/* Plzip - Massively parallel implementation of lzip
Copyright (C) 2009 Laszlo Ersek.
Copyright (C) 2009-2019 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "lzip.h"
#ifndef LLONG_MAX
#define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL
#endif
// Returns the number of bytes really read.
// If (returned value < size) and (errno == 0), means EOF was reached.
//
int readblock( const int fd, uint8_t * const buf, const int size )
{
int sz = 0;
errno = 0;
while( sz < size )
{
const int n = read( fd, buf + sz, size - sz );
if( n > 0 ) sz += n;
else if( n == 0 ) break; // EOF
else if( errno != EINTR ) break;
errno = 0;
}
return sz;
}
// Returns the number of bytes really written.
// If (returned value < size), it is always an error.
//
int writeblock( const int fd, const uint8_t * const buf, const int size )
{
int sz = 0;
errno = 0;
while( sz < size )
{
const int n = write( fd, buf + sz, size - sz );
if( n > 0 ) sz += n;
else if( n < 0 && errno != EINTR ) break;
errno = 0;
}
return sz;
}
void xinit_mutex( pthread_mutex_t * const mutex )
{
const int errcode = pthread_mutex_init( mutex, 0 );
if( errcode )
{ show_error( "pthread_mutex_init", errcode ); cleanup_and_fail(); }
}
void xinit_cond( pthread_cond_t * const cond )
{
const int errcode = pthread_cond_init( cond, 0 );
if( errcode )
{ show_error( "pthread_cond_init", errcode ); cleanup_and_fail(); }
}
void xdestroy_mutex( pthread_mutex_t * const mutex )
{
const int errcode = pthread_mutex_destroy( mutex );
if( errcode )
{ show_error( "pthread_mutex_destroy", errcode ); cleanup_and_fail(); }
}
void xdestroy_cond( pthread_cond_t * const cond )
{
const int errcode = pthread_cond_destroy( cond );
if( errcode )
{ show_error( "pthread_cond_destroy", errcode ); cleanup_and_fail(); }
}
void xlock( pthread_mutex_t * const mutex )
{
const int errcode = pthread_mutex_lock( mutex );
if( errcode )
{ show_error( "pthread_mutex_lock", errcode ); cleanup_and_fail(); }
}
void xunlock( pthread_mutex_t * const mutex )
{
const int errcode = pthread_mutex_unlock( mutex );
if( errcode )
{ show_error( "pthread_mutex_unlock", errcode ); cleanup_and_fail(); }
}
void xwait( pthread_cond_t * const cond, pthread_mutex_t * const mutex )
{
const int errcode = pthread_cond_wait( cond, mutex );
if( errcode )
{ show_error( "pthread_cond_wait", errcode ); cleanup_and_fail(); }
}
void xsignal( pthread_cond_t * const cond )
{
const int errcode = pthread_cond_signal( cond );
if( errcode )
{ show_error( "pthread_cond_signal", errcode ); cleanup_and_fail(); }
}
void xbroadcast( pthread_cond_t * const cond )
{
const int errcode = pthread_cond_broadcast( cond );
if( errcode )
{ show_error( "pthread_cond_broadcast", errcode ); cleanup_and_fail(); }
}
namespace {
unsigned long long in_size = 0;
unsigned long long out_size = 0;
const char * const mem_msg = "Not enough memory. Try a smaller dictionary size";
struct Packet // data block with a serial number
{
uint8_t * data;
int size; // number of bytes in data (if any)
unsigned id; // serial number assigned as received
Packet() : data( 0 ), size( 0 ), id( 0 ) {}
void init( uint8_t * const d, const int s, const unsigned i )
{ data = d; size = s; id = i; }
};
class Packet_courier // moves packets around
{
public:
unsigned icheck_counter;
unsigned iwait_counter;
unsigned ocheck_counter;
unsigned owait_counter;
private:
unsigned receive_id; // id assigned to next packet received
unsigned distrib_id; // id of next packet to be distributed
unsigned deliver_id; // id of next packet to be delivered
Slot_tally slot_tally; // limits the number of input packets
std::vector< Packet > circular_ibuffer;
std::vector< const Packet * > circular_obuffer;
int num_working; // number of workers still running
const int num_slots; // max packets in circulation
pthread_mutex_t imutex;
pthread_cond_t iav_or_eof; // input packet available or splitter done
pthread_mutex_t omutex;
pthread_cond_t oav_or_exit; // output packet available or all workers exited
bool eof; // splitter done
Packet_courier( const Packet_courier & ); // declared as private
void operator=( const Packet_courier & ); // declared as private
public:
Packet_courier( const int workers, const int slots )
: icheck_counter( 0 ), iwait_counter( 0 ),
ocheck_counter( 0 ), owait_counter( 0 ),
receive_id( 0 ), distrib_id( 0 ), deliver_id( 0 ),
slot_tally( slots ), circular_ibuffer( slots ),
circular_obuffer( slots, (const Packet *) 0 ),
num_working( workers ), num_slots( slots ), eof( false )
{
xinit_mutex( &imutex ); xinit_cond( &iav_or_eof );
xinit_mutex( &omutex ); xinit_cond( &oav_or_exit );
}
~Packet_courier()
{
xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex );
xdestroy_cond( &iav_or_eof ); xdestroy_mutex( &imutex );
}
// fill a packet with data received from splitter
void receive_packet( uint8_t * const data, const int size )
{
slot_tally.get_slot(); // wait for a free slot
xlock( &imutex );
circular_ibuffer[receive_id % num_slots].init( data, size, receive_id );
++receive_id;
xsignal( &iav_or_eof );
xunlock( &imutex );
}
// distribute a packet to a worker
Packet * distribute_packet()
{
Packet * ipacket = 0;
xlock( &imutex );
++icheck_counter;
while( receive_id == distrib_id && !eof ) // no packets to distribute
{
++iwait_counter;
xwait( &iav_or_eof, &imutex );
}
if( receive_id != distrib_id )
{ ipacket = &circular_ibuffer[distrib_id % num_slots]; ++distrib_id; }
xunlock( &imutex );
if( !ipacket ) // EOF
{
// notify muxer when last worker exits
xlock( &omutex );
if( --num_working == 0 ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
return ipacket;
}
// collect a packet from a worker
void collect_packet( const Packet * const opacket )
{
const int i = opacket->id % num_slots;
xlock( &omutex );
// id collision shouldn't happen
if( circular_obuffer[i] != 0 )
internal_error( "id collision in collect_packet." );
// merge packet into circular buffer
circular_obuffer[i] = opacket;
if( opacket->id == deliver_id ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
// deliver packets to muxer
void deliver_packets( std::vector< const Packet * > & packet_vector )
{
xlock( &omutex );
++ocheck_counter;
int i = deliver_id % num_slots;
while( circular_obuffer[i] == 0 && num_working > 0 )
{
++owait_counter;
xwait( &oav_or_exit, &omutex );
}
packet_vector.clear();
while( true )
{
const Packet * const opacket = circular_obuffer[i];
if( !opacket ) break;
packet_vector.push_back( opacket );
circular_obuffer[i] = 0;
++deliver_id;
i = deliver_id % num_slots;
}
xunlock( &omutex );
}
void return_empty_packet() // return a slot to the tally
{ slot_tally.leave_slot(); }
void finish() // splitter has no more packets to send
{
xlock( &imutex );
eof = true;
xbroadcast( &iav_or_eof );
xunlock( &imutex );
}
bool finished() // all packets delivered to muxer
{
if( !slot_tally.all_free() || !eof || receive_id != distrib_id ||
num_working != 0 ) return false;
for( int i = 0; i < num_slots; ++i )
if( circular_obuffer[i] != 0 ) return false;
return true;
}
};
struct Splitter_arg
{
Packet_courier * courier;
const Pretty_print * pp;
int infd;
int data_size;
int offset;
};
// split data from input file into chunks and pass them to
// courier for packaging and distribution to workers.
extern "C" void * csplitter( void * arg )
{
const Splitter_arg & tmp = *(const Splitter_arg *)arg;
Packet_courier & courier = *tmp.courier;
const Pretty_print & pp = *tmp.pp;
const int infd = tmp.infd;
const int data_size = tmp.data_size;
const int offset = tmp.offset;
for( bool first_post = true; ; first_post = false )
{
uint8_t * const data = new( std::nothrow ) uint8_t[offset+data_size];
if( !data ) { pp( mem_msg ); cleanup_and_fail(); }
const int size = readblock( infd, data + offset, data_size );
if( size != data_size && errno )
{ pp(); show_error( "Read error", errno ); cleanup_and_fail(); }
if( size > 0 || first_post ) // first packet may be empty
{
in_size += size;
courier.receive_packet( data, size );
if( size < data_size ) break; // EOF
}
else
{
delete[] data;
break;
}
}
courier.finish(); // no more packets to send
return 0;
}
struct Worker_arg
{
Packet_courier * courier;
const Pretty_print * pp;
int dictionary_size;
int match_len_limit;
int offset;
};
// get packets from courier, replace their contents, and return
// them to courier.
extern "C" void * cworker( void * arg )
{
const Worker_arg & tmp = *(const Worker_arg *)arg;
Packet_courier & courier = *tmp.courier;
const Pretty_print & pp = *tmp.pp;
const int dictionary_size = tmp.dictionary_size;
const int match_len_limit = tmp.match_len_limit;
const int offset = tmp.offset;
LZ_Encoder * encoder = 0;
while( true )
{
Packet * const packet = courier.distribute_packet();
if( !packet ) break; // no more packets to process
if( !encoder )
{
const bool fast = dictionary_size == 65535 && match_len_limit == 16;
const int dict_size = fast ? dictionary_size :
std::max( std::min( dictionary_size, packet->size ),
LZ_min_dictionary_size() );
encoder = LZ_compress_open( dict_size, match_len_limit, LLONG_MAX );
if( !encoder || LZ_compress_errno( encoder ) != LZ_ok )
{
if( !encoder || LZ_compress_errno( encoder ) == LZ_mem_error )
pp( mem_msg );
else
internal_error( "invalid argument to encoder." );
cleanup_and_fail();
}
}
else
if( LZ_compress_restart_member( encoder, LLONG_MAX ) < 0 )
{ pp( "LZ_compress_restart_member failed." ); cleanup_and_fail(); }
int written = 0;
int new_pos = 0;
while( true )
{
if( written < packet->size )
{
const int wr = LZ_compress_write( encoder,
packet->data + offset + written,
packet->size - written );
if( wr < 0 ) internal_error( "library error (LZ_compress_write)." );
written += wr;
}
if( written >= packet->size ) LZ_compress_finish( encoder );
const int rd = LZ_compress_read( encoder, packet->data + new_pos,
offset + written - new_pos );
if( rd < 0 )
{
pp();
if( verbosity >= 0 )
std::fprintf( stderr, "LZ_compress_read error: %s\n",
LZ_strerror( LZ_compress_errno( encoder ) ) );
cleanup_and_fail();
}
new_pos += rd;
if( new_pos >= offset + written )
internal_error( "packet size exceeded in worker." );
if( LZ_compress_finished( encoder ) == 1 ) break;
}
if( packet->size > 0 ) show_progress( packet->size );
packet->size = new_pos;
courier.collect_packet( packet );
}
if( encoder && LZ_compress_close( encoder ) < 0 )
{ pp( "LZ_compress_close failed." ); cleanup_and_fail(); }
return 0;
}
// get from courier the processed and sorted packets, and write
// their contents to the output file.
void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd )
{
std::vector< const Packet * > packet_vector;
while( true )
{
courier.deliver_packets( packet_vector );
if( packet_vector.empty() ) break; // all workers exited
for( unsigned i = 0; i < packet_vector.size(); ++i )
{
const Packet * const opacket = packet_vector[i];
out_size += opacket->size;
const int wr = writeblock( outfd, opacket->data, opacket->size );
if( wr != opacket->size )
{ pp(); show_error( "Write error", errno ); cleanup_and_fail(); }
delete[] opacket->data;
courier.return_empty_packet();
}
}
}
} // end namespace
// init the courier, then start the splitter and the workers and
// call the muxer.
int compress( const unsigned long long cfile_size,
const int data_size, const int dictionary_size,
const int match_len_limit, const int num_workers,
const int infd, const int outfd,
const Pretty_print & pp, const int debug_level )
{
const int offset = data_size / 8;
const int slots_per_worker = 2;
const int num_slots =
( ( num_workers > 1 ) ? num_workers * slots_per_worker : 1 );
in_size = 0;
out_size = 0;
Packet_courier courier( num_workers, num_slots );
Splitter_arg splitter_arg;
splitter_arg.courier = &courier;
splitter_arg.pp = &pp;
splitter_arg.infd = infd;
splitter_arg.data_size = data_size;
splitter_arg.offset = offset;
pthread_t splitter_thread;
int errcode = pthread_create( &splitter_thread, 0, csplitter, &splitter_arg );
if( errcode )
{ show_error( "Can't create splitter thread", errcode ); cleanup_and_fail(); }
if( verbosity >= 1 ) pp();
show_progress( 0, cfile_size, &pp ); // init
Worker_arg worker_arg;
worker_arg.courier = &courier;
worker_arg.pp = &pp;
worker_arg.dictionary_size = dictionary_size;
worker_arg.match_len_limit = match_len_limit;
worker_arg.offset = offset;
pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
if( !worker_threads ) { pp( mem_msg ); cleanup_and_fail(); }
for( int i = 0; i < num_workers; ++i )
{
errcode = pthread_create( worker_threads + i, 0, cworker, &worker_arg );
if( errcode )
{ show_error( "Can't create worker threads", errcode ); cleanup_and_fail(); }
}
muxer( courier, pp, outfd );
for( int i = num_workers - 1; i >= 0; --i )
{
errcode = pthread_join( worker_threads[i], 0 );
if( errcode )
{ show_error( "Can't join worker threads", errcode ); cleanup_and_fail(); }
}
delete[] worker_threads;
errcode = pthread_join( splitter_thread, 0 );
if( errcode )
{ show_error( "Can't join splitter thread", errcode ); cleanup_and_fail(); }
if( verbosity >= 1 )
{
if( in_size == 0 || out_size == 0 )
std::fputs( " no data compressed.\n", stderr );
else
std::fprintf( stderr, "%6.3f:1, %5.2f%% ratio, %5.2f%% saved, "
"%llu in, %llu out.\n",
(double)in_size / out_size,
( 100.0 * out_size ) / in_size,
100.0 - ( ( 100.0 * out_size ) / in_size ),
in_size, out_size );
}
if( debug_level & 1 )
std::fprintf( stderr,
"any worker tried to consume from splitter %8u times\n"
"any worker had to wait %8u times\n"
"muxer tried to consume from workers %8u times\n"
"muxer had to wait %8u times\n",
courier.icheck_counter,
courier.iwait_counter,
courier.ocheck_counter,
courier.owait_counter );
if( !courier.finished() ) internal_error( "courier not finished." );
return 0;
}