log_data[40]; }; struct __attribute__((__packed__)) wdc_dui_log_hdr_v3 { __u8 telemetry_hdr[512]; __u8 hdr_version; __u8 product_id; __le16 section_count; __le64 log_size; struct wdc_dui_log_section_v2 log_section[WDC_NVME_DUI_MAX_SECTION_V3]; __u8 securityNonce[36]; __u8 log_data[40]; }; /* Purge monitor response */ struct wdc_nvme_purge_monitor_data { __le16 rsvd1; __le16 rsvd2; __le16 first_erase_failure_cnt; __le16 second_erase_failure_cnt; __le16 rsvd3; __le16 programm_failure_cnt; __le32 rsvd4; __le32 rsvd5; __le32 entire_progress_total; __le32 entire_progress_current; __u8 rsvd6[14]; }; /* Additional Smart Log */ struct wdc_log_page_header { uint8_t num_subpages; uint8_t reserved; __le16 total_log_size; }; struct wdc_log_page_subpage_header { uint8_t spcode; uint8_t pcset; __le16 subpage_length; }; struct wdc_ssd_perf_stats { __le64 hr_cmds; /* Host Read Commands */ __le64 hr_blks; /* Host Read Blocks */ __le64 hr_ch_cmds; /* Host Read Cache Hit Commands */ __le64 hr_ch_blks; /* Host Read Cache Hit Blocks */ __le64 hr_st_cmds; /* Host Read Stalled Commands */ __le64 hw_cmds; /* Host Write Commands */ __le64 hw_blks; /* Host Write Blocks */ __le64 hw_os_cmds; /* Host Write Odd Start Commands */ __le64 hw_oe_cmds; /* Host Write Odd End Commands */ __le64 hw_st_cmds; /* Host Write Commands Stalled */ __le64 nr_cmds; /* NAND Read Commands */ __le64 nr_blks; /* NAND Read Blocks */ __le64 nw_cmds; /* NAND Write Commands */ __le64 nw_blks; /* NAND Write Blocks */ __le64 nrbw; /* NAND Read Before Write */ }; /* Additional C2 Log Page */ struct wdc_c2_log_page_header { __le32 length; __le32 version; }; struct wdc_c2_log_subpage_header { __le32 length; __le32 entry_id; __le32 data; }; struct wdc_c2_cbs_data { __le32 length; __u8 data[]; }; struct wdc_bd_ca_log_format { __u8 field_id; __u8 reserved1[2]; __u8 normalized_value; __u8 reserved2; __u8 raw_value[7]; }; struct __attribute__((__packed__)) wdc_ssd_ca_perf_stats { __le64 nand_bytes_wr_lo; /* 0x00 - NAND Bytes Written lo */ __le64 nand_bytes_wr_hi; /* 0x08 - NAND Bytes Written hi */ __le64 nand_bytes_rd_lo; /* 0x10 - NAND Bytes Read lo */ __le64 nand_bytes_rd_hi; /* 0x18 - NAND Bytes Read hi */ __le64 nand_bad_block; /* 0x20 - NAND Bad Block Count */ __le64 uncorr_read_count; /* 0x28 - Uncorrectable Read Count */ __le64 ecc_error_count; /* 0x30 - Soft ECC Error Count */ __le32 ssd_detect_count; /* 0x38 - SSD End to End Detection Count */ __le32 ssd_correct_count; /* 0x3C - SSD End to End Correction Count */ __u8 data_percent_used; /* 0x40 - System Data Percent Used */ __le32 data_erase_max; /* 0x41 - User Data Erase Counts */ __le32 data_erase_min; /* 0x45 - User Data Erase Counts */ __le64 refresh_count; /* 0x49 - Refresh Count */ __le64 program_fail; /* 0x51 - Program Fail Count */ __le64 user_erase_fail; /* 0x59 - User Data Erase Fail Count */ __le64 system_erase_fail; /* 0x61 - System Area Erase Fail Count */ __u8 thermal_throttle_status; /* 0x69 - Thermal Throttling Status */ __u8 thermal_throttle_count; /* 0x6A - Thermal Throttling Count */ __le64 pcie_corr_error; /* 0x6B - pcie Correctable Error Count */ __le32 incomplete_shutdown_count; /* 0x73 - Incomplete Shutdown Count */ __u8 percent_free_blocks; /* 0x77 - Percent Free Blocks */ __u8 rsvd[392]; /* 0x78 - Reserved bytes 120-511 */ }; struct __attribute__((__packed__)) wdc_ssd_d0_smart_log { __le32 smart_log_page_header; /* 0x00 - Smart Log Page Header */ __le32 lifetime_realloc_erase_block_count; /* 0x04 - Lifetime reallocated erase block count */ __le32 lifetime_power_on_hours; /* 0x08 - Lifetime power on hours */ __le32 lifetime_uecc_count; /* 0x0C - Lifetime UECC count */ __le32 lifetime_wrt_amp_factor; /* 0x10 - Lifetime write amplification factor */ __le32 trailing_hr_wrt_amp_factor; /* 0x14 - Trailing hour write amplification factor */ __le32 reserve_erase_block_count; /* 0x18 - Reserve erase block count */ __le32 lifetime_program_fail_count; /* 0x1C - Lifetime program fail count */ __le32 lifetime_block_erase_fail_count; /* 0x20 - Lifetime block erase fail count */ __le32 lifetime_die_failure_count; /* 0x24 - Lifetime die failure count */ __le32 lifetime_link_rate_downgrade_count; /* 0x28 - Lifetime link rate downgrade count */ __le32 lifetime_clean_shutdown_count; /* 0x2C - Lifetime clean shutdown count on power loss */ __le32 lifetime_unclean_shutdown_count; /* 0x30 - Lifetime unclean shutdowns on power loss */ __le32 current_temp; /* 0x34 - Current temperature */ __le32 max_recorded_temp; /* 0x38 - Max recorded temperature */ __le32 lifetime_retired_block_count; /* 0x3C - Lifetime retired block count */ __le32 lifetime_read_disturb_realloc_events; /* 0x40 - Lifetime read disturb reallocation events */ __le64 lifetime_nand_writes; /* 0x44 - Lifetime NAND write Lpages */ __le32 capacitor_health; /* 0x4C - Capacitor health */ __le64 lifetime_user_writes; /* 0x50 - Lifetime user writes */ __le64 lifetime_user_reads; /* 0x58 - Lifetime user reads */ __le32 lifetime_thermal_throttle_act; /* 0x60 - Lifetime thermal throttle activations */ __le32 percentage_pe_cycles_remaining; /* 0x64 - Percentage of P/E cycles remaining */ __u8 rsvd[408]; /* 0x68 - 408 Reserved bytes */ }; /* NAND Stats */ struct __attribute__((__packed__)) wdc_nand_stats { __u8 nand_write_tlc[16]; __u8 nand_write_slc[16]; __le32 nand_prog_failure; __le32 nand_erase_failure; __le32 bad_block_count; __le64 nand_rec_trigger_event; __le64 e2e_error_counter; __le64 successful_ns_resize_event; __u8 rsvd[444]; }; struct wdc_fw_act_history_log_hdr { __le32 eye_catcher; __u8 version; __u8 reserved1; __u8 num_entries; __u8 reserved2; __le32 entry_size; __le32 reserved3; }; struct wdc_fw_act_history_log_entry { __le32 entry_num; __le32 power_cycle_count; __le64 power_on_seconds; __le64 previous_fw_version; __le64 new_fw_version; __u8 slot_number; __u8 commit_action_type; __le16 result; __u8 reserved[12]; }; #define WDC_REASON_INDEX_MAX 16 #define WDC_REASON_ID_ENTRY_LEN 128 #define WDC_REASON_ID_PATH_NAME "/usr/local/nvmecli" static double safe_div_fp(double numerator, double denominator) { return denominator ? numerator / denominator : 0; } static double calc_percent(uint64_t numerator, uint64_t denominator) { return denominator ? (uint64_t)(((double)numerator / (double)denominator) * 100) : 0; } static long double int128_to_double(__u8 *data) { int i; long double result = 0; for (i = 0; i < 16; i++) { result *= 256; result += data[15 - i]; } return result; } static int wdc_get_pci_ids(uint32_t *device_id, uint32_t *vendor_id) { int fd, ret = -1; char *block, path[512], *id; id = calloc(1, 32); if (!id) { fprintf(stderr, "ERROR : WDC : %s : calloc failed\n", __func__); return -1; } block = nvme_char_from_block((char *)devicename); /* read the vendor ID from sys fs */ sprintf(path, "/sys/class/nvme/%s/device/vendor", block); fd = open(path, O_RDONLY); if (fd < 0) { sprintf(path, "/sys/class/misc/%s/device/vendor", block); fd = open(path, O_RDONLY); } if (fd < 0) { fprintf(stderr, "ERROR : WDC : %s : Open vendor file failed\n", __func__); ret = -1; goto free_id; } ret = read(fd, id, 32); if (ret < 0) { fprintf(stderr, "%s: Read of pci vendor id failed\n", __func__); ret = -1; goto close_fd; } else { if (id[strlen(id) - 1] == '\n') id[strlen(id) - 1] = '\0'; /* convert the device id string to an int */ *vendor_id = (int)strtol(&id[2], NULL, 16); ret = 0; } /* read the device ID from sys fs */ sprintf(path, "/sys/class/nvme/%s/device/device", block); fd = open(path, O_RDONLY); if (fd < 0) { sprintf(path, "/sys/class/misc/%s/device/device", block); fd = open(path, O_RDONLY); } if (fd < 0) { fprintf(stderr, "ERROR : WDC : %s : Open device file failed\n", __func__); ret = -1; goto close_fd; } ret = read(fd, id, 32); if (ret < 0) { fprintf(stderr, "%s: Read of pci device id failed\n", __func__); ret = -1; } else { if (id[strlen(id) - 1] == '\n') id[strlen(id) - 1] = '\0'; /* convert the device id string to an int */ *device_id = strtol(&id[2], NULL, 16); ret = 0; } close_fd: close(fd); free_id: free(block); free(id); return ret; } static bool wdc_check_device(int fd) { int ret; bool supported; uint32_t read_device_id, read_vendor_id; ret = wdc_get_pci_ids(&read_device_id, &read_vendor_id); if (ret < 0) return false; supported = false; if (read_vendor_id == WDC_NVME_VID || read_vendor_id == WDC_NVME_VID_2 || read_vendor_id == WDC_NVME_SNDK_VID) supported = true; else fprintf(stderr, "ERROR : WDC: unsupported WDC device, Vendor ID = 0x%x, Device ID = 0x%x\n", read_vendor_id, read_device_id); return supported; } static __u64 wdc_get_drive_capabilities(int fd) { int ret; uint32_t read_device_id, read_vendor_id; __u64 capabilities = 0; ret = wdc_get_pci_ids(&read_device_id, &read_vendor_id); if (ret < 0) return capabilities; switch (read_vendor_id) { case WDC_NVME_VID: switch (read_device_id) { case WDC_NVME_SN100_DEV_ID: capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_C1_LOG_PAGE | WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP); break; case WDC_NVME_SN200_DEV_ID: capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_CLEAR_PCIE | WDC_DRIVE_CAP_DRIVE_LOG | WDC_DRIVE_CAP_CRASH_DUMP | WDC_DRIVE_CAP_PFAIL_DUMP); /* verify the 0xCA log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true) capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE; /* verify the 0xC1 log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_ADD_LOG_OPCODE) == true) capabilities |= WDC_DRIVE_CAP_C1_LOG_PAGE; break; default: capabilities = 0; } break; case WDC_NVME_VID_2: switch (read_device_id) { case WDC_NVME_SN630_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN630_DEV_ID_1: capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT | WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE); /* verify the 0xCA log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true) capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE; /* verify the 0xD0 log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true) capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE; break; case WDC_NVME_SN640_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN640_DEV_ID_1: /* FALLTHRU */ case WDC_NVME_SN640_DEV_ID_2: /* FALLTHRU */ case WDC_NVME_SN640_DEV_ID_3: /* FALLTHRU */ case WDC_NVME_SN840_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN840_DEV_ID_1: /* FALLTHRU */ case WDC_NVME_ZN440_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN440_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN7GC_DEV_ID: case WDC_NVME_SN7GC_DEV_ID_1: case WDC_NVME_SN7GC_DEV_ID_2: capabilities = (WDC_DRIVE_CAP_CAP_DIAG | WDC_DRIVE_CAP_INTERNAL_LOG | WDC_DRIVE_CAP_DRIVE_STATUS | WDC_DRIVE_CAP_CLEAR_ASSERT | WDC_DRIVE_CAP_RESIZE | WDC_DRIVE_CAP_CLEAR_PCIE | WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY | WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY | WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG | WDC_DRIVE_CAP_REASON_ID | WDC_DRIVE_CAP_LOG_PAGE_DIR | WDC_DRIVE_CAP_INFO); /* verify the 0xCA log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == true) capabilities |= WDC_DRIVE_CAP_CA_LOG_PAGE; /* verify the 0xD0 log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == true) capabilities |= WDC_DRIVE_CAP_D0_LOG_PAGE; break; case WDC_NVME_SN730B_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN730B_DEV_ID_1: capabilities = WDC_SN730B_CAP_VUC_LOG; break; default: capabilities = 0; } break; case WDC_NVME_SNDK_VID: switch (read_device_id) { case WDC_NVME_SXSLCL_DEV_ID: capabilities = WDC_DRIVE_CAP_DRIVE_ESSENTIALS; break; case WDC_NVME_SN520_DEV_ID: /* FALLTHRU */ case WDC_NVME_SN520_DEV_ID_1: /* FALLTHRU */ case WDC_NVME_SN520_DEV_ID_2: capabilities = WDC_DRIVE_CAP_DUI_DATA; break; case WDC_NVME_SN720_DEV_ID: capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_NAND_STATS | WDC_DRIVE_CAP_NS_RESIZE; break; case WDC_NVME_SN730A_DEV_ID: capabilities = WDC_DRIVE_CAP_DUI_DATA | WDC_DRIVE_CAP_NAND_STATS; break; case WDC_NVME_SN340_DEV_ID: capabilities = WDC_DRIVE_CAP_SN340_DUI; break; default: capabilities = 0; } break; default: capabilities = 0; } return capabilities; } static int wdc_get_serial_name(int fd, char *file, size_t len, const char *suffix) { int i; int ret; int res_len = 0; char orig[PATH_MAX] = {0}; struct nvme_id_ctrl ctrl; int ctrl_sn_len = sizeof (ctrl.sn); i = sizeof (ctrl.sn) - 1; strncpy(orig, file, PATH_MAX - 1); memset(file, 0, len); memset(&ctrl, 0, sizeof (struct nvme_id_ctrl)); ret = nvme_identify_ctrl(fd, &ctrl); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed " "0x%x\n", ret); return -1; } /* Remove trailing spaces from the name */ while (i && ctrl.sn[i] == ' ') { ctrl.sn[i] = '\0'; i--; } if (ctrl.sn[sizeof (ctrl.sn) - 1] == '\0') { ctrl_sn_len = strlen(ctrl.sn); } res_len = snprintf(file, len, "%s%.*s%s", orig, ctrl_sn_len, ctrl.sn, suffix); if (len <= res_len) { fprintf(stderr, "ERROR : WDC : cannot format serial number due to data " "of unexpected length\n"); return -1; } return 0; } static int wdc_create_log_file(char *file, __u8 *drive_log_data, __u32 drive_log_length) { int fd; int ret; if (drive_log_length == 0) { fprintf(stderr, "ERROR : WDC: invalid log file length\n"); return -1; } fd = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (fd < 0) { fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno)); return -1; } while (drive_log_length > WRITE_SIZE) { ret = write(fd, drive_log_data, WRITE_SIZE); if (ret < 0) { fprintf (stderr, "ERROR : WDC: write : %s\n", strerror(errno)); return -1; } drive_log_data += WRITE_SIZE; drive_log_length -= WRITE_SIZE; } ret = write(fd, drive_log_data, drive_log_length); if (ret < 0) { fprintf(stderr, "ERROR : WDC : write : %s\n", strerror(errno)); return -1; } if (fsync(fd) < 0) { fprintf(stderr, "ERROR : WDC : fsync : %s\n", strerror(errno)); return -1; } close(fd); return 0; } static bool get_dev_mgment_cbs_data(int fd, __u8 log_id, void **cbs_data) { int ret = -1; __u8* data; struct wdc_c2_log_page_header *hdr_ptr; struct wdc_c2_log_subpage_header *sph; __u32 length = 0; bool found = false; *cbs_data = NULL; if ((data = (__u8*) malloc(sizeof (__u8) * WDC_C2_LOG_BUF_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return false; } memset(data, 0, sizeof (__u8) * WDC_C2_LOG_BUF_LEN); /* get the log page length */ ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE, false, WDC_C2_LOG_BUF_LEN, data); if (ret) { fprintf(stderr, "ERROR : WDC : Unable to get C2 Log Page length, ret = 0x%x\n", ret); goto end; } hdr_ptr = (struct wdc_c2_log_page_header *)data; if (le32_to_cpu(hdr_ptr->length) > WDC_C2_LOG_BUF_LEN) { /* Log Page buffer too small, free and reallocate the necessary size */ free(data); data = calloc(le32_to_cpu(hdr_ptr->length), sizeof(__u8)); if (data == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return false; } } ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE, false, le32_to_cpu(hdr_ptr->length), data); /* parse the data until the List of log page ID's is found */ if (ret) { fprintf(stderr, "ERROR : WDC : Unable to read C2 Log Page data, ret = 0x%x\n", ret); goto end; } length = sizeof(struct wdc_c2_log_page_header); hdr_ptr = (struct wdc_c2_log_page_header *)data; while (length < le32_to_cpu(hdr_ptr->length)) { sph = (struct wdc_c2_log_subpage_header *)(data + length); if (le32_to_cpu(sph->entry_id) == log_id) { *cbs_data = (void *)&sph->data; found = true; break; } length += le32_to_cpu(sph->length); } end: free(data); return found; } static bool wdc_nvme_check_supported_log_page(int fd, __u8 log_id) { int i; bool found = false; struct wdc_c2_cbs_data *cbs_data = NULL; if (get_dev_mgment_cbs_data(fd, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) { if (cbs_data != NULL) { for (i = 0; i < le32_to_cpu(cbs_data->length); i++) { if (log_id == cbs_data->data[i]) { found = true; break; } } #ifdef WDC_NVME_CLI_DEBUG if (!found) { fprintf(stderr, "ERROR : WDC : Log Page 0x%x not supported\n", log_id); fprintf(stderr, "WDC : Supported Log Pages:\n"); /* print the supported pages */ d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1); } #endif } else fprintf(stderr, "ERROR : WDC : cbs_data ptr = NULL\n"); } else fprintf(stderr, "ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", WDC_C2_LOG_PAGES_SUPPORTED_ID); return found; } static bool wdc_nvme_get_dev_status_log_data(int fd, __le32 *ret_data, __u8 log_id) { __u32 *cbs_data = NULL; if (get_dev_mgment_cbs_data(fd, log_id, (void *)&cbs_data)) { if (cbs_data != NULL) { memcpy((void *)ret_data, (void *)cbs_data, 4); return true; } } *ret_data = 0; return false; } static int wdc_do_clear_dump(int fd, __u8 opcode, __u32 cdw12) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = opcode; admin_cmd.cdw12 = cdw12; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { fprintf(stdout, "ERROR : WDC : Crash dump erase failed\n"); } fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; } static __u32 wdc_dump_length(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, __u32 *dump_length) { int ret; __u8 buf[WDC_NVME_LOG_SIZE_DATA_LEN] = {0}; struct wdc_log_size *l; struct nvme_admin_cmd admin_cmd; l = (struct wdc_log_size *) buf; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = opcode; admin_cmd.addr = (__u64)(uintptr_t)buf; admin_cmd.data_len = WDC_NVME_LOG_SIZE_DATA_LEN; admin_cmd.cdw10 = cdw10; admin_cmd.cdw12 = cdw12; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { l->log_size = 0; ret = -1; fprintf(stderr, "ERROR : WDC : reading dump length failed\n"); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; } if (opcode == WDC_NVME_CAP_DIAG_OPCODE) *dump_length = buf[0x04] << 24 | buf[0x05] << 16 | buf[0x06] << 8 | buf[0x07]; else *dump_length = le32_to_cpu(l->log_size); return ret; } static __u32 wdc_dump_length_e6(int fd, __u32 opcode, __u32 cdw10, __u32 cdw12, struct wdc_e6_log_hdr *dump_hdr) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = opcode; admin_cmd.addr = (__u64)(uintptr_t)dump_hdr; admin_cmd.data_len = WDC_NVME_LOG_SIZE_HDR_LEN; admin_cmd.cdw10 = cdw10; admin_cmd.cdw12 = cdw12; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { fprintf(stderr, "ERROR : WDC : reading dump length failed\n"); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); } return ret; } static __u32 wdc_dump_dui_data(int fd, __u32 dataLen, __u32 offset, __u8 *dump_data, bool last_xfer) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE; admin_cmd.nsid = 0xFFFFFFFF; admin_cmd.addr = (__u64)(uintptr_t)dump_data; admin_cmd.data_len = dataLen; admin_cmd.cdw10 = ((dataLen >> 2) - 1); admin_cmd.cdw12 = offset; if (last_xfer) admin_cmd.cdw14 = 0; else admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { fprintf(stderr, "ERROR : WDC : reading DUI data failed\n"); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); } return ret; } static __u32 wdc_dump_dui_data_v2(int fd, __u32 dataLen, __u64 offset, __u8 *dump_data, bool last_xfer) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_CAP_DUI_OPCODE; admin_cmd.nsid = 0xFFFFFFFF; admin_cmd.addr = (__u64)(uintptr_t)dump_data; admin_cmd.data_len = dataLen; admin_cmd.cdw10 = ((dataLen >> 2) - 1); admin_cmd.cdw12 = (__u32)(offset & 0x00000000FFFFFFFF); admin_cmd.cdw13 = (__u32)(offset >> 32); if (last_xfer) admin_cmd.cdw14 = 0; else admin_cmd.cdw14 = WDC_NVME_CAP_DUI_DISABLE_IO; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { fprintf(stderr, "ERROR : WDC : reading DUI data V2 failed\n"); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); } return ret; } static int wdc_do_dump(int fd, __u32 opcode,__u32 data_len, __u32 cdw12, char *file, __u32 xfer_size) { int ret = 0; __u8 *dump_data; __u32 curr_data_offset, curr_data_len; int i; struct nvme_admin_cmd admin_cmd; __u32 dump_length = data_len; dump_data = (__u8 *) malloc(sizeof (__u8) * dump_length); if (dump_data == NULL) { fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno)); return -1; } memset(dump_data, 0, sizeof (__u8) * dump_length); memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); curr_data_offset = 0; curr_data_len = xfer_size; i = 0; admin_cmd.opcode = opcode; admin_cmd.addr = (__u64)(uintptr_t)dump_data; admin_cmd.data_len = curr_data_len; admin_cmd.cdw10 = curr_data_len >> 2; admin_cmd.cdw12 = cdw12; admin_cmd.cdw13 = curr_data_offset; while (curr_data_offset < data_len) { ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n", __func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr); break; } if ((curr_data_offset + xfer_size) <= data_len) curr_data_len = xfer_size; else curr_data_len = data_len - curr_data_offset; /* last transfer */ curr_data_offset += curr_data_len; admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset; admin_cmd.data_len = curr_data_len; admin_cmd.cdw10 = curr_data_len >> 2; admin_cmd.cdw13 = curr_data_offset >> 2; i++; } if (ret == 0) { fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); ret = wdc_create_log_file(file, dump_data, dump_length); } free(dump_data); return ret; } static int wdc_do_dump_e6(int fd, __u32 opcode,__u32 data_len, __u32 cdw12, char *file, __u32 xfer_size, __u8 *log_hdr) { int ret = 0; __u8 *dump_data; __u32 curr_data_offset, log_size; int i; struct nvme_admin_cmd admin_cmd; dump_data = (__u8 *) malloc(sizeof (__u8) * data_len); if (dump_data == NULL) { fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno)); return -1; } memset(dump_data, 0, sizeof (__u8) * data_len); memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); curr_data_offset = WDC_NVME_LOG_SIZE_HDR_LEN; i = 0; /* copy the 8 byte header into the dump_data buffer */ memcpy(dump_data, log_hdr, WDC_NVME_LOG_SIZE_HDR_LEN); admin_cmd.opcode = opcode; admin_cmd.cdw12 = cdw12; log_size = data_len; while (log_size > 0) { xfer_size = min(xfer_size, log_size); admin_cmd.addr = (__u64)(uintptr_t)dump_data + (__u64)curr_data_offset; admin_cmd.data_len = xfer_size; admin_cmd.cdw10 = xfer_size >> 2; admin_cmd.cdw13 = curr_data_offset >> 2; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret != 0) { fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%x, offset = 0x%x, addr = 0x%lx\n", __func__, i, admin_cmd.data_len, curr_data_offset, (long unsigned int)admin_cmd.addr); break; } log_size -= xfer_size; curr_data_offset += xfer_size; i++; } if (ret == 0) { fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); } else { fprintf(stderr, "%s: FAILURE: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); fprintf(stderr, "%s: Partial data may have been captured\n", __func__); snprintf(file + strlen(file), PATH_MAX, "%s", "-PARTIAL"); } ret = wdc_create_log_file(file, dump_data, data_len); free(dump_data); return ret; } static int wdc_do_cap_telemetry_log(int fd, char *file, __u32 bs, int type, int data_area) { struct nvme_telemetry_log_page_hdr *hdr; size_t full_size, offset = WDC_TELEMETRY_HEADER_LENGTH; int err = 0, output; void *page_log; __u32 host_gen = 1; int ctrl_init = 0; __u32 result; void *buf = NULL; if (type == WDC_TELEMETRY_TYPE_HOST) { host_gen = 1; ctrl_init = 0; } else if (type == WDC_TELEMETRY_TYPE_CONTROLLER) { /* Verify the Controller Initiated Option is enabled */ err = nvme_get_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 0, 4, buf, &result); if (err == 0) { if (result == 0) { /* enabled */ host_gen = 0; ctrl_init = 1; } else { fprintf(stderr, "%s: Controller initiated option telemetry log page disabled\n", __func__); err = -EINVAL; goto close_fd; } } else { fprintf(stderr, "ERROR : WDC: Get telemetry option feature failed. NVMe Status:%s(%x)\n", nvme_status_to_string(err), err); err = -EPERM; goto close_fd; } } else { fprintf(stderr, "%s: Invalid type parameter; type = %d\n", __func__, type); err = -EINVAL; goto close_fd; } if (!file) { fprintf(stderr, "%s: Please provide an output file!\n", __func__); err = -EINVAL; goto close_fd; } hdr = malloc(bs); page_log = malloc(bs); if (!hdr || !page_log) { fprintf(stderr, "%s: Failed to allocate 0x%x bytes for log: %s\n", __func__, bs, strerror(errno)); err = -ENOMEM; goto free_mem; } memset(hdr, 0, bs); output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (output < 0) { fprintf(stderr, "%s: Failed to open output file %s: %s!\n", __func__, file, strerror(errno)); err = output; goto free_mem; } err = nvme_get_telemetry_log(fd, hdr, host_gen, ctrl_init, WDC_TELEMETRY_HEADER_LENGTH, 0); if (err < 0) perror("get-telemetry-log"); else if (err > 0) { nvme_show_status(err); fprintf(stderr, "%s: Failed to acquire telemetry header!\n", __func__); goto close_output; } err = write(output, (void *) hdr, WDC_TELEMETRY_HEADER_LENGTH); if (err != WDC_TELEMETRY_HEADER_LENGTH) { fprintf(stderr, "%s: Failed to flush header data to file!, err = %d\n", __func__, err); goto close_output; } switch (data_area) { case 1: full_size = (le16_to_cpu(hdr->dalb1) * WDC_TELEMETRY_BLOCK_SIZE) + WDC_TELEMETRY_HEADER_LENGTH; break; case 2: full_size = (le16_to_cpu(hdr->dalb2) * WDC_TELEMETRY_BLOCK_SIZE) + WDC_TELEMETRY_HEADER_LENGTH; break; case 3: full_size = (le16_to_cpu(hdr->dalb3) * WDC_TELEMETRY_BLOCK_SIZE) + WDC_TELEMETRY_HEADER_LENGTH; break; default: fprintf(stderr, "%s: Invalid data area requested, data area = %d\n", __func__, data_area); err = -EINVAL; goto close_output; } /* * Continuously pull data until the offset hits the end of the last * block. */ while (offset < full_size) { if ((full_size - offset) < bs) bs = (full_size - offset); err = nvme_get_telemetry_log(fd, page_log, 0, ctrl_init, bs, offset); if (err < 0) { perror("get-telemetry-log"); break; } else if (err > 0) { nvme_show_status(err); fprintf(stderr, "%s: Failed to acquire full telemetry log!\n", __func__); nvme_show_status(err); break; } err = write(output, (void *) page_log, bs); if (err != bs) { fprintf(stderr, "%s: Failed to flush telemetry data to file!, err = %d\n", __func__, err); break; } err = 0; offset += bs; } close_output: close(output); free_mem: free(hdr); free(page_log); close_fd: close(fd); return err; } static int wdc_do_cap_diag(int fd, char *file, __u32 xfer_size, int type, int data_area) { int ret = -1; __u32 e6_log_hdr_size = WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE; struct wdc_e6_log_hdr *log_hdr; __u32 cap_diag_length; log_hdr = (struct wdc_e6_log_hdr *) malloc(e6_log_hdr_size); if (log_hdr == NULL) { fprintf(stderr, "%s: ERROR : malloc : %s\n", __func__, strerror(errno)); ret = -1; goto out; } memset(log_hdr, 0, e6_log_hdr_size); if (type == WDC_TELEMETRY_TYPE_NONE) { ret = wdc_dump_length_e6(fd, WDC_NVME_CAP_DIAG_OPCODE, WDC_NVME_CAP_DIAG_HEADER_TOC_SIZE>>2, 0x00, log_hdr); if (ret == -1) { ret = -1; goto out; } cap_diag_length = (log_hdr->log_size[0] << 24 | log_hdr->log_size[1] << 16 | log_hdr->log_size[2] << 8 | log_hdr->log_size[3]); if (cap_diag_length == 0) { fprintf(stderr, "INFO : WDC : Capture Diagnostics log is empty\n"); } else { ret = wdc_do_dump_e6(fd, WDC_NVME_CAP_DIAG_OPCODE, cap_diag_length, (WDC_NVME_CAP_DIAG_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CAP_DIAG_CMD, file, xfer_size, (__u8 *)log_hdr); fprintf(stderr, "INFO : WDC : Capture Diagnostics log, length = 0x%x\n", cap_diag_length); } } else if ((type == WDC_TELEMETRY_TYPE_HOST) || (type == WDC_TELEMETRY_TYPE_CONTROLLER)) { /* Get the desired telemetry log page */ ret = wdc_do_cap_telemetry_log(fd, file, xfer_size, type, data_area); } else fprintf(stderr, "%s: ERROR : Invalid type : %d\n", __func__, type); out: free(log_hdr); return ret; } static int wdc_do_cap_dui(int fd, char *file, __u32 xfer_size, int data_area, int verbose, __u64 file_size, __u64 offset) { int ret = 0; __u32 dui_log_hdr_size = WDC_NVME_CAP_DUI_HEADER_SIZE; struct wdc_dui_log_hdr *log_hdr; struct wdc_dui_log_hdr_v3 *log_hdr_v3; __u32 cap_dui_length; __u64 cap_dui_length_v3; __u8 *dump_data = NULL; __u8 *buffer_addr; __s64 total_size = 0; int i; int j; bool last_xfer = false; int err = 0, output = 0; log_hdr = (struct wdc_dui_log_hdr *) malloc(dui_log_hdr_size); if (log_hdr == NULL) { fprintf(stderr, "%s: ERROR : log header malloc failed : status %s, size 0x%x\n", __func__, strerror(errno), dui_log_hdr_size); return -1; } memset(log_hdr, 0, dui_log_hdr_size); /* get the dui telemetry and log headers */ ret = wdc_dump_dui_data(fd, WDC_NVME_CAP_DUI_HEADER_SIZE, 0x00, (__u8 *)log_hdr, last_xfer); if (ret != 0) { fprintf(stderr, "%s: ERROR : WDC : Get DUI headers failed\n", __func__); fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); goto out; } /* Check the Log Header version */ if (((log_hdr->hdr_version & 0xFF) == 0x02) || ((log_hdr->hdr_version & 0xFF) == 0x03)) { /* Process Version 2 or 3 header */ __s64 log_size = 0; __u64 curr_data_offset = 0; __u64 xfer_size_long = (__u64)xfer_size; log_hdr_v3 = (struct wdc_dui_log_hdr_v3 *)log_hdr; cap_dui_length_v3 = le64_to_cpu(log_hdr_v3->log_size); if (verbose) { fprintf(stderr, "INFO : WDC : Capture V2 or V3 Device Unit Info log, data area = %d\n", data_area); fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr_v3->hdr_version); if (log_hdr_v3->hdr_version >= 0x03) fprintf(stderr, "INFO : WDC : DUI Product ID = %c\n", log_hdr_v3->product_id); } if (cap_dui_length_v3 == 0) { fprintf(stderr, "INFO : WDC : Capture V2 or V3 Device Unit Info log is empty\n"); } else { /* parse log header for all sections up to specified data area inclusively */ if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) { for(j = 0; j < WDC_NVME_DUI_MAX_SECTION_V3; j++) { if (log_hdr_v3->log_section[j].data_area_id <= data_area && log_hdr_v3->log_section[j].data_area_id != 0) { log_size += log_hdr_v3->log_section[j].section_size; if (verbose) fprintf(stderr, "%s: Data area ID %d : section size 0x%x, total size = 0x%lx\n", __func__, log_hdr_v3->log_section[j].data_area_id, (unsigned int)log_hdr_v3->log_section[j].section_size, (long unsigned int)log_size); } else { if (verbose) fprintf(stderr, "%s: break, total size = 0x%lx\n", __func__, (long unsigned int)log_size); break; } } } else log_size = cap_dui_length_v3; total_size = log_size; if (offset >= total_size) { fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64" exceeds total size 0x%"PRIx64", no data retrieved\n", __func__, (uint64_t)offset, (uint64_t)total_size); goto out; } dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size_long); if (dump_data == NULL) { fprintf(stderr, "%s: ERROR : dump data v3 malloc failed : status %s, size = 0x%lx\n", __func__, strerror(errno), (long unsigned int)xfer_size_long); ret = -1; goto out; } memset(dump_data, 0, sizeof (__u8) * xfer_size_long); output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (output < 0) { fprintf(stderr, "%s: Failed to open output file %s: %s!\n", __func__, file, strerror(errno)); ret = output; goto free_mem; } curr_data_offset = 0; if (file_size != 0) { /* Write the DUI data based on the passed in file size */ if ((offset + file_size) > total_size) log_size = min((total_size - offset), file_size); else log_size = min(total_size, file_size); if (verbose) fprintf(stderr, "%s: INFO : WDC : Offset 0x%"PRIx64", file size 0x%"PRIx64", total size 0x%"PRIx64", log size 0x%"PRIx64"\n", __func__, (uint64_t)offset, (uint64_t)file_size, (uint64_t)total_size, (uint64_t)log_size); curr_data_offset = offset; } i = 0; buffer_addr = dump_data; for(; log_size > 0; log_size -= xfer_size_long) { xfer_size_long = min(xfer_size_long, log_size); if (log_size <= xfer_size_long) last_xfer = true; ret = wdc_dump_dui_data_v2(fd, (__u32)xfer_size_long, curr_data_offset, buffer_addr, last_xfer); if (ret != 0) { fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%lx, offset = 0x%lx, addr = 0x%lx\n", __func__, i, (long unsigned int)total_size, (long unsigned int)curr_data_offset, (long unsigned int)buffer_addr); fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); break; } /* write the dump data into the file */ err = write(output, (void *)buffer_addr, xfer_size_long); if (err != xfer_size_long) { fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%lx\n", __func__, i, err, (long unsigned int)xfer_size_long); goto free_mem; } curr_data_offset += xfer_size_long; i++; } } } else { __s32 log_size = 0; __u32 curr_data_offset = 0; cap_dui_length = le32_to_cpu(log_hdr->log_size); if (verbose) { fprintf(stderr, "INFO : WDC : Capture V1 Device Unit Info log, data area = %d\n", data_area); fprintf(stderr, "INFO : WDC : DUI Header Version = 0x%x\n", log_hdr->hdr_version); } if (cap_dui_length == 0) { fprintf(stderr, "INFO : WDC : Capture V1 Device Unit Info log is empty\n"); } else { /* parse log header for all sections up to specified data area inclusively */ if (data_area != WDC_NVME_DUI_MAX_DATA_AREA) { for(j = 0; j < WDC_NVME_DUI_MAX_SECTION; j++) { if (log_hdr->log_section[j].data_area_id <= data_area && log_hdr->log_section[j].data_area_id != 0) { log_size += log_hdr->log_section[j].section_size; if (verbose) fprintf(stderr, "%s: Data area ID %d : section size 0x%x, total size = 0x%x\n", __func__, log_hdr->log_section[j].data_area_id, (unsigned int)log_hdr->log_section[j].section_size, (unsigned int)log_size); } else { if (verbose) fprintf(stderr, "%s: break, total size = 0x%x\n", __func__, (unsigned int)log_size); break; } } } else log_size = cap_dui_length; total_size = log_size; dump_data = (__u8 *) malloc(sizeof (__u8) * xfer_size); if (dump_data == NULL) { fprintf(stderr, "%s: ERROR : dump data V1 malloc failed : status %s, size = 0x%x\n", __func__, strerror(errno), (unsigned int)xfer_size); ret = -1; goto out; } memset(dump_data, 0, sizeof (__u8) * xfer_size); output = open(file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (output < 0) { fprintf(stderr, "%s: Failed to open output file %s: %s!\n", __func__, file, strerror(errno)); ret = output; goto free_mem; } /* write the telemetry and log headers into the dump_file */ err = write(output, (void *)log_hdr, WDC_NVME_CAP_DUI_HEADER_SIZE); if (err != WDC_NVME_CAP_DUI_HEADER_SIZE) { fprintf(stderr, "%s: Failed to flush header data to file!\n", __func__); goto free_mem; } log_size -= WDC_NVME_CAP_DUI_HEADER_SIZE; curr_data_offset = WDC_NVME_CAP_DUI_HEADER_SIZE; i = 0; buffer_addr = dump_data; for(; log_size > 0; log_size -= xfer_size) { xfer_size = min(xfer_size, log_size); if (log_size <= xfer_size) last_xfer = true; ret = wdc_dump_dui_data(fd, xfer_size, curr_data_offset, buffer_addr, last_xfer); if (ret != 0) { fprintf(stderr, "%s: ERROR : WDC : Get chunk %d, size = 0x%lx, offset = 0x%x, addr = %p\n", __func__, i, (long unsigned int)log_size, curr_data_offset, buffer_addr); fprintf(stderr, "%s: ERROR : WDC : NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); break; } /* write the dump data into the file */ err = write(output, (void *)buffer_addr, xfer_size); if (err != xfer_size) { fprintf(stderr, "%s: ERROR : WDC : Failed to flush DUI data to file! chunk %d, err = 0x%x, xfer_size = 0x%x\n", __func__, i, err, xfer_size); goto free_mem; } curr_data_offset += xfer_size; i++; } } } fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(ret), ret); if (verbose) fprintf(stderr, "INFO : WDC : Capture Device Unit Info log, length = 0x%lx\n", (long unsigned int)total_size); free_mem: close(output); free(dump_data); out: free(log_hdr); return ret; } static int wdc_cap_diag(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Capture Diagnostics Log."; char *file = "Output file pathname."; char *size = "Data retrieval transfer size."; char f[PATH_MAX] = {0}; __u32 xfer_size = 0; int fd; __u64 capabilities = 0; struct config { char *file; __u32 xfer_size; }; struct config cfg = { .file = NULL, .xfer_size = 0x10000 }; OPT_ARGS(opts) = { OPT_FILE("output-file", 'o', &cfg.file, file), OPT_UINT("transfer-size", 's', &cfg.xfer_size, size), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (cfg.file != NULL) strncpy(f, cfg.file, PATH_MAX - 1); if (cfg.xfer_size != 0) xfer_size = cfg.xfer_size; if (wdc_get_serial_name(fd, f, PATH_MAX, "cap_diag") == -1) { fprintf(stderr, "ERROR : WDC: failed to generate file name\n"); return -1; } if (cfg.file == NULL) snprintf(f + strlen(f), PATH_MAX, "%s", ".bin"); capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_CAP_DIAG) == WDC_DRIVE_CAP_CAP_DIAG) return wdc_do_cap_diag(fd, f, xfer_size, 0, 0); fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); return 0; } static int wdc_do_get_sn730_log_len(int fd, uint32_t *len_buf, uint32_t subopcode) { int ret; uint32_t *output = NULL; struct nvme_admin_cmd admin_cmd; if ((output = (uint32_t*)malloc(sizeof(uint32_t))) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(output, 0, sizeof (uint32_t)); memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.data_len = 8; admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE; admin_cmd.addr = (uintptr_t)output; admin_cmd.cdw12 = subopcode; admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret == 0) *len_buf = *output; free(output); return ret; } static int wdc_do_get_sn730_log(int fd, void * log_buf, uint32_t offset, uint32_t subopcode) { int ret; uint8_t *output = NULL; struct nvme_admin_cmd admin_cmd; if ((output = (uint8_t*)calloc(SN730_LOG_CHUNK_SIZE, sizeof(uint8_t))) == NULL) { fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno)); return -1; } memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.data_len = SN730_LOG_CHUNK_SIZE; admin_cmd.opcode = SN730_NVME_GET_LOG_OPCODE; admin_cmd.addr = (uintptr_t)output; admin_cmd.cdw12 = subopcode; admin_cmd.cdw13 = offset; admin_cmd.cdw10 = SN730_LOG_CHUNK_SIZE / 4; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (!ret) memcpy(log_buf, output, SN730_LOG_CHUNK_SIZE); return ret; } static int get_sn730_log_chunks(int fd, uint8_t* log_buf, uint32_t log_len, uint32_t subopcode) { int ret = 0; uint8_t* chunk_buf = NULL; int remaining = log_len; int curr_offset = 0; if ((chunk_buf = (uint8_t*) malloc(sizeof (uint8_t) * SN730_LOG_CHUNK_SIZE)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); ret = -1; goto out; } while (remaining > 0) { memset(chunk_buf, 0, SN730_LOG_CHUNK_SIZE); ret = wdc_do_get_sn730_log(fd, chunk_buf, curr_offset, subopcode); if (!ret) { if (remaining >= SN730_LOG_CHUNK_SIZE) { memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE), chunk_buf, SN730_LOG_CHUNK_SIZE); } else { memcpy(log_buf + (curr_offset * SN730_LOG_CHUNK_SIZE), chunk_buf, remaining); } remaining -= SN730_LOG_CHUNK_SIZE; curr_offset += 1; } else goto out; } out: free(chunk_buf); return ret; } static int wdc_do_sn730_get_and_tar(int fd, char * outputName) { int ret = 0; void *retPtr; uint8_t* full_log_buf = NULL; uint8_t* key_log_buf = NULL; uint8_t* core_dump_log_buf = NULL; uint8_t* extended_log_buf = NULL; uint32_t full_log_len = 0; uint32_t key_log_len = 0; uint32_t core_dump_log_len = 0; uint32_t extended_log_len = 0; tarfile_metadata* tarInfo = NULL; tarInfo = (struct tarfile_metadata*) malloc(sizeof(tarfile_metadata)); if (tarInfo == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); ret = -1; goto free_buf; } memset(tarInfo, 0, sizeof(tarfile_metadata)); /* Create Logs directory */ wdc_UtilsGetTime(&tarInfo->timeInfo); memset(tarInfo->timeString, 0, sizeof(tarInfo->timeString)); wdc_UtilsSnprintf((char*)tarInfo->timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u", tarInfo->timeInfo.year, tarInfo->timeInfo.month, tarInfo->timeInfo.dayOfMonth, tarInfo->timeInfo.hour, tarInfo->timeInfo.minute, tarInfo->timeInfo.second); wdc_UtilsSnprintf((char*)tarInfo->bufferFolderName, MAX_PATH_LEN, "%s", (char*)outputName); retPtr = getcwd((char*)tarInfo->currDir, MAX_PATH_LEN); if (retPtr != NULL) wdc_UtilsSnprintf((char*)tarInfo->bufferFolderPath, MAX_PATH_LEN, "%s%s%s", (char *)tarInfo->currDir, WDC_DE_PATH_SEPARATOR, (char *)tarInfo->bufferFolderName); else { fprintf(stderr, "ERROR : WDC : get current working directory failed\n"); goto free_buf; } ret = wdc_UtilsCreateDir((char*)tarInfo->bufferFolderPath); if (ret) { fprintf(stderr, "ERROR : WDC : create directory failed, ret = %d, dir = %s\n", ret, tarInfo->bufferFolderPath); goto free_buf; } else { fprintf(stderr, "Stored log files in directory: %s\n", tarInfo->bufferFolderPath); } ret = wdc_do_get_sn730_log_len(fd, &full_log_len, SN730_GET_FULL_LOG_LENGTH); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } ret = wdc_do_get_sn730_log_len(fd, &key_log_len, SN730_GET_KEY_LOG_LENGTH); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } ret = wdc_do_get_sn730_log_len(fd, &core_dump_log_len, SN730_GET_COREDUMP_LOG_LENGTH); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } ret = wdc_do_get_sn730_log_len(fd, &extended_log_len, SN730_GET_EXTENDED_LOG_LENGTH); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } full_log_buf = (uint8_t*) calloc(full_log_len, sizeof (uint8_t)); key_log_buf = (uint8_t*) calloc(key_log_len, sizeof (uint8_t)); core_dump_log_buf = (uint8_t*) calloc(core_dump_log_len, sizeof (uint8_t)); extended_log_buf = (uint8_t*) calloc(extended_log_len, sizeof (uint8_t)); if (!full_log_buf || !key_log_buf || !core_dump_log_buf || !extended_log_buf) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); ret = -1; goto free_buf; } /* Get the full log */ ret = get_sn730_log_chunks(fd, full_log_buf, full_log_len, SN730_GET_FULL_LOG_SUBOPCODE); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } /* Get the key log */ ret = get_sn730_log_chunks(fd, key_log_buf, key_log_len, SN730_GET_KEY_LOG_SUBOPCODE); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } /* Get the core dump log */ ret = get_sn730_log_chunks(fd, core_dump_log_buf, core_dump_log_len, SN730_GET_CORE_LOG_SUBOPCODE); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } /* Get the extended log */ ret = get_sn730_log_chunks(fd, extended_log_buf, extended_log_len, SN730_GET_EXTEND_LOG_SUBOPCODE); if (ret) { fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); goto free_buf; } /* Write log files */ wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR, "full_log", (char*)tarInfo->timeString); wdc_WriteToFile(tarInfo->fileName, (char*)full_log_buf, full_log_len); wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR, "key_log", (char*)tarInfo->timeString); wdc_WriteToFile(tarInfo->fileName, (char*)key_log_buf, key_log_len); wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR, "core_dump_log", (char*)tarInfo->timeString); wdc_WriteToFile(tarInfo->fileName, (char*)core_dump_log_buf, core_dump_log_len); wdc_UtilsSnprintf(tarInfo->fileName, MAX_PATH_LEN, "%s%s%s_%s.bin", (char*)tarInfo->bufferFolderPath, WDC_DE_PATH_SEPARATOR, "extended_log", (char*)tarInfo->timeString); wdc_WriteToFile(tarInfo->fileName, (char*)extended_log_buf, extended_log_len); /* Tar the log directory */ wdc_UtilsSnprintf(tarInfo->tarFileName, sizeof(tarInfo->tarFileName), "%s%s", (char*)tarInfo->bufferFolderPath, WDC_DE_TAR_FILE_EXTN); wdc_UtilsSnprintf(tarInfo->tarFiles, sizeof(tarInfo->tarFiles), "%s%s%s", (char*)tarInfo->bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES); wdc_UtilsSnprintf(tarInfo->tarCmd, sizeof(tarInfo->tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char*)tarInfo->tarFileName, (char*)tarInfo->tarFiles); ret = system(tarInfo->tarCmd); if (ret) fprintf(stderr, "ERROR : WDC : Tar of log data failed, ret = %d\n", ret); free_buf: free(tarInfo); free(full_log_buf); free(core_dump_log_buf); free(key_log_buf); free(extended_log_buf); return ret; } static int wdc_vs_internal_fw_log(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Internal Firmware Log."; char *file = "Output file pathname."; char *size = "Data retrieval transfer size."; char *data_area = "Data area to retrieve up to. Currently only supported on the SN340, SN640, and SN840 devices."; char *file_size = "Output file size. Currently only supported on the SN340 device."; char *offset = "Output file data offset. Currently only supported on the SN340 device."; char *type = "Telemetry type - NONE, HOST, or CONTROLLER. Currently only supported on the SN640 and SN840 devices."; char *verbose = "Display more debug messages."; char f[PATH_MAX] = {0}; char fileSuffix[PATH_MAX] = {0}; __u32 xfer_size = 0; int fd; int telemetry_type = 0, telemetry_data_area = 0; UtilsTimeInfo timeInfo; __u8 timeStamp[MAX_PATH_LEN]; __u64 capabilities = 0; struct config { char *file; __u32 xfer_size; int data_area; __u64 file_size; __u64 offset; char *type; int verbose; }; struct config cfg = { .file = NULL, .xfer_size = 0x10000, .data_area = 3, .file_size = 0, .offset = 0, .type = NULL, .verbose = 0, }; OPT_ARGS(opts) = { OPT_FILE("output-file", 'o', &cfg.file, file), OPT_UINT("transfer-size", 's', &cfg.xfer_size, size), OPT_UINT("data-area", 'd', &cfg.data_area, data_area), OPT_LONG("file-size", 'f', &cfg.file_size, file_size), OPT_LONG("offset", 'e', &cfg.offset, offset), OPT_FILE("type", 't', &cfg.type, type), OPT_FLAG("verbose", 'v', &cfg.verbose, verbose), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) return -1; if (cfg.xfer_size != 0) xfer_size = cfg.xfer_size; else { fprintf(stderr, "ERROR : WDC : Invalid length\n"); return -1; } if (cfg.file != NULL) { int verify_file; /* verify the passed in file name and path is valid before getting the dump data */ verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (verify_file < 0) { fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno)); return -1; } close(verify_file); strncpy(f, cfg.file, PATH_MAX - 1); } else { wdc_UtilsGetTime(&timeInfo); memset(timeStamp, 0, sizeof(timeStamp)); wdc_UtilsSnprintf((char*)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u", timeInfo.year, timeInfo.month, timeInfo.dayOfMonth, timeInfo.hour, timeInfo.minute, timeInfo.second); snprintf(fileSuffix, PATH_MAX, "_internal_fw_log_%s", (char*)timeStamp); if (wdc_get_serial_name(fd, f, PATH_MAX, fileSuffix) == -1) { fprintf(stderr, "ERROR : WDC: failed to generate file name\n"); return -1; } } if (cfg.file == NULL) snprintf(f + strlen(f), PATH_MAX, "%s", ".bin"); fprintf(stderr, "%s: filename = %s\n", __func__, f); if (cfg.data_area > 5 || cfg.data_area == 0) { fprintf(stderr, "ERROR : WDC: Data area must be 1-5\n"); return -1; } capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_INTERNAL_LOG) == WDC_DRIVE_CAP_INTERNAL_LOG) { if ((cfg.type == NULL) || (!strcmp(cfg.type, "NONE")) || (!strcmp(cfg.type, "none"))) { telemetry_type = WDC_TELEMETRY_TYPE_NONE; data_area = 0; } else if ((!strcmp(cfg.type, "HOST")) || (!strcmp(cfg.type, "host"))) { telemetry_type = WDC_TELEMETRY_TYPE_HOST; telemetry_data_area = cfg.data_area; } else if ((!strcmp(cfg.type, "CONTROLLER")) || (!strcmp(cfg.type, "controller"))) { telemetry_type = WDC_TELEMETRY_TYPE_CONTROLLER; telemetry_data_area = cfg.data_area; } else { fprintf(stderr, "ERROR : WDC: Invalid type - Must be NONE, HOST or CONTROLLER\n"); return -1; } return wdc_do_cap_diag(fd, f, xfer_size, telemetry_type, telemetry_data_area); } if ((capabilities & WDC_DRIVE_CAP_SN340_DUI) == WDC_DRIVE_CAP_SN340_DUI) { /* FW requirement - xfer size must be 256k for data area 4 */ if (cfg.data_area >= 4) xfer_size = 0x40000; return wdc_do_cap_dui(fd, f, xfer_size, cfg.data_area, cfg.verbose, cfg.file_size, cfg.offset); } if ((capabilities & WDC_DRIVE_CAP_DUI_DATA) == WDC_DRIVE_CAP_DUI_DATA) return wdc_do_cap_dui(fd, f, xfer_size, WDC_NVME_DUI_MAX_DATA_AREA, cfg.verbose, 0, 0); if ((capabilities & WDC_SN730B_CAP_VUC_LOG) == WDC_SN730B_CAP_VUC_LOG) return wdc_do_sn730_get_and_tar(fd, f); fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); return -1; } static int wdc_do_crash_dump(int fd, char *file, int type) { int ret; __u32 crash_dump_length; __u32 opcode; __u32 cdw12; __u32 cdw10_size; __u32 cdw12_size; __u32 cdw12_clear; if (type == WDC_NVME_PFAIL_DUMP_TYPE) { /* set parms to get the PFAIL Crash Dump */ opcode = WDC_NVME_PF_CRASH_DUMP_OPCODE; cdw10_size = WDC_NVME_PF_CRASH_DUMP_SIZE_NDT; cdw12_size = ((WDC_NVME_PF_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_PF_CRASH_DUMP_SIZE_CMD); cdw12 = (WDC_NVME_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_PF_CRASH_DUMP_CMD; cdw12_clear = ((WDC_NVME_CLEAR_PF_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CLEAR_CRASH_DUMP_CMD); } else { /* set parms to get the Crash Dump */ opcode = WDC_NVME_CRASH_DUMP_OPCODE; cdw10_size = WDC_NVME_CRASH_DUMP_SIZE_NDT; cdw12_size = ((WDC_NVME_CRASH_DUMP_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CRASH_DUMP_SIZE_CMD); cdw12 = (WDC_NVME_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CRASH_DUMP_CMD; cdw12_clear = ((WDC_NVME_CLEAR_CRASH_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CLEAR_CRASH_DUMP_CMD); } ret = wdc_dump_length(fd, opcode, cdw10_size, cdw12_size, &crash_dump_length); if (ret == -1) { if (type == WDC_NVME_PFAIL_DUMP_TYPE) fprintf(stderr, "INFO : WDC: Pfail dump get size failed\n"); else fprintf(stderr, "INFO : WDC: Crash dump get size failed\n"); return -1; } if (crash_dump_length == 0) { if (type == WDC_NVME_PFAIL_DUMP_TYPE) fprintf(stderr, "INFO : WDC: Pfail dump is empty\n"); else fprintf(stderr, "INFO : WDC: Crash dump is empty\n"); } else { ret = wdc_do_dump(fd, opcode, crash_dump_length, cdw12, file, crash_dump_length); if (ret == 0) ret = wdc_do_clear_dump(fd, WDC_NVME_CLEAR_DUMP_OPCODE, cdw12_clear); } return ret; } static int wdc_crash_dump(int fd, char *file, int type) { char f[PATH_MAX] = {0}; const char *dump_type; if (file != NULL) { strncpy(f, file, PATH_MAX - 1); } if (type == WDC_NVME_PFAIL_DUMP_TYPE) dump_type = "_pfail_dump"; else dump_type = "_crash_dump"; if (wdc_get_serial_name(fd, f, PATH_MAX, dump_type) == -1) { fprintf(stderr, "ERROR : WDC : failed to generate file name\n"); return -1; } return wdc_do_crash_dump(fd, f, type); } static int wdc_do_drive_log(int fd, char *file) { int ret; __u8 *drive_log_data; __u32 drive_log_length; struct nvme_admin_cmd admin_cmd; ret = wdc_dump_length(fd, WDC_NVME_DRIVE_LOG_SIZE_OPCODE, WDC_NVME_DRIVE_LOG_SIZE_NDT, (WDC_NVME_DRIVE_LOG_SIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT | WDC_NVME_DRIVE_LOG_SIZE_CMD), &drive_log_length); if (ret == -1) { return -1; } drive_log_data = (__u8 *) malloc(sizeof (__u8) * drive_log_length); if (drive_log_data == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(drive_log_data, 0, sizeof (__u8) * drive_log_length); memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_DRIVE_LOG_OPCODE; admin_cmd.addr = (__u64)(uintptr_t)drive_log_data; admin_cmd.data_len = drive_log_length; admin_cmd.cdw10 = drive_log_length; admin_cmd.cdw12 = ((WDC_NVME_DRIVE_LOG_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_DRIVE_LOG_SIZE_CMD); ret = nvme_submit_admin_passthru(fd, &admin_cmd); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { ret = wdc_create_log_file(file, drive_log_data, drive_log_length); } free(drive_log_data); return ret; } static int wdc_drive_log(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Capture Drive Log."; const char *file = "Output file pathname."; char f[PATH_MAX] = {0}; int fd; int ret; __u64 capabilities = 0; struct config { char *file; }; struct config cfg = { .file = NULL }; OPT_ARGS(opts) = { OPT_FILE("output-file", 'o', &cfg.file, file), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) return -1; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_DRIVE_LOG) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } else { if (cfg.file != NULL) { strncpy(f, cfg.file, PATH_MAX - 1); } if (wdc_get_serial_name(fd, f, PATH_MAX, "drive_log") == -1) { fprintf(stderr, "ERROR : WDC : failed to generate file name\n"); return -1; } ret = wdc_do_drive_log(fd, f); } return ret; } static int wdc_get_crash_dump(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Get Crash Dump."; const char *file = "Output file pathname."; int fd, ret; __u64 capabilities = 0; struct config { char *file; }; struct config cfg = { .file = NULL, }; OPT_ARGS(opts) = { OPT_FILE("output-file", 'o', &cfg.file, file), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) return -1; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_CRASH_DUMP) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } else { ret = wdc_crash_dump(fd, cfg.file, WDC_NVME_CRASH_DUMP_TYPE); if (ret != 0) { fprintf(stderr, "ERROR : WDC : failed to read crash dump\n"); } } return ret; } static int wdc_get_pfail_dump(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Get Pfail Crash Dump."; char *file = "Output file pathname."; int fd; int ret; __u64 capabilities = 0; struct config { char *file; }; struct config cfg = { .file = NULL, }; OPT_ARGS(opts) = { OPT_FILE("output-file", 'o', &cfg.file, file), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) return -1; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_PFAIL_DUMP) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } else { ret = wdc_crash_dump(fd, cfg.file, WDC_NVME_PFAIL_DUMP_TYPE); if (ret != 0) { fprintf(stderr, "ERROR : WDC : failed to read pfail crash dump\n"); } } return ret; } static void wdc_do_id_ctrl(__u8 *vs, struct json_object *root) { char vsn[24] = {0}; int base = 3072; int vsn_start = 3081; memcpy(vsn, &vs[vsn_start - base], sizeof(vsn)); if (root) json_object_add_value_string(root, "wdc vsn", strlen(vsn) > 1 ? vsn : "NULL"); else printf("wdc vsn : %s\n", strlen(vsn) > 1 ? vsn : "NULL"); } static int wdc_id_ctrl(int argc, char **argv, struct command *cmd, struct plugin *plugin) { return __id_ctrl(argc, argv, cmd, plugin, wdc_do_id_ctrl); } static const char* wdc_purge_mon_status_to_string(__u32 status) { const char *str; switch (status) { case WDC_NVME_PURGE_STATE_IDLE: str = "Purge State Idle."; break; case WDC_NVME_PURGE_STATE_DONE: str = "Purge State Done."; break; case WDC_NVME_PURGE_STATE_BUSY: str = "Purge State Busy."; break; case WDC_NVME_PURGE_STATE_REQ_PWR_CYC: str = "Purge Operation resulted in an error that requires " "power cycle."; break; case WDC_NVME_PURGE_STATE_PWR_CYC_PURGE: str = "The previous purge operation was interrupted by a power " "cycle\nor reset interruption. Other commands may be " "rejected until\nPurge Execute is issued and " "completed."; break; default: str = "Unknown."; } return str; } static int wdc_purge(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Send a Purge command."; char *err_str; int fd, ret; struct nvme_passthru_cmd admin_cmd; OPT_ARGS(opts) = { OPT_END() }; err_str = ""; memset(&admin_cmd, 0, sizeof (admin_cmd)); admin_cmd.opcode = WDC_NVME_PURGE_CMD_OPCODE; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) return -1; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret > 0) { switch (ret) { case WDC_NVME_PURGE_CMD_SEQ_ERR: err_str = "ERROR : WDC : Cannot execute purge, " "Purge operation is in progress.\n"; break; case WDC_NVME_PURGE_INT_DEV_ERR: err_str = "ERROR : WDC : Internal Device Error.\n"; break; default: err_str = "ERROR : WDC\n"; } } fprintf(stderr, "%s", err_str); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; } static int wdc_purge_monitor(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Send a Purge Monitor command."; int fd, ret; __u8 output[WDC_NVME_PURGE_MONITOR_DATA_LEN]; double progress_percent; struct nvme_passthru_cmd admin_cmd; struct wdc_nvme_purge_monitor_data *mon; OPT_ARGS(opts) = { OPT_END() }; memset(output, 0, sizeof (output)); memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_PURGE_MONITOR_OPCODE; admin_cmd.addr = (__u64)(uintptr_t)output; admin_cmd.data_len = WDC_NVME_PURGE_MONITOR_DATA_LEN; admin_cmd.cdw10 = WDC_NVME_PURGE_MONITOR_CMD_CDW10; admin_cmd.timeout_ms = WDC_NVME_PURGE_MONITOR_TIMEOUT; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) return -1; ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (ret == 0) { mon = (struct wdc_nvme_purge_monitor_data *) output; printf("Purge state = 0x%0x\n", admin_cmd.result); printf("%s\n", wdc_purge_mon_status_to_string(admin_cmd.result)); if (admin_cmd.result == WDC_NVME_PURGE_STATE_BUSY) { progress_percent = ((double)le32_to_cpu(mon->entire_progress_current) * 100) / le32_to_cpu(mon->entire_progress_total); printf("Purge Progress = %f%%\n", progress_percent); } } fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; } static void wdc_print_log_normal(struct wdc_ssd_perf_stats *perf) { printf(" C1 Log Page Performance Statistics :- \n"); printf(" Host Read Commands %20"PRIu64"\n", le64_to_cpu(perf->hr_cmds)); printf(" Host Read Blocks %20"PRIu64"\n", le64_to_cpu(perf->hr_blks)); printf(" Average Read Size %20lf\n", safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds)))); printf(" Host Read Cache Hit Commands %20"PRIu64"\n", le64_to_cpu(perf->hr_ch_cmds)); printf(" Host Read Cache Hit_Percentage %20"PRIu64"%%\n", (uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds))); printf(" Host Read Cache Hit Blocks %20"PRIu64"\n", le64_to_cpu(perf->hr_ch_blks)); printf(" Average Read Cache Hit Size %20f\n", safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds)))); printf(" Host Read Commands Stalled %20"PRIu64"\n", le64_to_cpu(perf->hr_st_cmds)); printf(" Host Read Commands Stalled Percentage %20"PRIu64"%%\n", (uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds))); printf(" Host Write Commands %20"PRIu64"\n", le64_to_cpu(perf->hw_cmds)); printf(" Host Write Blocks %20"PRIu64"\n", le64_to_cpu(perf->hw_blks)); printf(" Average Write Size %20f\n", safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds)))); printf(" Host Write Odd Start Commands %20"PRIu64"\n", le64_to_cpu(perf->hw_os_cmds)); printf(" Host Write Odd Start Commands Percentage %20"PRIu64"%%\n", (uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds)))); printf(" Host Write Odd End Commands %20"PRIu64"\n", le64_to_cpu(perf->hw_oe_cmds)); printf(" Host Write Odd End Commands Percentage %20"PRIu64"%%\n", (uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds))))); printf(" Host Write Commands Stalled %20"PRIu64"\n", le64_to_cpu(perf->hw_st_cmds)); printf(" Host Write Commands Stalled Percentage %20"PRIu64"%%\n", (uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds)))); printf(" NAND Read Commands %20"PRIu64"\n", le64_to_cpu(perf->nr_cmds)); printf(" NAND Read Blocks Commands %20"PRIu64"\n", le64_to_cpu(perf->nr_blks)); printf(" Average NAND Read Size %20f\n", safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds))))); printf(" Nand Write Commands %20"PRIu64"\n", le64_to_cpu(perf->nw_cmds)); printf(" NAND Write Blocks %20"PRIu64"\n", le64_to_cpu(perf->nw_blks)); printf(" Average NAND Write Size %20f\n", safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds)))); printf(" NAND Read Before Write %20"PRIu64"\n", le64_to_cpu(perf->nrbw)); } static void wdc_print_log_json(struct wdc_ssd_perf_stats *perf) { struct json_object *root; root = json_create_object(); json_object_add_value_int(root, "Host Read Commands", le64_to_cpu(perf->hr_cmds)); json_object_add_value_int(root, "Host Read Blocks", le64_to_cpu(perf->hr_blks)); json_object_add_value_int(root, "Average Read Size", safe_div_fp((le64_to_cpu(perf->hr_blks)), (le64_to_cpu(perf->hr_cmds)))); json_object_add_value_int(root, "Host Read Cache Hit Commands", le64_to_cpu(perf->hr_ch_cmds)); json_object_add_value_int(root, "Host Read Cache Hit Percentage", (uint64_t) calc_percent(le64_to_cpu(perf->hr_ch_cmds), le64_to_cpu(perf->hr_cmds))); json_object_add_value_int(root, "Host Read Cache Hit Blocks", le64_to_cpu(perf->hr_ch_blks)); json_object_add_value_int(root, "Average Read Cache Hit Size", safe_div_fp((le64_to_cpu(perf->hr_ch_blks)), (le64_to_cpu(perf->hr_ch_cmds)))); json_object_add_value_int(root, "Host Read Commands Stalled", le64_to_cpu(perf->hr_st_cmds)); json_object_add_value_int(root, "Host Read Commands Stalled Percentage", (uint64_t)calc_percent((le64_to_cpu(perf->hr_st_cmds)), le64_to_cpu(perf->hr_cmds))); json_object_add_value_int(root, "Host Write Commands", le64_to_cpu(perf->hw_cmds)); json_object_add_value_int(root, "Host Write Blocks", le64_to_cpu(perf->hw_blks)); json_object_add_value_int(root, "Average Write Size", safe_div_fp((le64_to_cpu(perf->hw_blks)), (le64_to_cpu(perf->hw_cmds)))); json_object_add_value_int(root, "Host Write Odd Start Commands", le64_to_cpu(perf->hw_os_cmds)); json_object_add_value_int(root, "Host Write Odd Start Commands Percentage", (uint64_t)calc_percent((le64_to_cpu(perf->hw_os_cmds)), (le64_to_cpu(perf->hw_cmds)))); json_object_add_value_int(root, "Host Write Odd End Commands", le64_to_cpu(perf->hw_oe_cmds)); json_object_add_value_int(root, "Host Write Odd End Commands Percentage", (uint64_t)calc_percent((le64_to_cpu(perf->hw_oe_cmds)), (le64_to_cpu((perf->hw_cmds))))); json_object_add_value_int(root, "Host Write Commands Stalled", le64_to_cpu(perf->hw_st_cmds)); json_object_add_value_int(root, "Host Write Commands Stalled Percentage", (uint64_t)calc_percent((le64_to_cpu(perf->hw_st_cmds)), (le64_to_cpu(perf->hw_cmds)))); json_object_add_value_int(root, "NAND Read Commands", le64_to_cpu(perf->nr_cmds)); json_object_add_value_int(root, "NAND Read Blocks Commands", le64_to_cpu(perf->nr_blks)); json_object_add_value_int(root, "Average NAND Read Size", safe_div_fp((le64_to_cpu(perf->nr_blks)), (le64_to_cpu((perf->nr_cmds))))); json_object_add_value_int(root, "Nand Write Commands", le64_to_cpu(perf->nw_cmds)); json_object_add_value_int(root, "NAND Write Blocks", le64_to_cpu(perf->nw_blks)); json_object_add_value_int(root, "Average NAND Write Size", safe_div_fp((le64_to_cpu(perf->nw_blks)), (le64_to_cpu(perf->nw_cmds)))); json_object_add_value_int(root, "NAND Read Before Written", le64_to_cpu(perf->nrbw)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static int wdc_print_log(struct wdc_ssd_perf_stats *perf, int fmt) { if (!perf) { fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n"); return -1; } switch (fmt) { case NORMAL: wdc_print_log_normal(perf); break; case JSON: wdc_print_log_json(perf); break; } return 0; } static void wdc_print_fb_ca_log_normal(struct wdc_ssd_ca_perf_stats *perf) { uint64_t converted = 0; printf(" CA Log Page Performance Statistics :- \n"); printf(" NAND Bytes Written %20"PRIu64 "%20"PRIu64"\n", le64_to_cpu(perf->nand_bytes_wr_hi), le64_to_cpu(perf->nand_bytes_wr_lo)); printf(" NAND Bytes Read %20"PRIu64 "%20"PRIu64"\n", le64_to_cpu(perf->nand_bytes_rd_hi), le64_to_cpu(perf->nand_bytes_rd_lo)); converted = le64_to_cpu(perf->nand_bad_block); printf(" NAND Bad Block Count (Normalized) %20"PRIu64"\n", converted & 0xFFFF); printf(" NAND Bad Block Count (Raw) %20"PRIu64"\n", converted >> 16); printf(" Uncorrectable Read Count %20"PRIu64"\n", le64_to_cpu(perf->uncorr_read_count)); printf(" Soft ECC Error Count %20"PRIu64"\n", le64_to_cpu(perf->ecc_error_count)); printf(" SSD End to End Detected Correction Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->ssd_detect_count)); printf(" SSD End to End Corrected Correction Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->ssd_correct_count)); printf(" System Data Percent Used %20"PRIu32"%%\n", perf->data_percent_used); printf(" User Data Erase Counts Max %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->data_erase_max)); printf(" User Data Erase Counts Min %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->data_erase_min)); printf(" Refresh Count %20"PRIu64"\n", le64_to_cpu(perf->refresh_count)); converted = le64_to_cpu(perf->program_fail); printf(" Program Fail Count (Normalized) %20"PRIu64"\n", converted & 0xFFFF); printf(" Program Fail Count (Raw) %20"PRIu64"\n", converted >> 16); converted = le64_to_cpu(perf->user_erase_fail); printf(" User Data Erase Fail Count (Normalized) %20"PRIu64"\n", converted & 0xFFFF); printf(" User Data Erase Fail Count (Raw) %20"PRIu64"\n", converted >> 16); converted = le64_to_cpu(perf->system_erase_fail); printf(" System Area Erase Fail Count (Normalized) %20"PRIu64"\n", converted & 0xFFFF); printf(" System Area Erase Fail Count (Raw) %20"PRIu64"\n", converted >> 16); printf(" Thermal Throttling Status %20"PRIu8"\n", perf->thermal_throttle_status); printf(" Thermal Throttling Count %20"PRIu8"\n", perf->thermal_throttle_count); printf(" PCIe Correctable Error Count %20"PRIu64"\n", le64_to_cpu(perf->pcie_corr_error)); printf(" Incomplete Shutdown Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->incomplete_shutdown_count)); printf(" Percent Free Blocks %20"PRIu32"%%\n", perf->percent_free_blocks); } static void wdc_print_fb_ca_log_json(struct wdc_ssd_ca_perf_stats *perf) { struct json_object *root; uint64_t converted = 0; root = json_create_object(); json_object_add_value_int(root, "NAND Bytes Written Hi", le64_to_cpu(perf->nand_bytes_wr_hi)); json_object_add_value_int(root, "NAND Bytes Written Lo", le64_to_cpu(perf->nand_bytes_wr_lo)); json_object_add_value_int(root, "NAND Bytes Read Hi", le64_to_cpu(perf->nand_bytes_rd_hi)); json_object_add_value_int(root, "NAND Bytes Read Lo", le64_to_cpu(perf->nand_bytes_rd_lo)); converted = le64_to_cpu(perf->nand_bad_block); json_object_add_value_int(root, "NAND Bad Block Count (Normalized)", converted & 0xFFFF); json_object_add_value_int(root, "NAND Bad Block Count (Raw)", converted >> 16); json_object_add_value_int(root, "Uncorrectable Read Count", le64_to_cpu(perf->uncorr_read_count)); json_object_add_value_int(root, "Soft ECC Error Count", le64_to_cpu(perf->ecc_error_count)); json_object_add_value_int(root, "SSD End to End Detected Correction Count", le32_to_cpu(perf->ssd_detect_count)); json_object_add_value_int(root, "SSD End to End Corrected Correction Count", le32_to_cpu(perf->ssd_correct_count)); json_object_add_value_int(root, "System Data Percent Used", perf->data_percent_used); json_object_add_value_int(root, "User Data Erase Counts Max", le32_to_cpu(perf->data_erase_max)); json_object_add_value_int(root, "User Data Erase Counts Min", le32_to_cpu(perf->data_erase_min)); json_object_add_value_int(root, "Refresh Count", le64_to_cpu(perf->refresh_count)); converted = le64_to_cpu(perf->program_fail); json_object_add_value_int(root, "Program Fail Count (Normalized)", converted & 0xFFFF); json_object_add_value_int(root, "Program Fail Count (Raw)", converted >> 16); converted = le64_to_cpu(perf->user_erase_fail); json_object_add_value_int(root, "User Data Erase Fail Count (Normalized)", converted & 0xFFFF); json_object_add_value_int(root, "User Data Erase Fail Count (Raw)", converted >> 16); converted = le64_to_cpu(perf->system_erase_fail); json_object_add_value_int(root, "System Area Erase Fail Count (Normalized)", converted & 0xFFFF); json_object_add_value_int(root, "System Area Erase Fail Count (Raw)", converted >> 16); json_object_add_value_int(root, "Thermal Throttling Status", perf->thermal_throttle_status); json_object_add_value_int(root, "Thermal Throttling Count", perf->thermal_throttle_count); json_object_add_value_int(root, "PCIe Correctable Error", le64_to_cpu(perf->pcie_corr_error)); json_object_add_value_int(root, "Incomplete Shutdown Counte", le32_to_cpu(perf->incomplete_shutdown_count)); json_object_add_value_int(root, "Percent Free Blocks", perf->percent_free_blocks); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void wdc_print_bd_ca_log_normal(void *data) { struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data; __u64 *raw; __u16 *word_raw; __u32 *dword_raw; __u8 *byte_raw; if (bd_data->field_id == 0x00) { raw = (__u64*)bd_data->raw_value; printf(" CA Log Page values :- \n"); printf(" Program fail counts %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); printf(" %% Remaining of allowable program fails %3"PRIu8"\n", bd_data->normalized_value); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x01) { raw = (__u64*)bd_data->raw_value; printf(" Erase fail count %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); printf(" %% Remaining of allowable erase fails %3"PRIu8"\n", bd_data->normalized_value); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x02) { word_raw = (__u16*)bd_data->raw_value; printf(" Min erase cycles %10"PRIu16"\n", le16_to_cpu(*word_raw)); word_raw = (__u16*)&bd_data->raw_value[2]; printf(" Max erase cycles %10"PRIu16"\n", le16_to_cpu(*word_raw)); word_raw = (__u16*)&bd_data->raw_value[4]; printf(" Ave erase cycles %10"PRIu16"\n", le16_to_cpu(*word_raw)); printf(" Wear Leveling Normalized %3"PRIu8"\n", bd_data->normalized_value); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x03) { raw = (__u64*)bd_data->raw_value; printf(" End to end error detection count %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x04) { raw = (__u64*)bd_data->raw_value; printf(" Crc error count %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x05) { raw = (__u64*)bd_data->raw_value; printf(" Timed workload media error %20.3f\n", safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x06) { raw = (__u64*)bd_data->raw_value; printf(" Timed workload host reads %% %3"PRIu64"\n", le64_to_cpu(*raw & 0x00000000000000FF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x07) { raw = (__u64*)bd_data->raw_value; printf(" Timed workload timer %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x08) { byte_raw = (__u8*)bd_data->raw_value; printf(" Throttle status %% %10"PRIu16"\n", *byte_raw); dword_raw = (__u32*)&bd_data->raw_value[1]; printf(" Throttling event counter %10"PRIu16"\n", le32_to_cpu(*dword_raw)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x09) { raw = (__u64*)bd_data->raw_value; printf(" Retry buffer overflow count %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x0A) { raw = (__u64*)bd_data->raw_value; printf(" Pll lock loss count %20"PRIu64"\n", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x0B) { raw = (__u64*)bd_data->raw_value; printf(" Nand bytes written (32mb) %20.0f\n", safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF)); raw = (__u64*)bd_data->raw_value; } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x0C) { raw = (__u64*)bd_data->raw_value; printf(" Host bytes written (32mb) %20.0f\n", safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF)); raw = (__u64*)bd_data->raw_value; } else { goto invalid_id; } goto done; invalid_id: printf(" Invalid Field ID = %d\n", bd_data->field_id); done: return; } static void wdc_print_bd_ca_log_json(void *data) { struct wdc_bd_ca_log_format *bd_data = (struct wdc_bd_ca_log_format *)data; __u64 *raw; __u16 *word_raw; __u32 *dword_raw; __u8 *byte_raw; struct json_object *root; root = json_create_object(); if (bd_data->field_id == 0x00) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Program fail counts", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); json_object_add_value_int(root, "% Remaining of allowable program fails", bd_data->normalized_value); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x01) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Erase fail count", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); json_object_add_value_int(root, "% Remaining of allowable erase fails", bd_data->normalized_value); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x02) { word_raw = (__u16*)bd_data->raw_value; json_object_add_value_int(root, "Min erase cycles", le16_to_cpu(*word_raw)); word_raw = (__u16*)&bd_data->raw_value[2]; json_object_add_value_int(root, "Max erase cycles", le16_to_cpu(*word_raw)); word_raw = (__u16*)&bd_data->raw_value[4]; json_object_add_value_int(root, "Ave erase cycles", le16_to_cpu(*word_raw)); json_object_add_value_int(root, "Wear Leveling Normalized", bd_data->normalized_value); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x03) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "End to end error detection count", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x04) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Crc error count", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x05) { raw = (__u64*)bd_data->raw_value; json_object_add_value_float(root, "Timed workload media error", safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 1024.0)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x06) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Timed workload host reads %", le64_to_cpu(*raw & 0x00000000000000FF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x07) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Timed workload timer", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x08) { byte_raw = (__u8*)bd_data->raw_value; json_object_add_value_int(root, "Throttle status %", *byte_raw); dword_raw = (__u32*)&bd_data->raw_value[1]; json_object_add_value_int(root, "Throttling event counter", le32_to_cpu(*dword_raw)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x09) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Retry buffer overflow count", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x0A) { raw = (__u64*)bd_data->raw_value; json_object_add_value_int(root, "Pll lock loss count", le64_to_cpu(*raw & 0x00FFFFFFFFFFFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x0B) { raw = (__u64*)bd_data->raw_value; json_object_add_value_float(root, "Nand bytes written (32mb)", safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF)); } else { goto invalid_id; } bd_data++; if (bd_data->field_id == 0x0C) { raw = (__u64*)bd_data->raw_value; json_object_add_value_float(root, "Host bytes written (32mb)", safe_div_fp((*raw & 0x00FFFFFFFFFFFFFF), 0xFFFF)); raw = (__u64*)bd_data->raw_value; } else { goto invalid_id; } goto done; invalid_id: printf(" Invalid Field ID = %d\n", bd_data->field_id); done: return; } static void wdc_print_d0_log_normal(struct wdc_ssd_d0_smart_log *perf) { printf(" D0 Smart Log Page Statistics :- \n"); printf(" Lifetime Reallocated Erase Block Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_realloc_erase_block_count)); printf(" Lifetime Power on Hours %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_power_on_hours)); printf(" Lifetime UECC Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_uecc_count)); printf(" Lifetime Write Amplification Factor %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_wrt_amp_factor)); printf(" Trailing Hour Write Amplification Factor %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->trailing_hr_wrt_amp_factor)); printf(" Reserve Erase Block Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->reserve_erase_block_count)); printf(" Lifetime Program Fail Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_program_fail_count)); printf(" Lifetime Block Erase Fail Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_block_erase_fail_count)); printf(" Lifetime Die Failure Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_die_failure_count)); printf(" Lifetime Link Rate Downgrade Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_link_rate_downgrade_count)); printf(" Lifetime Clean Shutdown Count on Power Loss %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_clean_shutdown_count)); printf(" Lifetime Unclean Shutdowns on Power Loss %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_unclean_shutdown_count)); printf(" Current Temperature %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->current_temp)); printf(" Max Recorded Temperature %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->max_recorded_temp)); printf(" Lifetime Retired Block Count %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_retired_block_count)); printf(" Lifetime Read Disturb Reallocation Events %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_read_disturb_realloc_events)); printf(" Lifetime NAND Writes %20"PRIu64"\n", le64_to_cpu(perf->lifetime_nand_writes)); printf(" Capacitor Health %20"PRIu32"%%\n", (uint32_t)le32_to_cpu(perf->capacitor_health)); printf(" Lifetime User Writes %20"PRIu64"\n", le64_to_cpu(perf->lifetime_user_writes)); printf(" Lifetime User Reads %20"PRIu64"\n", le64_to_cpu(perf->lifetime_user_reads)); printf(" Lifetime Thermal Throttle Activations %20"PRIu32"\n", (uint32_t)le32_to_cpu(perf->lifetime_thermal_throttle_act)); printf(" Percentage of P/E Cycles Remaining %20"PRIu32"%%\n", (uint32_t)le32_to_cpu(perf->percentage_pe_cycles_remaining)); } static void wdc_print_d0_log_json(struct wdc_ssd_d0_smart_log *perf) { struct json_object *root; root = json_create_object(); json_object_add_value_int(root, "Lifetime Reallocated Erase Block Count", le32_to_cpu(perf->lifetime_realloc_erase_block_count)); json_object_add_value_int(root, "Lifetime Power on Hours", le32_to_cpu(perf->lifetime_power_on_hours)); json_object_add_value_int(root, "Lifetime UECC Count", le32_to_cpu(perf->lifetime_uecc_count)); json_object_add_value_int(root, "Lifetime Write Amplification Factor", le32_to_cpu(perf->lifetime_wrt_amp_factor)); json_object_add_value_int(root, "Trailing Hour Write Amplification Factor", le32_to_cpu(perf->trailing_hr_wrt_amp_factor)); json_object_add_value_int(root, "Reserve Erase Block Count", le32_to_cpu(perf->reserve_erase_block_count)); json_object_add_value_int(root, "Lifetime Program Fail Count", le32_to_cpu(perf->lifetime_program_fail_count)); json_object_add_value_int(root, "Lifetime Block Erase Fail Count", le32_to_cpu(perf->lifetime_block_erase_fail_count)); json_object_add_value_int(root, "Lifetime Die Failure Count", le32_to_cpu(perf->lifetime_die_failure_count)); json_object_add_value_int(root, "Lifetime Link Rate Downgrade Count", le32_to_cpu(perf->lifetime_link_rate_downgrade_count)); json_object_add_value_int(root, "Lifetime Clean Shutdown Count on Power Loss", le32_to_cpu(perf->lifetime_clean_shutdown_count)); json_object_add_value_int(root, "Lifetime Unclean Shutdowns on Power Loss", le32_to_cpu(perf->lifetime_unclean_shutdown_count)); json_object_add_value_int(root, "Current Temperature", le32_to_cpu(perf->current_temp)); json_object_add_value_int(root, "Max Recorded Temperature", le32_to_cpu(perf->max_recorded_temp)); json_object_add_value_int(root, "Lifetime Retired Block Count", le32_to_cpu(perf->lifetime_retired_block_count)); json_object_add_value_int(root, "Lifetime Read Disturb Reallocation Events", le32_to_cpu(perf->lifetime_read_disturb_realloc_events)); json_object_add_value_int(root, "Lifetime NAND Writes", le64_to_cpu(perf->lifetime_nand_writes)); json_object_add_value_int(root, "Capacitor Health", le32_to_cpu(perf->capacitor_health)); json_object_add_value_int(root, "Lifetime User Writes", le64_to_cpu(perf->lifetime_user_writes)); json_object_add_value_int(root, "Lifetime User Reads", le64_to_cpu(perf->lifetime_user_reads)); json_object_add_value_int(root, "Lifetime Thermal Throttle Activations", le32_to_cpu(perf->lifetime_thermal_throttle_act)); json_object_add_value_int(root, "Percentage of P/E Cycles Remaining", le32_to_cpu(perf->percentage_pe_cycles_remaining)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static void wdc_get_commit_action_bin(__u8 commit_action_type, char *action_bin) { switch (commit_action_type) { case(0): strcpy(action_bin, "000b"); break; case(1): strcpy(action_bin, "001b"); break; case(2): strcpy(action_bin, "010b"); break; case(3): strcpy(action_bin, "011b"); break; case(4): strcpy(action_bin, "100b"); break; case(5): strcpy(action_bin, "101b"); break; case(6): strcpy(action_bin, "110b"); break; case(7): strcpy(action_bin, "111b"); break; default: strcpy(action_bin, "INVALID"); } } static void wdc_print_fw_act_history_log_normal(struct wdc_fw_act_history_log_entry *fw_act_history_entry, int num_entries) { int i; char previous_fw[9]; char new_fw[9]; char commit_action_bin[8]; memset((void *)previous_fw, 0, 9); memset((void *)new_fw, 0, 9); memset((void *)commit_action_bin, 0, 8); char *null_fw = "--------"; printf(" Firmware Activate History Log \n"); printf(" Power on Hour Power Cycle Previous New \n"); printf(" Entry hh:mm:ss Count Firmware Firmware Slot Action Result \n"); printf(" ----- -------------- ------------ ---------- ---------- ----- ------ -------\n"); for (i = 0; i < num_entries; i++) { memcpy(previous_fw, (char *)&(fw_act_history_entry->previous_fw_version), 8); if (strlen((char *)&(fw_act_history_entry->new_fw_version)) > 1) memcpy(new_fw, (char *)&(fw_act_history_entry->new_fw_version), 8); else memcpy(new_fw, null_fw, 8); printf("%5"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry->entry_num)); printf(" "); printf("%02d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)/3600), (int)((le64_to_cpu(fw_act_history_entry->power_on_seconds)%3600)/60), (int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)%60)); printf(" "); printf("%8"PRIu32"", (uint32_t)le32_to_cpu(fw_act_history_entry->power_cycle_count)); printf(" "); printf("%s", (char *)previous_fw); printf(" "); printf("%s", (char *)new_fw); printf(" "); printf("%2"PRIu8"", (uint8_t)fw_act_history_entry->slot_number); printf(" "); wdc_get_commit_action_bin(fw_act_history_entry->commit_action_type,(char *)&commit_action_bin); printf(" %s", (char *)commit_action_bin); printf(" "); if (le16_to_cpu(fw_act_history_entry->result) == 0) printf("pass"); else printf("fail #%d", (uint16_t)le16_to_cpu(fw_act_history_entry->result)); printf("\n"); fw_act_history_entry++; } } static void wdc_print_fw_act_history_log_json(struct wdc_fw_act_history_log_entry *fw_act_history_entry, int num_entries) { struct json_object *root; int i; char previous_fw[9]; char new_fw[9]; char commit_action_bin[8]; char fail_str[32]; char time_str[9]; memset((void *)previous_fw, 0, 9); memset((void *)new_fw, 0, 9); memset((void *)commit_action_bin, 0, 8); memset((void *)time_str, 0, 9); memset((void *)fail_str, 0, 11); char *null_fw = "--------"; root = json_create_object(); for (i = 0; i < num_entries; i++) { memcpy(previous_fw, (char *)&(fw_act_history_entry->previous_fw_version), 8); if (strlen((char *)&(fw_act_history_entry->new_fw_version)) > 1) memcpy(new_fw, (char *)&(fw_act_history_entry->new_fw_version), 8); else memcpy(new_fw, null_fw, 8); json_object_add_value_int(root, "Entry", le32_to_cpu(fw_act_history_entry->entry_num)); sprintf((char *)time_str, "%02d:%02d:%02d", (int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)/3600), (int)((le64_to_cpu(fw_act_history_entry->power_on_seconds)%3600)/60), (int)(le64_to_cpu(fw_act_history_entry->power_on_seconds)%60)); json_object_add_value_string(root, "Power on Hour", time_str); json_object_add_value_int(root, "Power Cycle Count", le32_to_cpu(fw_act_history_entry->power_cycle_count)); json_object_add_value_string(root, "Previous Firmware", previous_fw); json_object_add_value_string(root, "New Firmware", new_fw); json_object_add_value_int(root, "Slot", fw_act_history_entry->slot_number); wdc_get_commit_action_bin(fw_act_history_entry->commit_action_type,(char *)&commit_action_bin); json_object_add_value_string(root, "Action", commit_action_bin); if (le16_to_cpu(fw_act_history_entry->result) == 0) json_object_add_value_string(root, "Result", "pass"); else { sprintf((char *)fail_str, "fail #%d", (int)(le16_to_cpu(fw_act_history_entry->result))); json_object_add_value_string(root, "Result", fail_str); } fw_act_history_entry++; } json_print_object(root, NULL); printf("\n"); json_free_object(root); } static int wdc_print_fb_ca_log(struct wdc_ssd_ca_perf_stats *perf, int fmt) { if (!perf) { fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n"); return -1; } switch (fmt) { case NORMAL: wdc_print_fb_ca_log_normal(perf); break; case JSON: wdc_print_fb_ca_log_json(perf); break; } return 0; } static int wdc_print_bd_ca_log(void *bd_data, int fmt) { if (!bd_data) { fprintf(stderr, "ERROR : WDC : Invalid buffer to read data\n"); return -1; } switch (fmt) { case NORMAL: wdc_print_bd_ca_log_normal(bd_data); break; case JSON: wdc_print_bd_ca_log_json(bd_data); break; } return 0; } static int wdc_print_d0_log(struct wdc_ssd_d0_smart_log *perf, int fmt) { if (!perf) { fprintf(stderr, "ERROR : WDC : Invalid buffer to read perf stats\n"); return -1; } switch (fmt) { case NORMAL: wdc_print_d0_log_normal(perf); break; case JSON: wdc_print_d0_log_json(perf); break; } return 0; } static int wdc_print_fw_act_history_log(struct wdc_fw_act_history_log_entry *fw_act_history_entries, int num_entries, int fmt) { if (!fw_act_history_entries) { fprintf(stderr, "ERROR : WDC : Invalid buffer to read fw activate history entries\n"); return -1; } switch (fmt) { case NORMAL: wdc_print_fw_act_history_log_normal(fw_act_history_entries, num_entries); break; case JSON: wdc_print_fw_act_history_log_json(fw_act_history_entries, num_entries); break; } return 0; } static int wdc_get_ca_log_page(int fd, char *format) { int ret = 0; int fmt = -1; __u8 *data; __u32 *cust_id; struct wdc_ssd_ca_perf_stats *perf; uint32_t read_device_id, read_vendor_id; if (!wdc_check_device(fd)) return -1; fmt = validate_output_format(format); if (fmt < 0) { fprintf(stderr, "ERROR : WDC : invalid output format\n"); return fmt; } /* verify the 0xCA log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE) == false) { fprintf(stderr, "ERROR : WDC : 0xCA Log Page not supported\n"); return -1; } if (!get_dev_mgment_cbs_data(fd, WDC_C2_CUSTOMER_ID_ID, (void*)&data)) { fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", __func__, WDC_C2_CUSTOMER_ID_ID); return -1; } ret = wdc_get_pci_ids(&read_device_id, &read_vendor_id); cust_id = (__u32*)data; switch (read_device_id) { case WDC_NVME_SN200_DEV_ID: if (*cust_id == WDC_CUSTOMER_ID_0x1005) { if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(data, 0, sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN); ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE, false, WDC_FB_CA_LOG_BUF_LEN, data); if (strcmp(format, "json")) fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { /* parse the data */ perf = (struct wdc_ssd_ca_perf_stats *)(data); ret = wdc_print_fb_ca_log(perf, fmt); } else { fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n"); ret = -1; } } else { fprintf(stderr, "ERROR : WDC : Unsupported Customer id, id = %d\n", *cust_id); return -1; } break; case WDC_NVME_SN640_DEV_ID: case WDC_NVME_SN640_DEV_ID_1: case WDC_NVME_SN640_DEV_ID_2: case WDC_NVME_SN640_DEV_ID_3: case WDC_NVME_SN840_DEV_ID: case WDC_NVME_SN840_DEV_ID_1: if (*cust_id == WDC_CUSTOMER_ID_0x1005) { if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(data, 0, sizeof (__u8) * WDC_FB_CA_LOG_BUF_LEN); ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE, false, WDC_FB_CA_LOG_BUF_LEN, data); if (strcmp(format, "json")) fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { /* parse the data */ perf = (struct wdc_ssd_ca_perf_stats *)(data); ret = wdc_print_fb_ca_log(perf, fmt); } else { fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n"); ret = -1; } } else if ((*cust_id == WDC_CUSTOMER_ID_GN) || (*cust_id == WDC_CUSTOMER_ID_GD)) { if ((data = (__u8*) malloc(sizeof (__u8) * WDC_BD_CA_LOG_BUF_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(data, 0, sizeof (__u8) * WDC_BD_CA_LOG_BUF_LEN); ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_DEVICE_INFO_LOG_OPCODE, false, WDC_BD_CA_LOG_BUF_LEN, data); if (strcmp(format, "json")) fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { /* parse the data */ ret = wdc_print_bd_ca_log(data, fmt); } else { fprintf(stderr, "ERROR : WDC : Unable to read CA Log Page data\n"); ret = -1; } break; } else { fprintf(stderr, "ERROR : WDC : Unsupported Customer id, id = %d\n", *cust_id); return -1; } break; default: fprintf(stderr, "ERROR : WDC : Log page 0xCA not supported for this device\n"); return -1; break; } free(data); return ret; } static int wdc_get_c1_log_page(int fd, char *format, uint8_t interval) { int ret = 0; int fmt = -1; __u8 *data; __u8 *p; int i; int skip_cnt = 4; int total_subpages; struct wdc_log_page_header *l; struct wdc_log_page_subpage_header *sph; struct wdc_ssd_perf_stats *perf; if (!wdc_check_device(fd)) return -1; fmt = validate_output_format(format); if (fmt < 0) { fprintf(stderr, "ERROR : WDC : invalid output format\n"); return fmt; } if (interval < 1 || interval > 15) { fprintf(stderr, "ERROR : WDC : interval out of range [1-15]\n"); return -1; } if ((data = (__u8*) malloc(sizeof (__u8) * WDC_ADD_LOG_BUF_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(data, 0, sizeof (__u8) * WDC_ADD_LOG_BUF_LEN); ret = nvme_get_log(fd, 0x01, WDC_NVME_ADD_LOG_OPCODE, false, WDC_ADD_LOG_BUF_LEN, data); if (strcmp(format, "json")) fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { l = (struct wdc_log_page_header*)data; total_subpages = l->num_subpages + WDC_NVME_GET_STAT_PERF_INTERVAL_LIFETIME - 1; for (i = 0, p = data + skip_cnt; i < total_subpages; i++, p += skip_cnt) { sph = (struct wdc_log_page_subpage_header *) p; if (sph->spcode == WDC_GET_LOG_PAGE_SSD_PERFORMANCE) { if (sph->pcset == interval) { perf = (struct wdc_ssd_perf_stats *) (p + 4); ret = wdc_print_log(perf, fmt); break; } } skip_cnt = le16_to_cpu(sph->subpage_length) + 4; } if (ret) { fprintf(stderr, "ERROR : WDC : Unable to read data from buffer\n"); } } free(data); return ret; } static int wdc_get_d0_log_page(int fd, char *format) { int ret = 0; int fmt = -1; __u8 *data; struct wdc_ssd_d0_smart_log *perf; if (!wdc_check_device(fd)) return -1; fmt = validate_output_format(format); if (fmt < 0) { fprintf(stderr, "ERROR : WDC : invalid output format\n"); return fmt; } /* verify the 0xD0 log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_VU_SMART_LOG_OPCODE) == false) { fprintf(stderr, "ERROR : WDC : 0xD0 Log Page not supported\n"); return -1; } if ((data = (__u8*) malloc(sizeof (__u8) * WDC_NVME_VU_SMART_LOG_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(data, 0, sizeof (__u8) * WDC_NVME_VU_SMART_LOG_LEN); ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_VU_SMART_LOG_OPCODE, false, WDC_NVME_VU_SMART_LOG_LEN, data); if (strcmp(format, "json")) fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { /* parse the data */ perf = (struct wdc_ssd_d0_smart_log *)(data); ret = wdc_print_d0_log(perf, fmt); } else { fprintf(stderr, "ERROR : WDC : Unable to read D0 Log Page data\n"); ret = -1; } free(data); return ret; } static int wdc_vs_smart_add_log(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Retrieve additional performance statistics."; const char *interval = "Interval to read the statistics from [1, 15]."; int fd; int ret = 0; __u64 capabilities = 0; struct config { uint8_t interval; int vendor_specific; char *output_format; }; struct config cfg = { .interval = 14, .output_format = "normal", }; OPT_ARGS(opts) = { OPT_UINT("interval", 'i', &cfg.interval, interval), OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_SMART_LOG_MASK) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; goto out; } if ((capabilities & (WDC_DRIVE_CAP_CA_LOG_PAGE)) == (WDC_DRIVE_CAP_CA_LOG_PAGE)) { /* Get the CA Log Page */ ret = wdc_get_ca_log_page(fd, cfg.output_format); if (ret) fprintf(stderr, "ERROR : WDC : Failure reading the CA Log Page, ret = %d\n", ret); } if ((capabilities & WDC_DRIVE_CAP_C1_LOG_PAGE) == WDC_DRIVE_CAP_C1_LOG_PAGE) { /* Get the C1 Log Page */ ret = wdc_get_c1_log_page(fd, cfg.output_format, cfg.interval); if (ret) fprintf(stderr, "ERROR : WDC : Failure reading the C1 Log Page, ret = %d\n", ret); } if ((capabilities & WDC_DRIVE_CAP_D0_LOG_PAGE) == WDC_DRIVE_CAP_D0_LOG_PAGE) { /* Get the D0 Log Page */ ret = wdc_get_d0_log_page(fd, cfg.output_format); if (ret) fprintf(stderr, "ERROR : WDC : Failure reading the D0 Log Page, ret = %d\n", ret); } out: return ret; } static int wdc_clear_pcie_correctable_errors(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Clear PCIE Correctable Errors."; int fd, ret; __u64 capabilities = 0; struct nvme_passthru_cmd admin_cmd; OPT_ARGS(opts) = { OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (!wdc_check_device(fd)) { ret = -1; goto out; } capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_CLEAR_PCIE) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; goto out; } memset(&admin_cmd, 0, sizeof (admin_cmd)); admin_cmd.opcode = WDC_NVME_CLEAR_PCIE_CORR_OPCODE; admin_cmd.cdw12 = ((WDC_NVME_CLEAR_PCIE_CORR_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CLEAR_PCIE_CORR_CMD); ret = nvme_submit_admin_passthru(fd, &admin_cmd); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); out: return ret; } static int wdc_drive_status(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Get Drive Status."; int fd; int ret = -1; __le32 system_eol_state; __le32 user_eol_state; __le32 format_corrupt_reason = cpu_to_le32(0xFFFFFFFF); __le32 eol_status; __le32 assert_status = cpu_to_le32(0xFFFFFFFF); __le32 thermal_status = cpu_to_le32(0xFFFFFFFF); __u64 capabilities = 0; OPT_ARGS(opts) = { OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_DRIVE_STATUS) != WDC_DRIVE_CAP_DRIVE_STATUS) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; goto out; } /* verify the 0xC2 Device Manageability log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE) == false) { fprintf(stderr, "ERROR : WDC : 0xC2 Log Page not supported\n"); ret = -1; goto out; } /* Get the assert dump present status */ if (!wdc_nvme_get_dev_status_log_data(fd, &assert_status, WDC_C2_ASSERT_DUMP_PRESENT_ID)) fprintf(stderr, "ERROR : WDC : Get Assert Status Failed\n"); /* Get the thermal throttling status */ if (!wdc_nvme_get_dev_status_log_data(fd, &thermal_status, WDC_C2_THERMAL_THROTTLE_STATUS_ID)) fprintf(stderr, "ERROR : WDC : Get Thermal Throttling Status Failed\n"); /* Get EOL status */ if (!wdc_nvme_get_dev_status_log_data(fd, &eol_status, WDC_C2_USER_EOL_STATUS_ID)) { fprintf(stderr, "ERROR : WDC : Get User EOL Status Failed\n"); eol_status = cpu_to_le32(-1); } /* Get Customer EOL state */ if (!wdc_nvme_get_dev_status_log_data(fd, &user_eol_state, WDC_C2_USER_EOL_STATE_ID)) fprintf(stderr, "ERROR : WDC : Get User EOL State Failed\n"); /* Get System EOL state*/ if (!wdc_nvme_get_dev_status_log_data(fd, &system_eol_state, WDC_C2_SYSTEM_EOL_STATE_ID)) fprintf(stderr, "ERROR : WDC : Get System EOL State Failed\n"); /* Get format corrupt reason*/ if (!wdc_nvme_get_dev_status_log_data(fd, &format_corrupt_reason, WDC_C2_FORMAT_CORRUPT_REASON_ID)) fprintf(stderr, "ERROR : WDC : Get Format Corrupt Reason Failed\n"); printf(" Drive Status :- \n"); if (le32_to_cpu(eol_status) >= 0) { printf(" Percent Used: %"PRIu32"%%\n", le32_to_cpu(eol_status)); } else printf(" Percent Used: Unknown\n"); if (system_eol_state == WDC_EOL_STATUS_NORMAL && user_eol_state == WDC_EOL_STATUS_NORMAL) printf(" Drive Life Status: Normal\n"); else if (system_eol_state == WDC_EOL_STATUS_END_OF_LIFE || user_eol_state == WDC_EOL_STATUS_END_OF_LIFE) printf(" Drive Life Status: End Of Life\n"); else if (system_eol_state == WDC_EOL_STATUS_READ_ONLY || user_eol_state == WDC_EOL_STATUS_READ_ONLY) printf(" Drive Life Status: Read Only\n"); else printf(" Drive Life Status: Unknown : 0x%08x/0x%08x\n", le32_to_cpu(user_eol_state), le32_to_cpu(system_eol_state)); if (assert_status == WDC_ASSERT_DUMP_PRESENT) printf(" Assert Dump Status: Present\n"); else if (assert_status == WDC_ASSERT_DUMP_NOT_PRESENT) printf(" Assert Dump Status: Not Present\n"); else printf(" Assert Dump Status: Unknown : 0x%08x\n", le32_to_cpu(assert_status)); if (thermal_status == WDC_THERMAL_THROTTLING_OFF) printf(" Thermal Throttling Status: Off\n"); else if (thermal_status == WDC_THERMAL_THROTTLING_ON) printf(" Thermal Throttling Status: On\n"); else if (thermal_status == WDC_THERMAL_THROTTLING_UNAVAILABLE) printf(" Thermal Throttling Status: Unavailable\n"); else printf(" Thermal Throttling Status: Unknown : 0x%08x\n", le32_to_cpu(thermal_status)); if (format_corrupt_reason == WDC_FORMAT_NOT_CORRUPT) printf(" Format Corrupt Reason: Format Not Corrupted\n"); else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_FW_ASSERT) printf(" Format Corrupt Reason: Format Corrupt due to FW Assert\n"); else if (format_corrupt_reason == WDC_FORMAT_CORRUPT_UNKNOWN) printf(" Format Corrupt Reason: Format Corrupt for Unknown Reason\n"); else printf(" Format Corrupt Reason: Unknown : 0x%08x\n", le32_to_cpu(format_corrupt_reason)); out: return ret; } static int wdc_clear_assert_dump(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Clear Assert Dump Present Status."; int fd; int ret = -1; __le32 assert_status = cpu_to_le32(0xFFFFFFFF); __u64 capabilities = 0; struct nvme_passthru_cmd admin_cmd; OPT_ARGS(opts) = { OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_CLEAR_ASSERT) != WDC_DRIVE_CAP_CLEAR_ASSERT) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; goto out; } if (!wdc_nvme_get_dev_status_log_data(fd, &assert_status, WDC_C2_ASSERT_DUMP_PRESENT_ID)) { fprintf(stderr, "ERROR : WDC : Get Assert Status Failed\n"); ret = -1; goto out; } /* Get the assert dump present status */ if (assert_status == WDC_ASSERT_DUMP_PRESENT) { memset(&admin_cmd, 0, sizeof (admin_cmd)); admin_cmd.opcode = WDC_NVME_CLEAR_ASSERT_DUMP_OPCODE; admin_cmd.cdw12 = ((WDC_NVME_CLEAR_ASSERT_DUMP_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CLEAR_ASSERT_DUMP_CMD); ret = nvme_submit_admin_passthru(fd, &admin_cmd); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); } else fprintf(stderr, "INFO : WDC : No Assert Dump Present\n"); out: return ret; } static int wdc_get_fw_act_history(int fd, char *format) { int ret = 0; int fmt = -1; __u8 *data; struct wdc_fw_act_history_log_hdr *fw_act_history_hdr; struct wdc_fw_act_history_log_entry *fw_act_history_entry; if (!wdc_check_device(fd)) return -1; fmt = validate_output_format(format); if (fmt < 0) { fprintf(stderr, "ERROR : WDC : invalid output format\n"); return fmt; } /* verify the FW Activate History log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID) == false) { fprintf(stderr, "ERROR : WDC : %d Log Page not supported\n", WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID); return -1; } if ((data = (__u8*) malloc(sizeof (__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN)) == NULL) { fprintf(stderr, "ERROR : WDC : malloc : %s\n", strerror(errno)); return -1; } memset(data, 0, sizeof (__u8) * WDC_FW_ACT_HISTORY_LOG_BUF_LEN); ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_GET_FW_ACT_HISTORY_LOG_ID, false, WDC_FW_ACT_HISTORY_LOG_BUF_LEN, data); if (strcmp(format, "json")) fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); if (ret == 0) { /* parse the data */ fw_act_history_hdr = (struct wdc_fw_act_history_log_hdr *)(data); fw_act_history_entry = (struct wdc_fw_act_history_log_entry *)(data + sizeof(struct wdc_fw_act_history_log_hdr)); if (fw_act_history_hdr->num_entries > 0) ret = wdc_print_fw_act_history_log(fw_act_history_entry, fw_act_history_hdr->num_entries, fmt); else fprintf(stderr, "INFO : WDC : No entries found in FW Activate History Log Page\n"); } else { fprintf(stderr, "ERROR : WDC : Unable to read FW Activate History Log Page data\n"); ret = -1; } free(data); return ret; } static int wdc_vs_fw_activate_history(int argc, char **argv, struct command *command, struct plugin *plugin) { int fd; int ret = 0; __u64 capabilities = 0; const char *desc = "Retrieve FW activate history table."; struct config { char *output_format; }; struct config cfg = { .output_format = "normal", }; OPT_ARGS(opts) = { OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY) == WDC_DRIVE_CAP_FW_ACTIVATE_HISTORY) { ret = wdc_get_fw_act_history(fd, cfg.output_format); if (ret) fprintf(stderr, "ERROR : WDC : Failure reading the FW Activate History, ret = %d\n", ret); } else { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } return ret; } static int wdc_clear_fw_activate_history(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Clear FW activate history table."; int fd; int ret = -1; __u64 capabilities = 0; struct nvme_passthru_cmd admin_cmd; OPT_ARGS(opts) = { OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY) != WDC_DRIVE_CAP_CLEAR_FW_ACT_HISTORY) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; goto out; } memset(&admin_cmd, 0, sizeof (admin_cmd)); admin_cmd.opcode = WDC_NVME_CLEAR_FW_ACT_HIST_OPCODE; admin_cmd.cdw12 = ((WDC_NVME_CLEAR_FW_ACT_HIST_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_CLEAR_FW_ACT_HIST_CMD); ret = nvme_submit_admin_passthru(fd, &admin_cmd); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); out: return ret; } static int wdc_vs_telemetry_controller_option(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Disable/Enable Controller Option of the Telemetry Log Page."; char *disable = "Disable controller option of the telemetry log page."; char *enable = "Enable controller option of the telemetry log page."; char *status = "Displays the current state of the controller initiated log page."; int fd; int ret = -1; __u64 capabilities = 0; __u32 result; void *buf = NULL; struct config { int disable; int enable; int status; }; struct config cfg = { .disable = 0, .enable = 0, .status = 0, }; OPT_ARGS(opts) = { OPT_FLAG("disable", 'd', &cfg.disable, disable), OPT_FLAG("enable", 'e', &cfg.enable, enable), OPT_FLAG("status", 's', &cfg.status, status), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) != WDC_DRVIE_CAP_DISABLE_CTLR_TELE_LOG) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; goto out; } /* allow only one option at a time */ if ((cfg.disable + cfg.enable + cfg.status) > 1) { fprintf(stderr, "ERROR : WDC : Invalid option\n"); ret = -1; goto out; } if (cfg.disable) { ret = nvme_set_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 1, 0, 0, 0, buf, &result); wdc_clear_reason_id(fd); } else { if (cfg.enable) { ret = nvme_set_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 0, 0, 0, buf, &result); } else if (cfg.status) { ret = nvme_get_feature(fd, 0, WDC_VU_DISABLE_CNTLR_TELEMETRY_OPTION_FEATURE_ID, 0, 0, 4, buf, &result); if (ret == 0) { if (result) fprintf(stderr, "Controller Option Telemetry Log Page State: Disabled\n"); else fprintf(stderr, "Controller Option Telemetry Log Page State: Enabled\n"); } else { fprintf(stderr, "ERROR : WDC: NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); } } else { fprintf(stderr, "ERROR : WDC: unsupported option for this command\n"); fprintf(stderr, "Please provide an option, -d, -e or -s\n"); ret = -1; goto out; } } out: return ret; } static int wdc_get_serial_and_fw_rev(int fd, char *sn, char *fw_rev) { int i; int ret; struct nvme_id_ctrl ctrl; i = sizeof (ctrl.sn) - 1; memset(sn, 0, WDC_SERIAL_NO_LEN); memset(fw_rev, 0, WDC_NVME_FIRMWARE_REV_LEN); memset(&ctrl, 0, sizeof (struct nvme_id_ctrl)); ret = nvme_identify_ctrl(fd, &ctrl); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed " "0x%x\n", ret); return -1; } /* Remove trailing spaces from the name */ while (i && ctrl.sn[i] == ' ') { ctrl.sn[i] = '\0'; i--; } snprintf(sn, WDC_SERIAL_NO_LEN, "%s", ctrl.sn); snprintf(fw_rev, WDC_NVME_FIRMWARE_REV_LEN, "%s", ctrl.fr); return 0; } static int wdc_get_max_transfer_len(int fd, __u32 *maxTransferLen) { int ret = 0; struct nvme_id_ctrl ctrl; __u32 maxTransferLenDevice = 0; memset(&ctrl, 0, sizeof (struct nvme_id_ctrl)); ret = nvme_identify_ctrl(fd, &ctrl); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed 0x%x\n", ret); return -1; } maxTransferLenDevice = (1 << ctrl.mdts) * getpagesize(); *maxTransferLen = maxTransferLenDevice; return ret; } static int wdc_de_VU_read_size(int fd, __u32 fileId, __u16 spiDestn, __u32* logSize) { int ret = WDC_STATUS_FAILURE; struct nvme_admin_cmd cmd; if(!fd || !logSize ) { ret = WDC_STATUS_INVALID_PARAMETER; goto end; } memset(&cmd,0,sizeof(struct nvme_admin_cmd)); cmd.opcode = WDC_DE_VU_READ_SIZE_OPCODE; cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID; cmd.cdw13 = fileId<<16; cmd.cdw14 = spiDestn; ret = nvme_submit_admin_passthru(fd, &cmd); if (!ret && logSize) *logSize = cmd.result; if( ret != WDC_STATUS_SUCCESS) fprintf(stderr, "ERROR : WDC : VUReadSize() failed, status:%s(0x%x)\n", nvme_status_to_string(ret), ret); end: return ret; } static int wdc_de_VU_read_buffer(int fd, __u32 fileId, __u16 spiDestn, __u32 offsetInDwords, __u8* dataBuffer, __u32* bufferSize) { int ret = WDC_STATUS_FAILURE; struct nvme_admin_cmd cmd; __u32 noOfDwordExpected = 0; if(!fd || !dataBuffer || !bufferSize) { ret = WDC_STATUS_INVALID_PARAMETER; goto end; } memset(&cmd,0,sizeof(struct nvme_admin_cmd)); noOfDwordExpected = *bufferSize/sizeof(__u32); cmd.opcode = WDC_DE_VU_READ_BUFFER_OPCODE; cmd.nsid = WDC_DE_DEFAULT_NAMESPACE_ID; cmd.cdw10 = noOfDwordExpected; cmd.cdw13 = fileId<<16; cmd.cdw14 = spiDestn; cmd.cdw15 = offsetInDwords; cmd.addr = (__u64)(__u64)(uintptr_t)dataBuffer; cmd.data_len = *bufferSize; ret = nvme_submit_admin_passthru(fd, &cmd); if( ret != WDC_STATUS_SUCCESS) fprintf(stderr, "ERROR : WDC : VUReadBuffer() failed, status:%s(0x%x)\n", nvme_status_to_string(ret), ret); end: return ret; } static int wdc_get_log_dir_max_entries(int fd, __u32* maxNumOfEntries) { int ret = WDC_STATUS_FAILURE; __u32 headerPayloadSize = 0; __u8* fileIdOffsetsBuffer = NULL; __u32 fileIdOffsetsBufferSize = 0; __u32 fileNum = 0; __u16 fileOffset = 0; if (!fd || !maxNumOfEntries) { ret = WDC_STATUS_INVALID_PARAMETER; return ret; } /* 1.Get log directory first four bytes */ if (WDC_STATUS_SUCCESS != (ret = wdc_de_VU_read_size(fd, 0, 5, (__u32*)&headerPayloadSize))) { fprintf(stderr, "ERROR : WDC : %s: Failed to get headerPayloadSize from file directory 0x%x\n", __func__, ret); goto end; } fileIdOffsetsBufferSize = WDC_DE_FILE_HEADER_SIZE + (headerPayloadSize * WDC_DE_FILE_OFFSET_SIZE); fileIdOffsetsBuffer = (__u8*)calloc(1, fileIdOffsetsBufferSize); /* 2.Read to get file offsets */ if (WDC_STATUS_SUCCESS != (ret = wdc_de_VU_read_buffer(fd, 0, 5, 0, fileIdOffsetsBuffer, &fileIdOffsetsBufferSize))) { fprintf(stderr, "ERROR : WDC : %s: Failed to get fileIdOffsets from file directory 0x%x\n", __func__, ret); goto end; } /* 3.Determine valid entries */ for (fileNum = 0; fileNum < (headerPayloadSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE; fileNum++) { fileOffset = (fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE)] << 8) + fileIdOffsetsBuffer[WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE) + 1]; if (!fileOffset) continue; (*maxNumOfEntries)++; } end: if (!fileIdOffsetsBuffer) free(fileIdOffsetsBuffer); return ret; } static WDC_DRIVE_ESSENTIAL_TYPE wdc_get_essential_type(__u8 fileName[]) { WDC_DRIVE_ESSENTIAL_TYPE essentialType = WDC_DE_TYPE_NONE; if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_CORE_DUMP_FILE_NAME) == 0) { essentialType = WDC_DE_TYPE_DUMPSNAPSHOT; } else if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_EVENT_LOG_FILE_NAME) == 0) { essentialType = WDC_DE_TYPE_EVENTLOG; } else if (wdc_UtilsStrCompare((char*)fileName, WDC_DE_MANUFACTURING_INFO_PAGE_FILE_NAME) == 0) { essentialType = WDC_DE_TYPE_NVME_MANF_INFO; } return essentialType; } static int wdc_fetch_log_directory(int fd, PWDC_DE_VU_LOG_DIRECTORY directory) { int ret = WDC_STATUS_FAILURE; __u8 *fileOffset = NULL; __u8 *fileDirectory = NULL; __u32 headerSize = 0; __u32 fileNum = 0, startIdx = 0; __u16 fileOffsetTemp = 0; __u32 entryId = 0; __u32 fileDirectorySize = 0; if (!fd || !directory) { ret = WDC_STATUS_INVALID_PARAMETER; goto end; } ret = wdc_de_VU_read_size(fd, 0, 5, &fileDirectorySize); if (WDC_STATUS_SUCCESS != ret) { fprintf(stderr, "ERROR : WDC : %s: Failed to get filesystem directory size, ret = %d\n", __func__, ret); goto end; } fileDirectory = (__u8*)calloc(1, fileDirectorySize); ret = wdc_de_VU_read_buffer(fd, 0, 5, 0, fileDirectory, &fileDirectorySize); if (WDC_STATUS_SUCCESS != ret) { fprintf(stderr, "ERROR : WDC : %s: Failed to get filesystem directory, ret = %d\n", __func__, ret); goto end; } /* First four bytes of header directory is headerSize */ memcpy(&headerSize, fileDirectory, WDC_DE_FILE_HEADER_SIZE); /* minimum buffer for 1 entry is required */ if (directory->maxNumLogEntries == 0) { ret = WDC_STATUS_INVALID_PARAMETER; goto end; } for (fileNum = 0; fileNum < (headerSize - WDC_DE_FILE_HEADER_SIZE) / WDC_DE_FILE_OFFSET_SIZE; fileNum++) { if (entryId >= directory->maxNumLogEntries) break; startIdx = WDC_DE_FILE_HEADER_SIZE + (fileNum * WDC_DE_FILE_OFFSET_SIZE); memcpy(&fileOffsetTemp, fileDirectory + startIdx, sizeof(fileOffsetTemp)); fileOffset = fileDirectory + fileOffsetTemp; if (0 == fileOffsetTemp) continue; memset(&directory->logEntry[entryId], 0, sizeof(WDC_DRIVE_ESSENTIALS)); memcpy(&directory->logEntry[entryId].metaData, fileOffset, sizeof(WDC_DE_VU_FILE_META_DATA)); directory->logEntry[entryId].metaData.fileName[WDC_DE_FILE_NAME_SIZE - 1] = '\0'; wdc_UtilsDeleteCharFromString((char*)directory->logEntry[entryId].metaData.fileName, WDC_DE_FILE_NAME_SIZE, ' '); if (0 == directory->logEntry[entryId].metaData.fileID) continue; directory->logEntry[entryId].essentialType = wdc_get_essential_type(directory->logEntry[entryId].metaData.fileName); /*fprintf(stderr, "WDC : %s: NVMe VU Log Entry %d, fileName = %s, fileSize = 0x%lx, fileId = 0x%x\n", __func__, entryId, directory->logEntry[entryId].metaData.fileName, (long unsigned int)directory->logEntry[entryId].metaData.fileSize, directory->logEntry[entryId].metaData.fileID); */ entryId++; } directory->numOfValidLogEntries = entryId; end: if (fileDirectory != NULL) free(fileDirectory); return ret; } static int wdc_fetch_log_file_from_device(int fd, __u32 fileId, __u16 spiDestn, __u64 fileSize, __u8* dataBuffer) { int ret = WDC_STATUS_FAILURE; __u32 chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET; __u32 maximumTransferLength = 0; __u32 buffSize = 0; __u64 offsetIdx = 0; if (!fd || !dataBuffer || !fileSize) { ret = WDC_STATUS_INVALID_PARAMETER; goto end; } wdc_get_max_transfer_len(fd, &maximumTransferLength); /* Fetch Log File Data */ if ((fileSize >= maximumTransferLength) || (fileSize > 0xFFFFFFFF)) { chunckSize = WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET; if (maximumTransferLength < WDC_DE_VU_READ_BUFFER_STANDARD_OFFSET) chunckSize = maximumTransferLength; buffSize = chunckSize; for (offsetIdx = 0; (offsetIdx * chunckSize) < fileSize; offsetIdx++) { if (((offsetIdx * chunckSize) + buffSize) > fileSize) buffSize = (__u32)(fileSize - (offsetIdx * chunckSize)); /* Limitation in VU read buffer - offsetIdx and bufferSize are not greater than u32 */ ret = wdc_de_VU_read_buffer(fd, fileId, spiDestn, (__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer + (offsetIdx * chunckSize), &buffSize); if (ret != WDC_STATUS_SUCCESS) { fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n", __func__, ret, fileId, (long unsigned int)fileSize); break; } } } else { buffSize = (__u32)fileSize; ret = wdc_de_VU_read_buffer(fd, fileId, spiDestn, (__u32)((offsetIdx * chunckSize) / sizeof(__u32)), dataBuffer, &buffSize); if (ret != WDC_STATUS_SUCCESS) { fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed with ret = %d, fileId = 0x%x, fileSize = 0x%lx\n", __func__, ret, fileId, (long unsigned int)fileSize); } } end: return ret; } static int wdc_de_get_dump_trace(int fd, char * filePath, __u16 binFileNameLen, char *binFileName) { int ret = WDC_STATUS_FAILURE; __u8 *readBuffer = NULL; __u32 readBufferLen = 0; __u32 lastPktReadBufferLen = 0; __u32 maxTransferLen = 0; __u32 dumptraceSize = 0; __u32 chunkSize = 0; __u32 chunks = 0; __u32 offset = 0; __u8 loop = 0; __u16 i = 0; __u32 maximumTransferLength = 0; if (!fd || !binFileName || !filePath) { ret = WDC_STATUS_INVALID_PARAMETER; return ret; } wdc_get_max_transfer_len(fd, &maximumTransferLength); do { /* Get dumptrace size */ ret = wdc_de_VU_read_size(fd, 0, WDC_DE_DUMPTRACE_DESTINATION, &dumptraceSize); if (ret != WDC_STATUS_SUCCESS) { fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_size failed with ret = %d\n", __func__, ret); break; } /* Make sure the size requested is greater than dword */ if (dumptraceSize < 4) { ret = WDC_STATUS_FAILURE; fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_size failed, read size is less than 4 bytes, dumptraceSize = 0x%x\n", __func__, dumptraceSize); break; } /* Choose the least max transfer length */ maxTransferLen = maximumTransferLength < WDC_DE_READ_MAX_TRANSFER_SIZE ? maximumTransferLength : WDC_DE_READ_MAX_TRANSFER_SIZE; /* Comment from FW Team: * The max non - block transfer size is 0xFFFF (16 bits allowed as the block size).Use 0x8000 * to keep it on a word - boundary. * max_xfer = int(pow(2, id_data['MDTS'])) * 4096 # 4k page size as reported in pcie capabiltiies */ chunkSize = dumptraceSize < maxTransferLen ? dumptraceSize : maxTransferLen; chunks = (dumptraceSize / maxTransferLen) + ((dumptraceSize % maxTransferLen) ? 1 : 0); readBuffer = (unsigned char *)calloc(dumptraceSize, sizeof(unsigned char)); readBufferLen = chunkSize; lastPktReadBufferLen = (dumptraceSize % maxTransferLen) ? (dumptraceSize % maxTransferLen) : chunkSize; if (readBuffer == NULL) { fprintf(stderr, "ERROR : WDC : %s: readBuffer calloc failed\n", __func__); ret = WDC_STATUS_INSUFFICIENT_MEMORY; break; } for (i = 0; i < chunks; i++) { offset = ((i*chunkSize) / 4); /* Last loop call, Assign readBufferLen to read only left over bytes */ if (i == (chunks - 1)) { readBufferLen = lastPktReadBufferLen; } ret = wdc_de_VU_read_buffer(fd, 0, WDC_DE_DUMPTRACE_DESTINATION, 0, readBuffer + offset, &readBufferLen); if (ret != WDC_STATUS_SUCCESS) { fprintf(stderr, "ERROR : WDC : %s: wdc_de_VU_read_buffer failed, ret = %d on offset 0x%x\n", __func__, ret, offset); break; } } } while (loop); if (ret == WDC_STATUS_SUCCESS) { ret = wdc_WriteToFile(binFileName, (char*)readBuffer, dumptraceSize); if (ret != WDC_STATUS_SUCCESS) fprintf(stderr, "ERROR : WDC : %s: wdc_WriteToFile failed, ret = %d\n", __func__, ret); } else { fprintf(stderr, "ERROR : WDC : %s: Read Buffer Loop failed, ret = %d\n", __func__, ret); } if (readBuffer) { free(readBuffer); } return ret; } static int wdc_do_drive_essentials(int fd, char *dir, char *key) { int ret = 0; void *retPtr; char fileName[MAX_PATH_LEN]; __s8 bufferFolderPath[MAX_PATH_LEN]; char bufferFolderName[MAX_PATH_LEN]; char tarFileName[MAX_PATH_LEN]; char tarFiles[MAX_PATH_LEN]; char tarCmd[MAX_PATH_LEN+MAX_PATH_LEN]; UtilsTimeInfo timeInfo; __u8 timeString[MAX_PATH_LEN]; __u8 serialNo[WDC_SERIAL_NO_LEN]; __u8 firmwareRevision[WDC_NVME_FIRMWARE_REV_LEN]; __u8 idSerialNo[WDC_SERIAL_NO_LEN]; __u8 idFwRev[WDC_NVME_FIRMWARE_REV_LEN]; __u8 featureIdBuff[4]; char currDir[MAX_PATH_LEN]; char *dataBuffer = NULL; __u32 elogNumEntries, elogBufferSize; __u32 dataBufferSize; __u32 listIdx = 0; __u32 vuLogIdx = 0; __u32 result; __u32 maxNumOfVUFiles = 0; struct nvme_id_ctrl ctrl; struct nvme_id_ns ns; struct nvme_error_log_page *elogBuffer; struct nvme_smart_log smart_log; struct nvme_firmware_log_page fw_log; PWDC_NVME_DE_VU_LOGPAGES vuLogInput = NULL; WDC_DE_VU_LOG_DIRECTORY deEssentialsList; memset(bufferFolderPath,0,sizeof(bufferFolderPath)); memset(bufferFolderName,0,sizeof(bufferFolderName)); memset(tarFileName,0,sizeof(tarFileName)); memset(tarFiles,0,sizeof(tarFiles)); memset(tarCmd,0,sizeof(tarCmd)); memset(&timeInfo,0,sizeof(timeInfo)); memset(&vuLogInput, 0, sizeof(vuLogInput)); if (wdc_get_serial_and_fw_rev(fd, (char *)idSerialNo, (char *)idFwRev)) { fprintf(stderr, "ERROR : WDC : get serial # and fw revision failed\n"); return -1; } else { fprintf(stderr, "Get Drive Essentials Data for device serial #: %s and fw revision: %s\n", idSerialNo, idFwRev); } /* Create Drive Essentials directory */ wdc_UtilsGetTime(&timeInfo); memset(timeString, 0, sizeof(timeString)); wdc_UtilsSnprintf((char*)timeString, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u", timeInfo.year, timeInfo.month, timeInfo.dayOfMonth, timeInfo.hour, timeInfo.minute, timeInfo.second); wdc_UtilsSnprintf((char*)serialNo,WDC_SERIAL_NO_LEN,(char*)idSerialNo); /* Remove any space form serialNo */ wdc_UtilsDeleteCharFromString((char*)serialNo, WDC_SERIAL_NO_LEN, ' '); memset(firmwareRevision, 0, sizeof(firmwareRevision)); wdc_UtilsSnprintf((char*)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, (char*)idFwRev); /* Remove any space form FirmwareRevision */ wdc_UtilsDeleteCharFromString((char*)firmwareRevision, WDC_NVME_FIRMWARE_REV_LEN, ' '); wdc_UtilsSnprintf((char*)bufferFolderName, MAX_PATH_LEN, "%s_%s_%s_%s", "DRIVE_ESSENTIALS", (char*)serialNo, (char*)firmwareRevision, (char*)timeString); if (dir != NULL) { wdc_UtilsSnprintf((char*)bufferFolderPath, MAX_PATH_LEN, "%s%s%s", (char *)dir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName); } else { retPtr = getcwd((char*)currDir, MAX_PATH_LEN); if (retPtr != NULL) wdc_UtilsSnprintf((char*)bufferFolderPath, MAX_PATH_LEN, "%s%s%s", (char *)currDir, WDC_DE_PATH_SEPARATOR, (char *)bufferFolderName); else { fprintf(stderr, "ERROR : WDC : get current working directory failed\n"); return -1; } } ret = wdc_UtilsCreateDir((char*)bufferFolderPath); if (ret != 0) { fprintf(stderr, "ERROR : WDC : create directory failed, ret = %d, dir = %s\n", ret, bufferFolderPath); return -1; } else { fprintf(stderr, "Store Drive Essentials bin files in directory: %s\n", bufferFolderPath); } /* Get Identify Controller Data */ memset(&ctrl, 0, sizeof (struct nvme_id_ctrl)); ret = nvme_identify_ctrl(fd, &ctrl); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed, ret = %d\n", ret); return -1; } else { wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "IdentifyController", (char*)serialNo, (char*)timeString); wdc_WriteToFile(fileName, (char*)&ctrl, sizeof (struct nvme_id_ctrl)); } memset(&ns, 0, sizeof (struct nvme_id_ns)); ret = nvme_identify_ns(fd, 1, 0, &ns); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_identify_ns() failed, ret = %d\n", ret); } else { wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "IdentifyNamespace", (char*)serialNo, (char*)timeString); wdc_WriteToFile(fileName, (char*)&ns, sizeof (struct nvme_id_ns)); } /* Get Log Pages (0x01, 0x02, 0x03, 0xC0 and 0xE3) */ elogNumEntries = WDC_DE_DEFAULT_NUMBER_OF_ERROR_ENTRIES; elogBufferSize = elogNumEntries*sizeof(struct nvme_error_log_page); dataBuffer = calloc(1, elogBufferSize); elogBuffer = (struct nvme_error_log_page *)dataBuffer; ret = nvme_error_log(fd, elogNumEntries, elogBuffer); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_error_log() failed, ret = %d\n", ret); } else { wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "ErrorLog", (char*)serialNo, (char*)timeString); wdc_WriteToFile(fileName, (char*)elogBuffer, elogBufferSize); } free(dataBuffer); dataBuffer = NULL; /* Get Smart log page */ memset(&smart_log, 0, sizeof (struct nvme_smart_log)); ret = nvme_smart_log(fd, NVME_NSID_ALL, &smart_log); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_smart_log() failed, ret = %d\n", ret); } else { wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "SmartLog", (char*)serialNo, (char*)timeString); wdc_WriteToFile(fileName, (char*)&smart_log, sizeof(struct nvme_smart_log)); } /* Get FW Slot log page */ memset(&fw_log, 0, sizeof (struct nvme_firmware_log_page)); ret = nvme_fw_log(fd, &fw_log); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_fw_log() failed, ret = %d\n", ret); } else { wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "FwSLotLog", (char*)serialNo, (char*)timeString); wdc_WriteToFile(fileName, (char*)&fw_log, sizeof(struct nvme_firmware_log_page)); } /* Get VU log pages */ /* define inputs for vendor unique log pages */ vuLogInput = (PWDC_NVME_DE_VU_LOGPAGES)calloc(1, sizeof(WDC_NVME_DE_VU_LOGPAGES)); vuLogInput->numOfVULogPages = sizeof(deVULogPagesList) / sizeof(deVULogPagesList[0]); for (vuLogIdx = 0; vuLogIdx < vuLogInput->numOfVULogPages; vuLogIdx++) { dataBufferSize = deVULogPagesList[vuLogIdx].logPageLen; dataBuffer = calloc(1, dataBufferSize); memset(dataBuffer, 0, dataBufferSize); ret = nvme_get_log(fd, WDC_DE_GLOBAL_NSID, deVULogPagesList[vuLogIdx].logPageId, false, dataBufferSize, dataBuffer); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_get_log() for log page 0x%x failed, ret = %d\n", deVULogPagesList[vuLogIdx].logPageId, ret); } else { wdc_UtilsDeleteCharFromString((char*)deVULogPagesList[vuLogIdx].logPageIdStr, 4, ' '); wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "LogPage", (char*)&deVULogPagesList[vuLogIdx].logPageIdStr, (char*)serialNo, (char*)timeString); wdc_WriteToFile(fileName, (char*)dataBuffer, dataBufferSize); } free(dataBuffer); dataBuffer = NULL; } free(vuLogInput); /* Get NVMe Features (0x01, 0x02, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C) */ for (listIdx = 1; listIdx < (sizeof(deFeatureIdList) / sizeof(deFeatureIdList[0])); listIdx++) { memset(featureIdBuff, 0, sizeof(featureIdBuff)); /* skipping LbaRangeType as it is an optional nvme command and not supported */ if (deFeatureIdList[listIdx].featureId == FID_LBA_RANGE_TYPE) continue; ret = nvme_get_feature(fd, WDC_DE_GLOBAL_NSID, deFeatureIdList[listIdx].featureId, FS_CURRENT, 0, sizeof(featureIdBuff), &featureIdBuff, &result); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_get_feature id 0x%x failed, ret = %d\n", deFeatureIdList[listIdx].featureId, ret); } else { wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s0x%x_%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "FEATURE_ID_", deFeatureIdList[listIdx].featureId, deFeatureIdList[listIdx].featureName, serialNo, timeString); wdc_WriteToFile(fileName, (char*)featureIdBuff, sizeof(featureIdBuff)); } } /* Read Debug Directory */ ret = wdc_get_log_dir_max_entries(fd, &maxNumOfVUFiles); if (ret == WDC_STATUS_SUCCESS) { memset(&deEssentialsList, 0, sizeof(deEssentialsList)); deEssentialsList.logEntry = (WDC_DRIVE_ESSENTIALS*)calloc(1, sizeof(WDC_DRIVE_ESSENTIALS)*maxNumOfVUFiles); deEssentialsList.maxNumLogEntries = maxNumOfVUFiles; /* Fetch VU File Directory */ ret = wdc_fetch_log_directory(fd, &deEssentialsList); if (ret == WDC_STATUS_SUCCESS) { /* Get Debug Data Files */ for (listIdx = 0; listIdx < deEssentialsList.numOfValidLogEntries; listIdx++) { if (0 == deEssentialsList.logEntry[listIdx].metaData.fileSize) { fprintf(stderr, "ERROR : WDC : File Size for %s is 0\n", deEssentialsList.logEntry[listIdx].metaData.fileName); ret = WDC_STATUS_FILE_SIZE_ZERO; } else { /* Fetch Log File Data */ dataBuffer = (char *)calloc(1, (size_t)deEssentialsList.logEntry[listIdx].metaData.fileSize); ret = wdc_fetch_log_file_from_device(fd, deEssentialsList.logEntry[listIdx].metaData.fileID, WDC_DE_DESTN_SPI, deEssentialsList.logEntry[listIdx].metaData.fileSize, (__u8 *)dataBuffer); /* Write databuffer to file */ if (ret == WDC_STATUS_SUCCESS) { memset(fileName, 0, sizeof(fileName)); wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", bufferFolderPath, WDC_DE_PATH_SEPARATOR, deEssentialsList.logEntry[listIdx].metaData.fileName, serialNo, timeString); if (deEssentialsList.logEntry[listIdx].metaData.fileSize > 0xFFFFFFFF) { wdc_WriteToFile(fileName, dataBuffer, 0xFFFFFFFF); wdc_WriteToFile(fileName, dataBuffer + 0xFFFFFFFF, (__u32)(deEssentialsList.logEntry[listIdx].metaData.fileSize - 0xFFFFFFFF)); } else { wdc_WriteToFile(fileName, dataBuffer, (__u32)deEssentialsList.logEntry[listIdx].metaData.fileSize); } } else { fprintf(stderr, "ERROR : WDC : wdc_fetch_log_file_from_device: %s failed, ret = %d\n", deEssentialsList.logEntry[listIdx].metaData.fileName, ret); } free(dataBuffer); dataBuffer = NULL; } } } else { fprintf(stderr, "WDC : wdc_fetch_log_directory failed, ret = %d\n", ret); } free(deEssentialsList.logEntry); deEssentialsList.logEntry = NULL; } else { fprintf(stderr, "WDC : wdc_get_log_dir_max_entries failed, ret = %d\n", ret); } /* Get Dump Trace Data */ wdc_UtilsSnprintf(fileName, MAX_PATH_LEN, "%s%s%s_%s_%s.bin", (char*)bufferFolderPath, WDC_DE_PATH_SEPARATOR, "dumptrace", serialNo, timeString); if (WDC_STATUS_SUCCESS != (ret = wdc_de_get_dump_trace(fd, (char*)bufferFolderPath, 0, fileName))) { fprintf(stderr, "ERROR : WDC : wdc_de_get_dump_trace failed, ret = %d\n", ret); } /* Tar the Drive Essentials directory */ wdc_UtilsSnprintf(tarFileName, sizeof(tarFileName), "%s%s", (char*)bufferFolderPath, WDC_DE_TAR_FILE_EXTN); if (dir != NULL) { wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s%s%s", (char*)dir, WDC_DE_PATH_SEPARATOR, (char*)bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES); } else { wdc_UtilsSnprintf(tarFiles, sizeof(tarFiles), "%s%s%s", (char*)bufferFolderName, WDC_DE_PATH_SEPARATOR, WDC_DE_TAR_FILES); } wdc_UtilsSnprintf(tarCmd, sizeof(tarCmd), "%s %s %s", WDC_DE_TAR_CMD, (char*)tarFileName, (char*)tarFiles); ret = system(tarCmd); if (ret) { fprintf(stderr, "ERROR : WDC : Tar of Drive Essentials data failed, ret = %d\n", ret); } fprintf(stderr, "Get of Drive Essentials data successful\n"); return 0; } static int wdc_drive_essentials(int argc, char **argv, struct command *command, struct plugin *plugin) { char *desc = "Capture Drive Essentials."; char *dirName = "Output directory pathname."; char d[PATH_MAX] = {0}; char k[PATH_MAX] = {0}; char *d_ptr; int fd; __u64 capabilities = 0; struct config { char *dirName; }; struct config cfg = { .dirName = NULL, }; OPT_ARGS(opts) = { OPT_STRING("dir-name", 'd', "DIRECTORY", &cfg.dirName, dirName), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_DRIVE_ESSENTIALS) != WDC_DRIVE_CAP_DRIVE_ESSENTIALS) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); return -1; } if (cfg.dirName != NULL) { strncpy(d, cfg.dirName, PATH_MAX - 1); d_ptr = d; } else { d_ptr = NULL; } return wdc_do_drive_essentials(fd, d_ptr, k); } static int wdc_do_drive_resize(int fd, uint64_t new_size) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_DRIVE_RESIZE_OPCODE; admin_cmd.cdw12 = ((WDC_NVME_DRIVE_RESIZE_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_DRIVE_RESIZE_CMD); admin_cmd.cdw13 = new_size; ret = nvme_submit_admin_passthru(fd, &admin_cmd); return ret; } static int wdc_do_namespace_resize(int fd, __u32 nsid, __u32 op_option) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_NAMESPACE_RESIZE_OPCODE; admin_cmd.nsid = nsid; admin_cmd.cdw10 = op_option; ret = nvme_submit_admin_passthru(fd, &admin_cmd); return ret; } static int wdc_do_drive_info(int fd, __u32 *result) { int ret; struct nvme_admin_cmd admin_cmd; memset(&admin_cmd, 0, sizeof (struct nvme_admin_cmd)); admin_cmd.opcode = WDC_NVME_DRIVE_INFO_OPCODE; admin_cmd.cdw12 = ((WDC_NVME_DRIVE_INFO_SUBCMD << WDC_NVME_SUBCMD_SHIFT) | WDC_NVME_DRIVE_INFO_CMD); ret = nvme_submit_admin_passthru(fd, &admin_cmd); if (!ret && result) *result = admin_cmd.result; return ret; } static int wdc_drive_resize(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Send a Resize command."; const char *size = "The new size (in GB) to resize the drive to."; uint64_t capabilities = 0; int fd, ret; struct config { uint64_t size; }; struct config cfg = { .size = 0, }; OPT_ARGS(opts) = { OPT_UINT("size", 's', &cfg.size, size), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; wdc_check_device(fd); capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_RESIZE) == WDC_DRIVE_CAP_RESIZE) { ret = wdc_do_drive_resize(fd, cfg.size); } else { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } if (!ret) printf("New size: %" PRIu64 " GB\n", cfg.size); fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; } static int wdc_namespace_resize(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Send a Namespace Resize command."; const char *namespace_id = "The namespace id to resize."; const char *op_option = "The over provisioning option to set for namespace."; uint64_t capabilities = 0; int fd, ret; struct config { __u32 namespace_id; __u32 op_option; }; struct config cfg = { .namespace_id = 0x1, .op_option = 0xF, }; OPT_ARGS(opts) = { OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace_id), OPT_UINT("op-option", 'o', &cfg.op_option, op_option), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if ((cfg.op_option != 0x1) && (cfg.op_option != 0x2) && (cfg.op_option != 0x3) && (cfg.op_option != 0xF)) { fprintf(stderr, "ERROR : WDC: unsupported OP option parameter\n"); return -1; } wdc_check_device(fd); capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_NS_RESIZE) == WDC_DRIVE_CAP_NS_RESIZE) { ret = wdc_do_namespace_resize(fd, cfg.namespace_id, cfg.op_option); if (ret != 0) printf("ERROR : WDC: Namespace Resize of namespace id 0x%x, op option 0x%x failed\n", cfg.namespace_id, cfg.op_option); } else { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; } static int wdc_reason_identifier(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Retrieve telemetry log reason identifier."; const char *log_id = "Log ID to retrieve - host - 7 or controller - 8"; const char *fname = "File name to save raw binary identifier"; int fd; int ret; uint64_t capabilities = 0; char f[PATH_MAX] = {0}; char fileSuffix[PATH_MAX] = {0}; UtilsTimeInfo timeInfo; __u8 timeStamp[MAX_PATH_LEN]; struct config { int log_id; char *file; }; struct config cfg = { .log_id = 7, .file = NULL, }; OPT_ARGS(opts) = { OPT_UINT("log-id", 'i', &cfg.log_id, log_id), OPT_FILE("file", 'o', &cfg.file, fname), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; if (cfg.log_id != NVME_LOG_TELEMETRY_HOST && cfg.log_id != NVME_LOG_TELEMETRY_CTRL) { fprintf(stderr, "ERROR : WDC: Invalid Log ID. It must be 7 (Host) or 8 (Controller)\n"); ret = -1; goto close_fd; } if (cfg.file != NULL) { int verify_file; /* verify the passed in file name and path is valid before getting the dump data */ verify_file = open(cfg.file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (verify_file < 0) { fprintf(stderr, "ERROR : WDC: open : %s\n", strerror(errno)); ret = -1; goto close_fd; } close(verify_file); strncpy(f, cfg.file, PATH_MAX - 1); } else { wdc_UtilsGetTime(&timeInfo); memset(timeStamp, 0, sizeof(timeStamp)); wdc_UtilsSnprintf((char*)timeStamp, MAX_PATH_LEN, "%02u%02u%02u_%02u%02u%02u", timeInfo.year, timeInfo.month, timeInfo.dayOfMonth, timeInfo.hour, timeInfo.minute, timeInfo.second); if (cfg.log_id == NVME_LOG_TELEMETRY_CTRL) snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_ctlr_%s", (char*)timeStamp); else snprintf(fileSuffix, PATH_MAX, "_error_reason_identifier_host_%s", (char*)timeStamp); if (wdc_get_serial_name(fd, f, PATH_MAX, fileSuffix) == -1) { fprintf(stderr, "ERROR : WDC: failed to generate file name\n"); ret = -1; goto close_fd; } snprintf(f + strlen(f), PATH_MAX, "%s", ".bin"); } fprintf(stderr, "%s: filename = %s\n", __func__, f); capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_REASON_ID) == WDC_DRIVE_CAP_REASON_ID) { ret = wdc_do_get_reason_id(fd, f, cfg.log_id); } else { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); close_fd: close(fd); return ret; } static const char *nvme_log_id_to_string(__u8 log_id) { switch (log_id) { case NVME_LOG_ERROR: return "Error Information Log ID"; case NVME_LOG_SMART: return "Smart/Health Information Log ID"; case NVME_LOG_FW_SLOT: return "Firmware Slot Information Log ID"; case NVME_LOG_CHANGED_NS: return "Namespace Changed Log ID"; case NVME_LOG_CMD_EFFECTS: return "Commamds Supported and Effects Log ID"; case NVME_LOG_DEVICE_SELF_TEST: return "Device Self Test Log ID"; case NVME_LOG_TELEMETRY_HOST: return "Telemetry Host Initiated Log ID"; case NVME_LOG_TELEMETRY_CTRL: return "Telemetry Controller Generated Log ID"; case NVME_LOG_ENDURANCE_GROUP: return "Endurance Group Log ID"; case NVME_LOG_ANA: return "ANA Log ID"; case NVME_LOG_PERSISTENT_EVENT: return "Persistent Event Log ID"; case NVME_LOG_DISC: return "Discovery Log ID"; case NVME_LOG_RESERVATION: return "Reservation Notification Log ID"; case NVME_LOG_SANITIZE: return "Sanitize Status Log ID"; case WDC_LOG_ID_C0: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_C2: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_C4: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_C5: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_C6: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_CA: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_CB: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_D0: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_D6: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_D7: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_D8: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_DE: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_F0: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_F1: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_F2: return "WDC Vendor Unique Log ID"; case WDC_LOG_ID_FA: return "WDC Vendor Unique Log ID"; default: return "Unknown Log ID"; } } static int wdc_log_page_directory(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Retrieve Log Page Directory."; int fd; int ret = 0; __u64 capabilities = 0; struct wdc_c2_cbs_data *cbs_data = NULL; int i; struct config { char *output_format; }; struct config cfg = { .output_format = "normal", }; OPT_ARGS(opts) = { OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json|binary"), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; ret = validate_output_format(cfg.output_format); if (ret < 0) { fprintf(stderr, "%s: ERROR : WDC : invalid output format\n", __func__); return ret; } capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_LOG_PAGE_DIR) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } else { /* verify the 0xC2 Device Manageability log page is supported */ if (wdc_nvme_check_supported_log_page(fd, WDC_NVME_GET_DEV_MGMNT_LOG_PAGE_OPCODE) == false) { fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page not supported\n", __func__); ret = -1; goto out; } if (get_dev_mgment_cbs_data(fd, WDC_C2_LOG_PAGES_SUPPORTED_ID, (void *)&cbs_data)) { if (cbs_data != NULL) { printf("Log Page Directory\n"); /* print the supported pages */ if (!strcmp(cfg.output_format, "normal")) { for (i = 0; i < le32_to_cpu(cbs_data->length); i++) { printf("0x%x - %s\n", cbs_data->data[i], nvme_log_id_to_string(cbs_data->data[i])); } } else if (!strcmp(cfg.output_format, "binary")) { d((__u8 *)cbs_data->data, le32_to_cpu(cbs_data->length), 16, 1); } else if (!strcmp(cfg.output_format, "json")) { struct json_object *root; root = json_create_object(); for (i = 0; i < le32_to_cpu(cbs_data->length); i++) { json_object_add_value_int(root, nvme_log_id_to_string(cbs_data->data[i]), cbs_data->data[i]); } json_print_object(root, NULL); printf("\n"); json_free_object(root); } else fprintf(stderr, "%s: ERROR : WDC : Invalid format, format = %s\n", __func__, cfg.output_format); } else fprintf(stderr, "%s: ERROR : WDC : NULL_data ptr\n", __func__); } else fprintf(stderr, "%s: ERROR : WDC : 0xC2 Log Page entry ID 0x%x not found\n", __func__, WDC_C2_LOG_PAGES_SUPPORTED_ID); } out: return ret; } static int wdc_get_drive_reason_id(int fd, char *drive_reason_id, size_t len) { int i, j; int ret; int res_len = 0; struct nvme_id_ctrl ctrl; char *reason_id_str = "reason_id"; i = sizeof (ctrl.sn) - 1; j = sizeof (ctrl.mn) - 1; memset(drive_reason_id, 0, len); memset(&ctrl, 0, sizeof (struct nvme_id_ctrl)); ret = nvme_identify_ctrl(fd, &ctrl); if (ret) { fprintf(stderr, "ERROR : WDC : nvme_identify_ctrl() failed " "0x%x\n", ret); return -1; } /* Remove trailing spaces from the sn and mn */ while (i && ctrl.sn[i] == ' ') { ctrl.sn[i] = '\0'; i--; } while (j && ctrl.mn[j] == ' ') { ctrl.mn[j] = '\0'; j--; } res_len = snprintf(drive_reason_id, len, "%s_%s_%s", ctrl.sn, ctrl.mn, reason_id_str); if (len <= res_len) { fprintf(stderr, "ERROR : WDC : cannot format serial number due to data " "of unexpected length\n"); return -1; } return 0; } static int wdc_save_reason_id(int fd, __u8 *rsn_ident, int size) { int ret = 0; char *reason_id_file; char drive_reason_id[PATH_MAX] = {0}; char reason_id_path[PATH_MAX] = WDC_REASON_ID_PATH_NAME; struct stat st = {0}; if (wdc_get_drive_reason_id(fd, drive_reason_id, PATH_MAX) == -1) { fprintf(stderr, "%s: ERROR : failed to get drive reason id\n", __func__); return -1; } /* make the nvmecli dir in /usr/local if it doesn't already exist */ if (stat(reason_id_path, &st) == -1) { mkdir(reason_id_path, 0700); } if (asprintf(&reason_id_file, "%s/%s%s", reason_id_path, drive_reason_id, ".bin") < 0) return -ENOMEM; fprintf(stderr, "%s: reason id file = %s\n", __func__, reason_id_file); /* save off the error reason identifier to a file in /usr/local/nvmecli */ ret = wdc_create_log_file(reason_id_file, rsn_ident, WDC_REASON_ID_ENTRY_LEN); free(reason_id_file); return ret; } static int wdc_clear_reason_id(int fd) { int ret = -1; int verify_file; char *reason_id_file; char drive_reason_id[PATH_MAX] = {0}; if (wdc_get_drive_reason_id(fd, drive_reason_id, PATH_MAX) == -1) { fprintf(stderr, "%s: ERROR : failed to get drive reason id\n", __func__); return -1; } if (asprintf(&reason_id_file, "%s/%s%s", WDC_REASON_ID_PATH_NAME, drive_reason_id, ".bin") < 0) return -ENOMEM; /* verify the drive reason id file name and path is valid */ verify_file = open(reason_id_file, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (verify_file < 0) { ret = -1; goto free; } close(verify_file); /* remove the reason id file */ ret = remove(reason_id_file); free: free(reason_id_file); return ret; } static int wdc_do_get_reason_id(int fd, char *file, int log_id) { int ret; struct nvme_telemetry_log_page_hdr *log_hdr; __u32 log_hdr_size = sizeof(struct nvme_telemetry_log_page_hdr); __u32 reason_id_size = 0; log_hdr = (struct nvme_telemetry_log_page_hdr *) malloc(log_hdr_size); if (log_hdr == NULL) { fprintf(stderr, "%s: ERROR : malloc failed, size : 0x%x, status : %s\n", __func__, log_hdr_size, strerror(errno)); ret = -1; goto out; } memset(log_hdr, 0, log_hdr_size); ret = wdc_dump_telemetry_hdr(fd, log_id, log_hdr); if (ret != 0) { fprintf(stderr, "%s: ERROR : get telemetry header failed, ret : %d\n", __func__, ret); ret = -1; goto out; } reason_id_size = sizeof(log_hdr->rsnident); if (log_id == NVME_LOG_TELEMETRY_CTRL) wdc_save_reason_id(fd, log_hdr->rsnident, reason_id_size); ret = wdc_create_log_file(file, (__u8 *)log_hdr->rsnident, reason_id_size); out: free(log_hdr); return ret; } static int wdc_dump_telemetry_hdr(int fd, int log_id, struct nvme_telemetry_log_page_hdr *log_hdr) { int ret = 0; int host_gen = 0, ctrl_init = 0; if (log_id == NVME_LOG_TELEMETRY_HOST) host_gen = 1; else ctrl_init = 1; ret = nvme_get_telemetry_log(fd, log_hdr, host_gen, ctrl_init, 512, 0); if (ret < 0) perror("get-telemetry-log"); else if (ret > 0) { nvme_show_status(ret); fprintf(stderr, "%s: ERROR : Failed to acquire telemetry header, ret = %d!\n", __func__, ret); } return ret; } static void wdc_print_nand_stats_normal(struct wdc_nand_stats *data) { printf(" NAND Statistics :- \n"); printf(" NAND Writes TLC (Bytes) %.0Lf\n", int128_to_double(data->nand_write_tlc)); printf(" NAND Writes SLC (Bytes) %.0Lf\n", int128_to_double(data->nand_write_slc)); printf(" NAND Program Failures %"PRIu32"\n", (uint32_t)le32_to_cpu(data->nand_prog_failure)); printf(" NAND Erase Failures %"PRIu32"\n", (uint32_t)le32_to_cpu(data->nand_erase_failure)); printf(" Bad Block Count %"PRIu32"\n", (uint32_t)le32_to_cpu(data->bad_block_count)); printf(" NAND XOR/RAID Recovery Trigger Events %"PRIu64"\n", le64_to_cpu(data->nand_rec_trigger_event)); printf(" E2E Error Counter %"PRIu64"\n", le64_to_cpu(data->e2e_error_counter)); printf(" Number Successful NS Resizing Events %"PRIu64"\n", le64_to_cpu(data->successful_ns_resize_event)); } static void wdc_print_nand_stats_json(struct wdc_nand_stats *data) { struct json_object *root; root = json_create_object(); json_object_add_value_float(root, "NAND Writes TLC (Bytes)", int128_to_double(data->nand_write_tlc)); json_object_add_value_float(root, "NAND Writes SLC (Bytes)", int128_to_double(data->nand_write_slc)); json_object_add_value_uint(root, "NAND Program Failures", le32_to_cpu(data->nand_prog_failure)); json_object_add_value_uint(root, "NAND Erase Failures", le32_to_cpu(data->nand_erase_failure)); json_object_add_value_uint(root, "Bad Block Count", le32_to_cpu(data->bad_block_count)); json_object_add_value_uint(root, "NAND XOR/RAID Recovery Trigger Events", le64_to_cpu(data->nand_rec_trigger_event)); json_object_add_value_uint(root, "E2E Error Counter", le64_to_cpu(data->e2e_error_counter)); json_object_add_value_uint(root, "Number Successful NS Resizing Events", le64_to_cpu(data->successful_ns_resize_event)); json_print_object(root, NULL); printf("\n"); json_free_object(root); } static int wdc_do_vs_nand_stats(int fd, char *format) { int ret; int fmt = -1; uint8_t *output = NULL; struct wdc_nand_stats *nand_stats; if ((output = (uint8_t*)calloc(WDC_NVME_NAND_STATS_SIZE, sizeof(uint8_t))) == NULL) { fprintf(stderr, "ERROR : WDC : calloc : %s\n", strerror(errno)); ret = -1; goto out; } ret = nvme_get_log(fd, 0xFFFFFFFF, WDC_NVME_NAND_STATS_LOG_ID, false, WDC_NVME_NAND_STATS_SIZE, (void*)output); if (ret) { fprintf(stderr, "ERROR : WDC : %s : Failed to retreive NAND stats\n", __func__); goto out; } else { fmt = validate_output_format(format); if (fmt < 0) { fprintf(stderr, "ERROR : WDC : invalid output format\n"); ret = fmt; goto out; } /* parse the data */ nand_stats = (struct wdc_nand_stats *)(output); switch (fmt) { case NORMAL: wdc_print_nand_stats_normal(nand_stats); break; case JSON: wdc_print_nand_stats_json(nand_stats); break; } } out: free(output); return ret; } static int wdc_vs_nand_stats(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Retrieve NAND statistics."; int fd; int ret = 0; __u64 capabilities = 0; struct config { char *output_format; }; struct config cfg = { .output_format = "normal", }; OPT_ARGS(opts) = { OPT_FMT("output-format", 'o', &cfg.output_format, "Output Format: normal|json"), OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_NAND_STATS) == 0) { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } else { ret = wdc_do_vs_nand_stats(fd, cfg.output_format); if (ret) fprintf(stderr, "ERROR : WDC : Failure reading NAND statistics, ret = %d\n", ret); } return ret; } static int wdc_vs_drive_info(int argc, char **argv, struct command *command, struct plugin *plugin) { const char *desc = "Send a vs-drive-info command."; uint64_t capabilities = 0; int fd, ret; __le32 result; __u16 size; double rev; OPT_ARGS(opts) = { OPT_END() }; fd = parse_and_open(argc, argv, desc, opts); if (fd < 0) return fd; wdc_check_device(fd); capabilities = wdc_get_drive_capabilities(fd); if ((capabilities & WDC_DRIVE_CAP_INFO) == WDC_DRIVE_CAP_INFO) { ret = wdc_do_drive_info(fd, &result); } else { fprintf(stderr, "ERROR : WDC: unsupported device for this command\n"); ret = -1; } if (!ret) { size = (__u16)((cpu_to_le32(result) & 0xffff0000) >> 16); rev = (double)(cpu_to_le32(result) & 0x0000ffff); printf("Drive HW Revison: %4.1f\n", (.1 * rev)); printf("FTL Unit Size: 0x%x KB\n", size); } fprintf(stderr, "NVMe Status:%s(%x)\n", nvme_status_to_string(ret), ret); return ret; }