summaryrefslogtreecommitdiffstats
path: root/plugins/scaleflux/sfx-nvme.c
blob: 846ca77dc28f2c6b5d5ba8960aa47fa2186f2b8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/fs.h>
#include <inttypes.h>
#include <asm/byteorder.h>
#include <sys/ioctl.h>
#include <sys/sysinfo.h>

#include "linux/nvme_ioctl.h"

#include "nvme.h"
#include "nvme-print.h"
#include "nvme-ioctl.h"
#include "nvme-status.h"
#include "json.h"
#include "plugin.h"

#include "argconfig.h"
#include "suffix.h"

#define CREATE_CMD
#include "sfx-nvme.h"

#define SFX_PAGE_SHIFT						12
#define SECTOR_SHIFT						9

#define SFX_GET_FREESPACE			_IOWR('N', 0x240, struct sfx_freespace_ctx)
#define IDEMA_CAP(exp_GB)			(((__u64)exp_GB - 50ULL) * 1953504ULL + 97696368ULL)


enum {
	SFX_LOG_LATENCY_READ_STATS	= 0xc1,
	SFX_LOG_SMART			= 0xc2,
	SFX_LOG_LATENCY_WRITE_STATS 	= 0xc3,
	SFX_LOG_QUAL			= 0xc4,
	SFX_LOG_MISMATCHLBA		= 0xc5,
	SFX_LOG_MEDIA			= 0xc6,
	SFX_LOG_BBT			= 0xc7,
	SFX_LOG_IDENTIFY		= 0xcc,
	SFX_FEAT_ATOMIC			= 0x01,
};

enum sfx_nvme_admin_opcode {
	nvme_admin_query_cap_info	= 0xd3,
	nvme_admin_change_cap		= 0xd4,
	nvme_admin_sfx_set_features 	= 0xd5,
	nvme_admin_sfx_get_features 	= 0xd6,
};

struct sfx_freespace_ctx
{
	__u64 free_space;
	__u64 phy_cap;	   /* physical capacity, in unit of sector */
	__u64 phy_space;   /* physical space considering OP, in unit of sector */
	__u64 user_space;  /* user required space, in unit of sector*/
	__u64 hw_used;	   /* hw space used in 4K */
	__u64 app_written; /* app data written in 4K */
};

struct nvme_capacity_info {
	__u64 lba_sec_sz;
	__u64 phy_sec_sz;
	__u64 used_space;
	__u64 free_space;
};
struct  __attribute__((packed)) nvme_additional_smart_log_item {
	uint8_t			   key;
	uint8_t			   _kp[2];
	uint8_t			   norm;
	uint8_t			   _np;
	union {
		uint8_t		   raw[6];
		struct wear_level {
			uint16_t	min;
			uint16_t	max;
			uint16_t	avg;
		} wear_level ;
		struct thermal_throttle {
			uint8_t    pct;
			uint32_t	count;
		} thermal_throttle;
	};
	uint8_t			   _rp;
};

struct nvme_additional_smart_log {
	struct nvme_additional_smart_log_item	 program_fail_cnt;
	struct nvme_additional_smart_log_item	 erase_fail_cnt;
	struct nvme_additional_smart_log_item	 wear_leveling_cnt;
	struct nvme_additional_smart_log_item	 e2e_err_cnt;
	struct nvme_additional_smart_log_item	 crc_err_cnt;
	struct nvme_additional_smart_log_item	 timed_workload_media_wear;
	struct nvme_additional_smart_log_item	 timed_workload_host_reads;
	struct nvme_additional_smart_log_item	 timed_workload_timer;
	struct nvme_additional_smart_log_item	 thermal_throttle_status;
	struct nvme_additional_smart_log_item	 retry_buffer_overflow_cnt;
	struct nvme_additional_smart_log_item	 pll_lock_loss_cnt;
	struct nvme_additional_smart_log_item	 nand_bytes_written;
	struct nvme_additional_smart_log_item	 host_bytes_written;
	struct nvme_additional_smart_log_item	 raid_recover_cnt; // errors which can be recovered by RAID
	struct nvme_additional_smart_log_item	 prog_timeout_cnt;
	struct nvme_additional_smart_log_item	 erase_timeout_cnt;
	struct nvme_additional_smart_log_item	 read_timeout_cnt;
	struct nvme_additional_smart_log_item	 read_ecc_cnt;//retry cnt
};

int nvme_change_cap(int fd, __u32 nsid, __u64 capacity)
{
	struct nvme_admin_cmd cmd = {
	.opcode		 = nvme_admin_change_cap,
	.nsid		 = nsid,
	.cdw10 		 = (capacity & 0xffffffff),
	.cdw11 		 = (capacity >> 32),
	};


	return nvme_submit_passthru(fd, NVME_IOCTL_ADMIN_CMD,&cmd);
}

int nvme_sfx_set_features(int fd, __u32 nsid, __u32 fid, __u32 value)
{
	struct nvme_admin_cmd cmd = {
	.opcode		 = nvme_admin_sfx_set_features,
	.nsid		 = nsid,
	.cdw10		 = fid,
	.cdw11		 = value,
	};

	return nvme_submit_passthru(fd, NVME_IOCTL_ADMIN_CMD,&cmd);
}

int nvme_sfx_get_features(int fd, __u32 nsid, __u32 fid, __u32 *result)
{
	int err = 0;
	struct nvme_admin_cmd cmd = {
	.opcode		 = nvme_admin_sfx_get_features,
	.nsid		 = nsid,
	.cdw10		 = fid,
	};

	err = nvme_submit_passthru(fd, NVME_IOCTL_ADMIN_CMD,&cmd);
	if (!err && result) {
		*result = cmd.result;
	}

	return err;
}

static void show_sfx_smart_log_jsn(struct nvme_additional_smart_log *smart,
		unsigned int nsid, const char *devname)
{
	struct json_object *root, *entry_stats, *dev_stats, *multi;

	root = json_create_object();
	json_object_add_value_string(root, "Intel Smart log", devname);

	dev_stats = json_create_object();

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->program_fail_cnt.norm);
	json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->program_fail_cnt.raw));
	json_object_add_value_object(dev_stats, "program_fail_count", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->erase_fail_cnt.norm);
	json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->erase_fail_cnt.raw));
	json_object_add_value_object(dev_stats, "erase_fail_count", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->wear_leveling_cnt.norm);
	multi = json_create_object();
	json_object_add_value_int(multi, "min", le16_to_cpu(smart->wear_leveling_cnt.wear_level.min));
	json_object_add_value_int(multi, "max", le16_to_cpu(smart->wear_leveling_cnt.wear_level.max));
	json_object_add_value_int(multi, "avg", le16_to_cpu(smart->wear_leveling_cnt.wear_level.avg));
	json_object_add_value_object(entry_stats, "raw", multi);
	json_object_add_value_object(dev_stats, "wear_leveling", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->e2e_err_cnt.norm);
	json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->e2e_err_cnt.raw));
	json_object_add_value_object(dev_stats, "end_to_end_error_detection_count", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->crc_err_cnt.norm);
	json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->crc_err_cnt.raw));
	json_object_add_value_object(dev_stats, "crc_error_count", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->timed_workload_media_wear.norm);
	json_object_add_value_float(entry_stats, "raw", ((float)int48_to_long(smart->timed_workload_media_wear.raw)) / 1024);
	json_object_add_value_object(dev_stats, "timed_workload_media_wear", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->timed_workload_host_reads.norm);
	json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->timed_workload_host_reads.raw));
	json_object_add_value_object(dev_stats, "timed_workload_host_reads", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->timed_workload_timer.norm);
	json_object_add_value_int(entry_stats, "raw", int48_to_long(smart->timed_workload_timer.raw));
	json_object_add_value_object(dev_stats, "timed_workload_timer", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->thermal_throttle_status.norm);
	multi = json_create_object();
	json_object_add_value_int(multi, "pct", smart->thermal_throttle_status.thermal_throttle.pct);
	json_object_add_value_int(multi, "cnt", smart->thermal_throttle_status.thermal_throttle.count);
	json_object_add_value_object(entry_stats, "raw", multi);
	json_object_add_value_object(dev_stats, "thermal_throttle_status", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->retry_buffer_overflow_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->retry_buffer_overflow_cnt.raw));
	json_object_add_value_object(dev_stats, "retry_buffer_overflow_count", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->pll_lock_loss_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->pll_lock_loss_cnt.raw));
	json_object_add_value_object(dev_stats, "pll_lock_loss_count", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->nand_bytes_written.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->nand_bytes_written.raw));
	json_object_add_value_object(dev_stats, "nand_bytes_written", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->host_bytes_written.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->host_bytes_written.raw));
	json_object_add_value_object(dev_stats, "host_bytes_written", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->raid_recover_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->raid_recover_cnt.raw));
	json_object_add_value_object(dev_stats, "raid_recover_cnt", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->prog_timeout_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->prog_timeout_cnt.raw));
	json_object_add_value_object(dev_stats, "prog_timeout_cnt", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->erase_timeout_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->erase_timeout_cnt.raw));
	json_object_add_value_object(dev_stats, "erase_timeout_cnt", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->read_timeout_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->read_timeout_cnt.raw));
	json_object_add_value_object(dev_stats, "read_timeout_cnt", entry_stats);

	entry_stats = json_create_object();
	json_object_add_value_int(entry_stats, "normalized", smart->read_ecc_cnt.norm);
	json_object_add_value_int(entry_stats, "raw",	  int48_to_long(smart->read_ecc_cnt.raw));
	json_object_add_value_object(dev_stats, "read_ecc_cnt", entry_stats);

	json_object_add_value_object(root, "Device stats", dev_stats);

	json_print_object(root, NULL);
	printf("/n");
	json_free_object(root);
}

static void show_sfx_smart_log(struct nvme_additional_smart_log *smart,
		unsigned int nsid, const char *devname)
{
	printf("Additional Smart Log for ScaleFlux device:%s namespace-id:%x\n",
		devname, nsid);
	printf("key								  normalized raw\n");
	printf("program_fail_count				: %3d%%		  %"PRIu64"\n",
		smart->program_fail_cnt.norm,
		int48_to_long(smart->program_fail_cnt.raw));
	printf("erase_fail_count				: %3d%%		  %"PRIu64"\n",
		smart->erase_fail_cnt.norm,
		int48_to_long(smart->erase_fail_cnt.raw));
	printf("wear_leveling					: %3d%%		  min: %u, max: %u, avg: %u\n",
		smart->wear_leveling_cnt.norm,
		le16_to_cpu(smart->wear_leveling_cnt.wear_level.min),
		le16_to_cpu(smart->wear_leveling_cnt.wear_level.max),
		le16_to_cpu(smart->wear_leveling_cnt.wear_level.avg));
	printf("end_to_end_error_detection_count: %3d%%		  %"PRIu64"\n",
		smart->e2e_err_cnt.norm,
		int48_to_long(smart->e2e_err_cnt.raw));
	printf("crc_error_count					: %3d%%		  %"PRIu64"\n",
		smart->crc_err_cnt.norm,
		int48_to_long(smart->crc_err_cnt.raw));
	printf("timed_workload_media_wear		: %3d%%		  %.3f%%\n",
		smart->timed_workload_media_wear.norm,
		((float)int48_to_long(smart->timed_workload_media_wear.raw)) / 1024);
	printf("timed_workload_host_reads		: %3d%%		  %"PRIu64"%%\n",
		smart->timed_workload_host_reads.norm,
		int48_to_long(smart->timed_workload_host_reads.raw));
	printf("timed_workload_timer			: %3d%%		  %"PRIu64" min\n",
		smart->timed_workload_timer.norm,
		int48_to_long(smart->timed_workload_timer.raw));
	printf("thermal_throttle_status			: %3d%%		  %u%%, cnt: %u\n",
		smart->thermal_throttle_status.norm,
		smart->thermal_throttle_status.thermal_throttle.pct,
		smart->thermal_throttle_status.thermal_throttle.count);
	printf("retry_buffer_overflow_count		: %3d%%		  %"PRIu64"\n",
		smart->retry_buffer_overflow_cnt.norm,
		int48_to_long(smart->retry_buffer_overflow_cnt.raw));
	printf("pll_lock_loss_count				: %3d%%		  %"PRIu64"\n",
		smart->pll_lock_loss_cnt.norm,
		int48_to_long(smart->pll_lock_loss_cnt.raw));
	printf("nand_bytes_written				: %3d%%		  sectors: %"PRIu64"\n",
		smart->nand_bytes_written.norm,
		int48_to_long(smart->nand_bytes_written.raw));
	printf("host_bytes_written				: %3d%%		  sectors: %"PRIu64"\n",
		smart->host_bytes_written.norm,
		int48_to_long(smart->host_bytes_written.raw));
	printf("raid_recover_cnt				: %3d%%		  %"PRIu64"\n",
		smart->raid_recover_cnt.norm,
		int48_to_long(smart->raid_recover_cnt.raw));
	printf("read_ecc_cnt					: %3d%%		  %"PRIu64"\n",
		smart->read_ecc_cnt.norm,
		int48_to_long(smart->read_ecc_cnt.raw));
	printf("prog_timeout_cnt				: %3d%%		  %"PRIu64"\n",
		smart->prog_timeout_cnt.norm,
		int48_to_long(smart->prog_timeout_cnt.raw));
	printf("erase_timeout_cnt				: %3d%%		  %"PRIu64"\n",
		smart->erase_timeout_cnt.norm,
		int48_to_long(smart->erase_timeout_cnt.raw));
	printf("read_timeout_cnt				: %3d%%		  %"PRIu64"\n",
		smart->read_timeout_cnt.norm,
		int48_to_long(smart->read_timeout_cnt.raw));
}

static int get_additional_smart_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	struct nvme_additional_smart_log smart_log;
	int err, fd;
	char *desc = "Get ScaleFlux vendor specific additional smart log (optionally, "\
			  "for the specified namespace), and show it.";
	const char *namespace = "(optional) desired namespace";
	const char *raw = "dump output in binary format";
	const char *json= "Dump output in json format";
	struct config {
		__u32 namespace_id;
		int   raw_binary;
		int   json;
	};

	struct config cfg = {
		.namespace_id = 0xffffffff,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("namespace-id", 'n', &cfg.namespace_id, namespace),
		OPT_FLAG("raw-binary",	 'b', &cfg.raw_binary,	 raw),
		OPT_FLAG("json",		 'j', &cfg.json,		 json),
		OPT_END()
	};


	fd = parse_and_open(argc, argv, desc, opts);

	err = nvme_get_log(fd, cfg.namespace_id, 0xca, false, sizeof(smart_log),
			(void *)&smart_log);
	if (!err) {
		if (cfg.json)
			show_sfx_smart_log_jsn(&smart_log, cfg.namespace_id, devicename);
		else if (!cfg.raw_binary)
			show_sfx_smart_log(&smart_log, cfg.namespace_id, devicename);
		else
			d_raw((unsigned char *)&smart_log, sizeof(smart_log));
	}
	else if (err > 0)
		fprintf(stderr, "NVMe Status:%s(%x)\n",
					nvme_status_to_string(err), err);
	return err;
}


struct sfx_lat_stats {
	__u16	 maj;
	__u16	 min;
	__u32	 bucket_1[32];	/* 0~1ms, step 32us */
	__u32	 bucket_2[31];	/* 1~32ms, step 1ms */
	__u32	 bucket_3[31];	/* 32ms~1s, step 32ms */
	__u32	 bucket_4[1];	/* 1s~2s, specifically 1024ms~2047ms */
	__u32	 bucket_5[1];	/* 2s~4s, specifically 2048ms~4095ms */
	__u32	 bucket_6[1];	/* 4s+, specifically 4096ms+ */
};

static void show_lat_stats(struct sfx_lat_stats *stats, int write)
{
	int i;

	printf(" ScaleFlux IO %s Command Latency Statistics\n", write ? "Write" : "Read");
	printf("-------------------------------------\n");
	printf("Major Revision : %u\n", stats->maj);
	printf("Minor Revision : %u\n", stats->min);

	printf("\nGroup 1: Range is 0-1ms, step is 32us\n");
	for (i = 0; i < 32; i++)
		printf("Bucket %2d: %u\n", i, stats->bucket_1[i]);

	printf("\nGroup 2: Range is 1-32ms, step is 1ms\n");
	for (i = 0; i < 31; i++)
		printf("Bucket %2d: %u\n", i, stats->bucket_2[i]);

	printf("\nGroup 3: Range is 32ms-1s, step is 32ms:\n");
	for (i = 0; i < 31; i++)
		printf("Bucket %2d: %u\n", i, stats->bucket_3[i]);

	printf("\nGroup 4: Range is 1s-2s:\n");
	printf("Bucket %2d: %u\n", 0, stats->bucket_4[0]);

	printf("\nGroup 5: Range is 2s-4s:\n");
	printf("Bucket %2d: %u\n", 0, stats->bucket_5[0]);

	printf("\nGroup 6: Range is 4s+:\n");
	printf("Bucket %2d: %u\n", 0, stats->bucket_6[0]);
}

static int get_lat_stats_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	struct sfx_lat_stats stats;
	int err, fd;

	char *desc = "Get ScaleFlux Latency Statistics log and show it.";
	const char *raw = "dump output in binary format";
	const char *write = "Get write statistics (read default)";
	struct config {
		int  raw_binary;
		int  write;
	};

	struct config cfg = {
	};

	OPT_ARGS(opts) = {
		OPT_FLAG("write",	   'w', &cfg.write,		 write),
		OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);

	err = nvme_get_log(fd, 0xffffffff, cfg.write ? 0xc3 : 0xc1, false, sizeof(stats), (void *)&stats);
	if (!err) {
		if (!cfg.raw_binary)
			show_lat_stats(&stats, cfg.write);
		else
			d_raw((unsigned char *)&stats, sizeof(stats));
	} else if (err > 0)
		fprintf(stderr, "NVMe Status:%s(%x)\n",
					nvme_status_to_string(err), err);
	return err;
}

int sfx_nvme_get_log(int fd, __u32 nsid, __u8 log_id, __u32 data_len, void *data)
{
	struct nvme_admin_cmd cmd = {
		.opcode		   = nvme_admin_get_log_page,
		.nsid		 = nsid,
		.addr		 = (__u64)(uintptr_t) data,
		.data_len	 = data_len,
	};
	__u32 numd = (data_len >> 2) - 1;
	__u16 numdu = numd >> 16, numdl = numd & 0xffff;

	cmd.cdw10 = log_id | (numdl << 16);
	cmd.cdw11 = numdu;

	return nvme_submit_admin_passthru(fd, &cmd);
}

/**
 * @brief	get bb table through admin_passthru
 *
 * @param fd
 * @param buf
 * @param size
 *
 * @return -1 fail ; 0 success
 */
static int get_bb_table(int fd, __u32 nsid, unsigned char *buf, __u64 size)
{
	if (fd < 0 || !buf || size != 256*4096*sizeof(unsigned char)) {
		fprintf(stderr, "Invalid Param \r\n");
		return EINVAL;
	}

	return sfx_nvme_get_log(fd, nsid, SFX_LOG_BBT, size, (void *)buf);
}

/**
 * @brief display bb table
 *
 * @param bd_table		buffer that contain bb table dumped from drvier
 * @param table_size	buffer size (BYTES), should at least has 8 bytes for mf_bb_count and grown_bb_count
 */
static void bd_table_show(unsigned char *bd_table, __u64 table_size)
{
	__u32 mf_bb_count = 0;
	__u32 grown_bb_count = 0;
	__u32 total_bb_count = 0;
	__u32 remap_mfbb_count = 0;
	__u32 remap_gbb_count = 0;
	__u64 *bb_elem;
	__u64 *elem_end = (__u64 *)(bd_table + table_size);
	__u64 i;

	/*buf should at least have 8bytes for mf_bb_count & total_bb_count*/
	if (!bd_table || table_size < sizeof(__u64))
		return;

	mf_bb_count = *((__u32 *)bd_table);
	grown_bb_count = *((__u32 *)(bd_table + sizeof(__u32)));
	total_bb_count = *((__u32 *)(bd_table + 2 * sizeof(__u32)));
	remap_mfbb_count = *((__u32 *)(bd_table + 3 * sizeof(__u32)));
	remap_gbb_count = *((__u32 *)(bd_table + 4 * sizeof(__u32)));
	bb_elem = (__u64 *)(bd_table + 5 * sizeof(__u32));

	printf("Bad Block Table \n");
	printf("MF_BB_COUNT:		   %u\n", mf_bb_count);
	printf("GROWN_BB_COUNT:		   %u\n", grown_bb_count);
	printf("TOTAL_BB_COUNT:		   %u\n", total_bb_count);
	printf("REMAP_MFBB_COUNT:	   %u\n", remap_mfbb_count);
	printf("REMAP_GBB_COUNT:	   %u\n", remap_gbb_count);

	printf("REMAP_MFBB_TABLE [");
	i = 0;
	while (bb_elem < elem_end && i < remap_mfbb_count) {
		printf(" 0x%llx", *(bb_elem++));
		i++;
	}
	printf(" ]\n");

	printf("REMAP_GBB_TABLE [");
	i = 0;
	while (bb_elem < elem_end && i < remap_gbb_count) {
		printf(" 0x%llx",*(bb_elem++));
		i++;
	}
	printf(" ]\n");
}

/**
 * @brief			"hooks of sfx get-bad-block"
 *
 * @param argc
 * @param argv
 * @param cmd
 * @param plugin
 *
 * @return
 */
static int sfx_get_bad_block(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	int fd;
	unsigned char *data_buf;
	const __u64 buf_size = 256*4096*sizeof(unsigned char);
	int err = 0;

	char *desc = "Get bad block table of sfx block device.";

	OPT_ARGS(opts) = {
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);

	if (fd < 0) {
		return fd;
	}

	data_buf = malloc(buf_size);
	if (!data_buf) {
		fprintf(stderr, "malloc fail, errno %d\r\n", errno);
		return -1;
	}

	err = get_bb_table(fd, 0xffffffff, data_buf, buf_size);
	if (err < 0) {
		perror("get-bad-block");
	} else if (err != 0) {
		fprintf(stderr, "NVMe IO command error:%s(%x)\n",
				nvme_status_to_string(err), err);
	} else {
		bd_table_show(data_buf, buf_size);
		printf("ScaleFlux get bad block table: success\n");
	}

	free(data_buf);
	return 0;
}

static void show_cap_info(struct sfx_freespace_ctx *ctx)
{
	printf("user		  sectors: %#llx\n", ctx->user_space);
	printf("totl physical sectors: %#llx\n", ctx->phy_space);
	printf("free physical sectors: %#llx\n", ctx->free_space);
	printf("used physical sectors: %#llx\n", ctx->phy_space - ctx->free_space);
}

static int query_cap_info(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	struct sfx_freespace_ctx ctx = { 0 };
	int err = 0, fd;
	char *desc = "query current capacity info of vanda";
	const char *raw = "dump output in binary format";
	const char *json= "Dump output in json format";
	struct config {
		int   raw_binary;
		int   json;
	};
	struct config cfg;

	OPT_ARGS(opts) = {
		OPT_FLAG("raw-binary", 'b', &cfg.raw_binary, raw),
		OPT_FLAG("json",	   'j', &cfg.json,		 json),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0) {
		return fd;
	}

	if (ioctl(fd, SFX_GET_FREESPACE, &ctx)) {
		fprintf(stderr, "vu ioctl fail, errno %d\r\n", errno);
		return -1;
	}

	show_cap_info(&ctx);
	return err;
}

static int change_cap_mem_check(int fd, __u64 trg_in_4k)
{
	struct sfx_freespace_ctx freespace_ctx = { 0 };
	struct sysinfo s_info;
	__u64 mem_need = 0;
	__u64 cur_in_4k = 0;
	__u32 cnt_ms = 0;

	while (ioctl(fd, SFX_GET_FREESPACE, &freespace_ctx)) {
		if (cnt_ms++ > 600) {//1min
			fprintf(stderr, "vu ioctl fail, errno %d\r\n", errno);
			return -1;
		}
		usleep(100000);
	}

	cur_in_4k = freespace_ctx.user_space >> (SFX_PAGE_SHIFT - SECTOR_SHIFT);
	if (cur_in_4k > trg_in_4k) {
		return 0;
	}

	if (sysinfo(&s_info) < 0) {
		printf("change-cap query mem info fail\n");
		return -1;
	}

	mem_need = (trg_in_4k - cur_in_4k) * 8;
	if (s_info.freeram <= 10 || mem_need > s_info.freeram) {
		fprintf(stderr, "WARNING: mem needed is %llu, free mem is %lu\n"
			"Insufficient memory, please drop cache or add free memory and retry\n",
			mem_need, s_info.freeram);
		return -1;
	}
	return 0;
}

static int change_cap(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	int err = -1, fd;
	char *desc = "query current capacity info of vanda";
	const char *raw = "dump output in binary format";
	const char *json= "Dump output in json format";
	const char *cap_gb = "cap size in GB";
	const char *cap_byte = "cap size in byte";
	const char *force = "The \"I know what I'm doing\" flag, skip confirmation before sending command";
	__u64 cap_in_4k = 0;
	__u64 cap_in_sec = 0;
	struct config {
		__u64 cap_in_byte;
		__u32 capacity_in_gb;
		int   raw_binary;
		int   json;
		int   force;
	};

	struct config cfg = {
	.cap_in_byte = 0,
	.capacity_in_gb = 0,
	.force = 0,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("cap",			'c',	&cfg.capacity_in_gb,	cap_gb),
		OPT_UINT("cap-byte",	'z',	&cfg.cap_in_byte,		cap_byte),
		OPT_FLAG("force",		'f',	&cfg.force,				force),
		OPT_FLAG("raw-binary",	'b',	&cfg.raw_binary,		raw),
		OPT_FLAG("json",		'j',	&cfg.json,				json),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0) {
		return fd;
	}

	if (!cfg.force) {
		fprintf(stderr, "WARNING: Changing capacity may irrevocably delete user data.\n"
						"You have 10 seconds to press Ctrl-C to cancel this operation.\n\n"
						"Use the force [--force|-f] option to suppress this warning.\n");
		sleep(10);
		fprintf(stderr, "Sending operation ... \n");
	}

	cap_in_sec = IDEMA_CAP(cfg.capacity_in_gb);
	cap_in_4k = cap_in_sec >> 3;
	if (cfg.cap_in_byte)
		cap_in_4k = cfg.cap_in_byte >> 12;
	printf("%dG %lluB %llu 4K\n",
		cfg.capacity_in_gb, cfg.cap_in_byte, cap_in_4k);
	if (change_cap_mem_check(fd, cap_in_4k))
		return err;

	err = nvme_change_cap(fd, 0xffffffff, cap_in_4k);
	if (err < 0)
		perror("sfx-change-cap");
	else if (err != 0)
		fprintf(stderr, "NVMe IO command error:%s(%x)\n",
				nvme_status_to_string(err), err);
	else {
		printf("ScaleFlux change-capacity: success\n");
		if(ioctl(fd, BLKRRPART) < 0) {
			fprintf(stderr, "failed to re-read partition table\n");
			err = EFAULT;
		}
	}
	return err;
}

char *sfx_feature_to_string(int feature)
{
	switch (feature) {
	case SFX_FEAT_ATOMIC:	 return "ATOMIC";

	default:			return "Unknown";
	}
}

static int sfx_set_feature(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	int err = 0, fd;
	char *desc = "ScaleFlux internal set features\n"
				 "feature id 1: ATOMIC";
	const char *value = "new value of feature (required)";
	const char *feature_id = "hex feature name (required)";
	const char *namespace_id = "desired namespace";
	struct nvme_id_ns ns;

	struct config {
		__u32 namespace_id;
		__u32 feature_id;
		__u32 value;
	};
	struct config cfg = {
		.namespace_id = 1,
		.feature_id = 0,
		.value = 0,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("namespace-id",		'n',	&cfg.namespace_id,		namespace_id),
		OPT_UINT("feature-id",			'f',	&cfg.feature_id,		feature_id),
		OPT_UINT("value",				'v',	&cfg.value,				value),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);
	if (fd < 0) {
		return fd;
	}

	if (!cfg.feature_id) {
		fprintf(stderr, "feature-id required param\n");
		return EINVAL;
	}

	if (cfg.feature_id == SFX_FEAT_ATOMIC) {
		if (cfg.namespace_id != 0xffffffff) {
			err = nvme_identify_ns(fd, cfg.namespace_id, 0, &ns);
			if (err) {
				if (err < 0)
					perror("identify-namespace");
				else
					fprintf(stderr,
						"NVMe Admin command error:%s(%x)\n",
						nvme_status_to_string(err), err);
				return err;
			}
			/*
			 * atomic only support with sector-size = 4k now
			 */
			if ((ns.flbas & 0xf) != 1) {
				printf("Please change-sector size to 4K, then retry\n");
				return EFAULT;
			}
		}
	}

	err = nvme_sfx_set_features(fd, cfg.namespace_id, cfg.feature_id, cfg.value);
	if (err < 0) {
		perror("ScaleFlux-set-feature");
		return errno;
	} else if (!err) {
		printf("ScaleFlux set-feature:%02x (%s), value:%#08x\n", cfg.feature_id,
			sfx_feature_to_string(cfg.feature_id), cfg.value);
	} else if (err > 0)
		fprintf(stderr, "NVMe Status:%s(%x)\n",
				nvme_status_to_string(err), err);

	return err;
}

static int sfx_get_feature(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
	int err = 0, fd;
	char *desc = "ScaleFlux internal set features\n"
				 "feature id 1: ATOMIC";
	const char *feature_id = "hex feature name (required)";
	const char *namespace_id = "desired namespace";
	__u32 result = 0;

	struct config {
		__u32 namespace_id;
		__u32 feature_id;
	};
	struct config cfg = {
		.namespace_id = 0,
		.feature_id = 0,
	};

	OPT_ARGS(opts) = {
		OPT_UINT("namespace-id",		'n',	&cfg.namespace_id,		namespace_id),
		OPT_UINT("feature-id",			'f',	&cfg.feature_id,		feature_id),
		OPT_END()
	};

	fd = parse_and_open(argc, argv, desc, opts);

	if (fd < 0) {
		return fd;
	}

	if (!cfg.feature_id) {
		fprintf(stderr, "feature-id required param\n");
		return EINVAL;
	}

	err = nvme_sfx_get_features(fd, cfg.namespace_id, cfg.feature_id, &result);
	if (err < 0) {
		perror("ScaleFlux-get-feature");
		return errno;
	} else if (!err) {
		printf("ScaleFlux get-feature:%02x (%s), value:%d\n", cfg.feature_id,
			sfx_feature_to_string(cfg.feature_id), result);
	} else if (err > 0)
		fprintf(stderr, "NVMe Status:%s(%x)\n",
				nvme_status_to_string(err), err);

	return err;

}