/* LzFind.c -- Match finder for LZ algorithms 2009-04-22 : Igor Pavlov : Public domain */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include "lzip.h" #include "LzFind.h" #define kHash2Size (1 << 10) #define kHash3Size (1 << 16) #define kHash4Size (1 << 20) #define kFix3HashSize (kHash2Size) #define kFix4HashSize (kHash2Size + kHash3Size) #define HASH2_CALC hashValue = cur[0] | ((uint32_t)cur[1] << 8); #define HASH3_CALC { \ uint32_t temp = crc32[cur[0]] ^ cur[1]; \ hash2Value = temp & (kHash2Size - 1); \ hashValue = (temp ^ ((uint32_t)cur[2] << 8)) & p->hashMask; } #define HASH4_CALC { \ uint32_t temp = crc32[cur[0]] ^ cur[1]; \ hash2Value = temp & (kHash2Size - 1); \ hash3Value = (temp ^ ((uint32_t)cur[2] << 8)) & (kHash3Size - 1); \ hashValue = (temp ^ ((uint32_t)cur[2] << 8) ^ (crc32[cur[3]] << 5)) & p->hashMask; } #define kEmptyHashValue 0 #define kMaxValForNormalize ((uint32_t)0xFFFFFFFF) #define kNormalizeStepMin (1 << 10) /* it must be power of 2 */ #define kNormalizeMask (~(kNormalizeStepMin - 1)) #define kStartMaxLen 3 static void Mf_ReadBlock(CMatchFinder *p) { if (p->streamEndWasReached || p->result != SZ_OK) return; for (;;) { uint8_t * const dest = p->buffer + (p->streamPos - p->pos); const int size = (p->bufferBase + p->blockSize - dest); int rd; if (size == 0) return; rd = readblock( p->infd, dest, size ); if (rd != size && errno) { p->result = SZ_ERROR_READ; return; } if (rd == 0) { p->streamEndWasReached = true; return; } CRC32_update_buf( &p->crc, dest, rd ); p->streamPos += rd; if (p->streamPos - p->pos > p->keepSizeAfter) return; } } static void Mf_CheckAndMoveAndRead(CMatchFinder *p) { if ((uint32_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter) { memmove(p->bufferBase, p->buffer - p->keepSizeBefore, p->streamPos - p->pos + p->keepSizeBefore); p->buffer = p->bufferBase + p->keepSizeBefore; } Mf_ReadBlock(p); } void Mf_Free(CMatchFinder *p) { free(p->hash); p->hash = 0; free(p->bufferBase); p->bufferBase = 0; } static CLzRef* AllocRefs(uint32_t num) { uint32_t sizeInBytes = num * sizeof(CLzRef); if (sizeInBytes / sizeof(CLzRef) != num) return 0; return (CLzRef *)malloc(sizeInBytes); } static void Mf_SetLimits(CMatchFinder *p) { uint32_t limit = kMaxValForNormalize - p->pos; uint32_t limit2 = p->cyclicBufferSize - p->cyclicBufferPos; if (limit2 < limit) limit = limit2; limit2 = p->streamPos - p->pos; if (limit2 <= p->keepSizeAfter) { if (limit2 > 0) limit2 = 1; } else limit2 -= p->keepSizeAfter; if (limit2 < limit) limit = limit2; { uint32_t lenLimit = p->streamPos - p->pos; if (lenLimit > p->matchMaxLen) lenLimit = p->matchMaxLen; p->lenLimit = lenLimit; } p->posLimit = p->pos + limit; } int Mf_Init(CMatchFinder *p, const int ifd, const int mc, uint32_t historySize, uint32_t keepAddBufferBefore, uint32_t matchMaxLen, uint32_t keepAddBufferAfter) { const uint32_t sizeReserv = ( historySize >> 1 ) + (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19); p->hash = 0; p->cutValue = mc; p->infd = ifd; p->btMode = true; p->numHashBytes = 4; p->crc = 0xFFFFFFFFU; p->keepSizeBefore = historySize + keepAddBufferBefore + 1; p->keepSizeAfter = matchMaxLen + keepAddBufferAfter; /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */ /* keepSizeBefore + keepSizeAfter + sizeReserv must be < 4G) */ p->blockSize = p->keepSizeBefore + p->keepSizeAfter + sizeReserv; p->buffer = p->bufferBase = (uint8_t *)malloc(p->blockSize); if( p->bufferBase ) { uint32_t newCyclicBufferSize = historySize + 1; uint32_t hs; p->matchMaxLen = matchMaxLen; { if (p->numHashBytes == 2) hs = (1 << 16) - 1; else { hs = historySize - 1; hs |= (hs >> 1); hs |= (hs >> 2); hs |= (hs >> 4); hs |= (hs >> 8); hs >>= 1; hs |= 0xFFFF; /* don't change it! It's required for Deflate */ if (hs > (1 << 24)) { if (p->numHashBytes == 3) hs = (1 << 24) - 1; else hs >>= 1; } } p->hashMask = hs; hs++; if (p->numHashBytes > 2) hs += kHash2Size; if (p->numHashBytes > 3) hs += kHash3Size; if (p->numHashBytes > 4) hs += kHash4Size; } { uint32_t newSize; p->historySize = historySize; p->hashSizeSum = hs; p->cyclicBufferSize = newCyclicBufferSize; p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize); newSize = p->hashSizeSum + p->numSons; p->hash = AllocRefs(newSize); if (p->hash != 0) { uint32_t i; p->son = p->hash + p->hashSizeSum; for (i = 0; i < p->hashSizeSum; i++) p->hash[i] = kEmptyHashValue; p->cyclicBufferPos = 0; p->pos = p->streamPos = p->cyclicBufferSize; p->result = SZ_OK; p->streamEndWasReached = false; Mf_ReadBlock(p); Mf_SetLimits(p); return 1; } } } Mf_Free(p); return 0; } static void Mf_Normalize3(uint32_t subValue, CLzRef *items, uint32_t numItems) { uint32_t i; for (i = 0; i < numItems; i++) { uint32_t value = items[i]; if (value <= subValue) value = kEmptyHashValue; else value -= subValue; items[i] = value; } } static void Mf_Normalize(CMatchFinder *p) { uint32_t subValue = (p->pos - p->historySize - 1) & kNormalizeMask; Mf_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons); p->posLimit -= subValue; p->pos -= subValue; p->streamPos -= subValue; } static void Mf_CheckLimits(CMatchFinder *p) { if (p->pos == kMaxValForNormalize) Mf_Normalize(p); if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos) Mf_CheckAndMoveAndRead(p); if (p->cyclicBufferPos == p->cyclicBufferSize) p->cyclicBufferPos = 0; Mf_SetLimits(p); } static uint32_t * Hc_GetMatchesSpec(uint32_t lenLimit, uint32_t curMatch, uint32_t pos, const uint8_t *cur, CLzRef *son, uint32_t _cyclicBufferPos, uint32_t _cyclicBufferSize, uint32_t cutValue, uint32_t *distances, uint32_t maxLen) { son[_cyclicBufferPos] = curMatch; for (;;) { uint32_t delta = pos - curMatch; if (cutValue-- == 0 || delta >= _cyclicBufferSize) return distances; { const uint8_t *pb = cur - delta; curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)]; if (pb[maxLen] == cur[maxLen] && *pb == *cur) { uint32_t len = 0; while (++len != lenLimit) if (pb[len] != cur[len]) break; if (maxLen < len) { *distances++ = maxLen = len; *distances++ = delta - 1; if (len == lenLimit) return distances; } } } } } static uint32_t * GetMatchesSpec1( uint32_t lenLimit, uint32_t curMatch, uint32_t pos, const uint8_t *cur, CLzRef *son, uint32_t _cyclicBufferPos, uint32_t _cyclicBufferSize, uint32_t cutValue, uint32_t *distances, uint32_t maxLen ) { CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1; CLzRef *ptr1 = son + (_cyclicBufferPos << 1); uint32_t len0 = 0, len1 = 0; for (;;) { uint32_t delta = pos - curMatch; if (cutValue-- == 0 || delta >= _cyclicBufferSize) { *ptr0 = *ptr1 = kEmptyHashValue; return distances; } { CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1); const uint8_t *pb = cur - delta; uint32_t len = (len0 < len1 ? len0 : len1); if (pb[len] == cur[len]) { if (++len != lenLimit && pb[len] == cur[len]) while (++len != lenLimit) if (pb[len] != cur[len]) break; if (maxLen < len) { *distances++ = maxLen = len; *distances++ = delta - 1; if (len == lenLimit) { *ptr1 = pair[0]; *ptr0 = pair[1]; return distances; } } } if (pb[len] < cur[len]) { *ptr1 = curMatch; ptr1 = pair + 1; curMatch = *ptr1; len1 = len; } else { *ptr0 = curMatch; ptr0 = pair; curMatch = *ptr0; len0 = len; } } } } static void SkipMatchesSpec(uint32_t lenLimit, uint32_t curMatch, uint32_t pos, const uint8_t *cur, CLzRef *son, uint32_t _cyclicBufferPos, uint32_t _cyclicBufferSize, uint32_t cutValue) { CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1; CLzRef *ptr1 = son + (_cyclicBufferPos << 1); uint32_t len0 = 0, len1 = 0; for (;;) { uint32_t delta = pos - curMatch; if (cutValue-- == 0 || delta >= _cyclicBufferSize) { *ptr0 = *ptr1 = kEmptyHashValue; return; } { CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1); const uint8_t *pb = cur - delta; uint32_t len = (len0 < len1 ? len0 : len1); if (pb[len] == cur[len]) { while (++len != lenLimit) if (pb[len] != cur[len]) break; { if (len == lenLimit) { *ptr1 = pair[0]; *ptr0 = pair[1]; return; } } } if (pb[len] < cur[len]) { *ptr1 = curMatch; ptr1 = pair + 1; curMatch = *ptr1; len1 = len; } else { *ptr0 = curMatch; ptr0 = pair; curMatch = *ptr0; len0 = len; } } } } #define MOVE_POS \ ++p->cyclicBufferPos; \ p->buffer++; \ if (++p->pos == p->posLimit) Mf_CheckLimits(p); #define MOVE_POS_RET MOVE_POS return offset; static void Mf_MovePos(CMatchFinder *p) { MOVE_POS; } #define GET_MATCHES_HEADER2(minLen, ret_op) \ uint32_t lenLimit; uint32_t hashValue; const uint8_t *cur; uint32_t curMatch; \ lenLimit = p->lenLimit; { if (lenLimit < minLen) { Mf_MovePos(p); ret_op; }} \ cur = p->buffer; #define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0) #define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue) #define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue #define GET_MATCHES_FOOTER(offset, maxLen) \ offset = (uint32_t)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \ distances + offset, maxLen) - distances); MOVE_POS_RET; #define SKIP_FOOTER \ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS; static uint32_t Bt2_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t offset; GET_MATCHES_HEADER(2) HASH2_CALC; curMatch = p->hash[hashValue]; p->hash[hashValue] = p->pos; offset = 0; GET_MATCHES_FOOTER(offset, 1) } static uint32_t Bt3_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t hash2Value, delta2, maxLen, offset; GET_MATCHES_HEADER(3) HASH3_CALC; delta2 = p->pos - p->hash[hash2Value]; curMatch = p->hash[kFix3HashSize + hashValue]; p->hash[hash2Value] = p->hash[kFix3HashSize + hashValue] = p->pos; maxLen = 2; offset = 0; if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) { for (; maxLen != lenLimit; maxLen++) if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) break; distances[0] = maxLen; distances[1] = delta2 - 1; offset = 2; if (maxLen == lenLimit) { SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS_RET; } } GET_MATCHES_FOOTER(offset, maxLen) } static uint32_t Bt4_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t hash2Value, hash3Value, delta2, delta3, maxLen, offset; GET_MATCHES_HEADER(4) HASH4_CALC; delta2 = p->pos - p->hash[ hash2Value]; delta3 = p->pos - p->hash[kFix3HashSize + hash3Value]; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->hash[kFix4HashSize + hashValue] = p->pos; maxLen = 1; offset = 0; if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) { distances[0] = maxLen = 2; distances[1] = delta2 - 1; offset = 2; } if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur) { maxLen = 3; distances[offset + 1] = delta3 - 1; offset += 2; delta2 = delta3; } if (offset != 0) { for (; maxLen != lenLimit; maxLen++) if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) break; distances[offset - 2] = maxLen; if (maxLen == lenLimit) { SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS_RET; } } if (maxLen < 3) maxLen = 3; GET_MATCHES_FOOTER(offset, maxLen) } static uint32_t Hc4_MatchFinder_GetMatches(CMatchFinder *p, uint32_t *distances) { uint32_t hash2Value, hash3Value, delta2, delta3, maxLen, offset; GET_MATCHES_HEADER(4) HASH4_CALC; delta2 = p->pos - p->hash[ hash2Value]; delta3 = p->pos - p->hash[kFix3HashSize + hash3Value]; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->hash[kFix4HashSize + hashValue] = p->pos; maxLen = 1; offset = 0; if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) { distances[0] = maxLen = 2; distances[1] = delta2 - 1; offset = 2; } if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur) { maxLen = 3; distances[offset + 1] = delta3 - 1; offset += 2; delta2 = delta3; } if (offset != 0) { for (; maxLen != lenLimit; maxLen++) if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) break; distances[offset - 2] = maxLen; if (maxLen == lenLimit) { p->son[p->cyclicBufferPos] = curMatch; MOVE_POS_RET; } } if (maxLen < 3) maxLen = 3; offset = (uint32_t)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p), distances + offset, maxLen) - (distances)); MOVE_POS_RET } static void Bt2_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { SKIP_HEADER(2) HASH2_CALC; curMatch = p->hash[hashValue]; p->hash[hashValue] = p->pos; SKIP_FOOTER } while (--num != 0); } static void Bt3_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { uint32_t hash2Value; SKIP_HEADER(3) HASH3_CALC; curMatch = p->hash[kFix3HashSize + hashValue]; p->hash[hash2Value] = p->hash[kFix3HashSize + hashValue] = p->pos; SKIP_FOOTER } while (--num != 0); } static void Bt4_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { uint32_t hash2Value, hash3Value; SKIP_HEADER(4) HASH4_CALC; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->pos; p->hash[kFix4HashSize + hashValue] = p->pos; SKIP_FOOTER } while (--num != 0); } static void Hc4_MatchFinder_Skip(CMatchFinder *p, uint32_t num) { do { uint32_t hash2Value, hash3Value; SKIP_HEADER(4) HASH4_CALC; curMatch = p->hash[kFix4HashSize + hashValue]; p->hash[ hash2Value] = p->hash[kFix3HashSize + hash3Value] = p->hash[kFix4HashSize + hashValue] = p->pos; p->son[p->cyclicBufferPos] = curMatch; MOVE_POS } while (--num != 0); } void Mf_CreateVTable(CMatchFinder *p, IMatchFinder *vTable) { if (!p->btMode) { vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip; } else if (p->numHashBytes == 2) { vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip; } else if (p->numHashBytes == 3) { vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip; } else { vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches; vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip; } }