/* Plzip - A parallel compressor compatible with lzip
Copyright (C) 2009 Laszlo Ersek.
Copyright (C) 2009, 2010 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "plzip.h"
#ifndef LLONG_MAX
#define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL
#endif
#ifndef LLONG_MIN
#define LLONG_MIN (-LLONG_MAX - 1LL)
#endif
#ifndef ULLONG_MAX
#define ULLONG_MAX 0xFFFFFFFFFFFFFFFFULL
#endif
void xinit( pthread_cond_t * cond, pthread_mutex_t * mutex )
{
int ret = pthread_mutex_init( mutex, 0 );
if( ret != 0 ) { show_error( "pthread_mutex_init", ret ); fatal(); }
ret = pthread_cond_init( cond, 0 );
if( ret != 0 ) { show_error( "pthread_cond_init", ret ); fatal(); }
}
void xdestroy( pthread_cond_t * cond, pthread_mutex_t * mutex )
{
int ret = pthread_cond_destroy( cond );
if( ret != 0 ) { show_error( "pthread_cond_destroy", ret ); fatal(); }
ret = pthread_mutex_destroy( mutex );
if( ret != 0 ) { show_error( "pthread_mutex_destroy", ret ); fatal(); }
}
void xlock( pthread_mutex_t * mutex )
{
int ret = pthread_mutex_lock( mutex );
if( ret != 0 ) { show_error( "pthread_mutex_lock", ret ); fatal(); }
}
void xunlock( pthread_mutex_t * mutex )
{
int ret = pthread_mutex_unlock( mutex );
if( ret != 0 ) { show_error( "pthread_mutex_unlock", ret ); fatal(); }
}
void xwait( pthread_cond_t * cond, pthread_mutex_t * mutex )
{
int ret = pthread_cond_wait( cond, mutex );
if( ret != 0 ) { show_error( "pthread_cond_wait", ret ); fatal(); }
}
void xsignal( pthread_cond_t * cond )
{
int ret = pthread_cond_signal( cond );
if( ret != 0 ) { show_error( "pthread_cond_signal", ret ); fatal(); }
}
void xbroadcast( pthread_cond_t * cond )
{
int ret = pthread_cond_broadcast( cond );
if( ret != 0 ) { show_error( "pthread_cond_broadcast", ret ); fatal(); }
}
void xcreate( pthread_t *thread, void *(*routine)(void *), void *arg )
{
int ret = pthread_create( thread, 0, routine, arg );
if( ret != 0 ) { show_error( "pthread_create", ret ); fatal(); }
}
void xjoin( pthread_t thread )
{
int ret = pthread_join( thread, 0 );
if( ret != 0 ) { show_error( "pthread_join", ret ); fatal(); }
}
namespace {
long long in_size = 0;
long long out_size = 0;
struct Packet // data block with a serial number
{
unsigned long long id; // serial number assigned as received
int size; // # of bytes in data
uint8_t * data;
};
class Packet_courier // moves packets around
{
public:
unsigned long icheck_counter;
unsigned long iwait_counter;
unsigned long ocheck_counter;
unsigned long owait_counter;
private:
unsigned long long receive_id; // id assigned to next packet received
unsigned long long deliver_id; // id of next packet to be delivered
Slot_tally slot_tally;
std::queue< Packet * > packet_queue;
std::vector< Packet * > circular_buffer;
int num_working; // Number of workers still running
const int num_slots; // max packets in circulation
pthread_mutex_t imutex;
pthread_cond_t iav_or_eof; // input packet available or splitter done
pthread_mutex_t omutex;
pthread_cond_t oav_or_exit; // output packet available or all workers exited
bool eof; // splitter done
public:
Packet_courier( const int num_workers, const int slots )
: icheck_counter( 0 ), iwait_counter( 0 ),
ocheck_counter( 0 ), owait_counter( 0 ),
receive_id( 0 ), deliver_id( 0 ),
slot_tally( slots ), circular_buffer( slots, (Packet *) 0 ),
num_working( num_workers ), num_slots( slots ), eof( false )
{ xinit( &iav_or_eof, &imutex ); xinit( &oav_or_exit, &omutex ); }
~Packet_courier()
{ xdestroy( &iav_or_eof, &imutex ); xdestroy( &oav_or_exit, &omutex ); }
// make a packet with data received from splitter
void receive_packet( uint8_t * const data, const int size )
{
Packet * ipacket = new Packet;
ipacket->id = receive_id++;
ipacket->size = size;
ipacket->data = data;
slot_tally.get_slot(); // wait for a free slot
xlock( &imutex );
packet_queue.push( ipacket );
xsignal( &iav_or_eof );
xunlock( &imutex );
}
// distribute a packet to a worker
Packet * distribute_packet()
{
Packet * ipacket = 0;
xlock( &imutex );
++icheck_counter;
while( packet_queue.empty() && !eof )
{
++iwait_counter;
xwait( &iav_or_eof, &imutex );
}
if( !packet_queue.empty() )
{
ipacket = packet_queue.front();
packet_queue.pop();
}
xunlock( &imutex );
if( ipacket == 0 )
{
// Notify muxer when last worker exits
xlock( &omutex );
if( --num_working == 0 )
xsignal( &oav_or_exit );
xunlock( &omutex );
}
return ipacket;
}
// collect a packet from a worker
void collect_packet( Packet * const opacket )
{
xlock( &omutex );
// id collision shouldn't happen
assert( circular_buffer[opacket->id%num_slots] == 0 );
// Merge packet into circular buffer
circular_buffer[opacket->id%num_slots] = opacket;
if( opacket->id == deliver_id ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
// deliver a packet to muxer
Packet * deliver_packet()
{
xlock( &omutex );
++ocheck_counter;
while( circular_buffer[deliver_id%num_slots] == 0 && num_working > 0 )
{
++owait_counter;
xwait( &oav_or_exit, &omutex );
}
Packet * opacket = circular_buffer[deliver_id%num_slots];
circular_buffer[deliver_id%num_slots] = 0;
++deliver_id;
xunlock( &omutex );
if( opacket != 0 )
slot_tally.leave_slot(); // return a slot to the tally
return opacket;
}
void finish() // splitter has no more packets to send
{
xlock( &imutex );
eof = true;
xbroadcast( &iav_or_eof );
xunlock( &imutex );
}
bool finished() // all packets delivered to muxer
{
if( !slot_tally.all_free() || !eof || !packet_queue.empty() ||
num_working != 0 ) return false;
for( int i = 0; i < num_slots; ++i )
if( circular_buffer[i] != 0 ) return false;
return true;
}
const Slot_tally & tally() const { return slot_tally; }
};
struct Splitter_arg
{
Packet_courier * courier;
int infd;
int data_size;
};
// split data from input file into chunks and pass them to
// courier for packaging and distribution to workers.
void * splitter( void * arg )
{
const Splitter_arg & tmp = *(Splitter_arg *)arg;
Packet_courier & courier = *tmp.courier;
const int infd = tmp.infd;
const int data_size = tmp.data_size;
for( bool first_post = true; ; first_post = false )
{
uint8_t * data = new( std::nothrow ) uint8_t[data_size];
if( data == 0 ) { show_error( "not enough memory" ); fatal(); }
const int size = readblock( infd, data, data_size );
if( size != data_size && errno ) { show_error( "read", errno ); fatal(); }
if( size > 0 || first_post ) // first packet can be empty
{
in_size += size;
courier.receive_packet( data, size );
}
else
{
delete[] data;
courier.finish(); // no more packets to send
break;
}
}
return 0;
}
struct Worker_arg
{
int dictionary_size;
int match_len_limit;
Packet_courier * courier;
};
// get packets from courier, replace their contents, and return
// them to courier.
void * worker( void * arg )
{
const Worker_arg & tmp = *(Worker_arg *)arg;
const int dictionary_size = tmp.dictionary_size;
const int match_len_limit = tmp.match_len_limit;
Packet_courier & courier = *tmp.courier;
while( true )
{
Packet * packet = courier.distribute_packet();
if( packet == 0 ) break; // no more packets to process
const int compr_size = 42 + packet->size + ( ( packet->size + 7 ) / 8 );
uint8_t * const new_data = new( std::nothrow ) uint8_t[compr_size];
if( new_data == 0 ) { show_error( "not enough memory" ); fatal(); }
const int dict_size = std::max( LZ_min_dictionary_size(),
std::min( dictionary_size, packet->size ) );
LZ_Encoder * const encoder =
LZ_compress_open( dict_size, match_len_limit, LLONG_MAX );
if( !encoder || LZ_compress_errno( encoder ) != LZ_ok )
{ show_error( "LZ_compress_open failed." ); fatal(); }
int written = 0;
int new_size = 0;
while( true )
{
if( LZ_compress_write_size( encoder ) > 0 )
{
if( written < packet->size )
{
const int wr = LZ_compress_write( encoder, packet->data + written,
packet->size - written );
if( wr < 0 ) { show_error( "LZ_compress_write failed." ); fatal(); }
written += wr;
}
if( written >= packet->size ) LZ_compress_finish( encoder );
}
const int rd = LZ_compress_read( encoder, new_data + new_size,
compr_size - new_size );
if( rd < 0 ) { show_error( "LZ_compress_read failed." ); fatal(); }
new_size += rd;
assert( new_size <= compr_size );
if( LZ_compress_finished( encoder ) == 1 ) break;
}
if( LZ_compress_close( encoder ) < 0 )
{ show_error( "LZ_compress_close failed." ); fatal(); }
delete[] packet->data;
packet->size = new_size;
packet->data = new_data;
courier.collect_packet( packet );
}
return 0;
}
// get from courier the processed and sorted packets, and write
// their contents to the output file.
void muxer( Packet_courier & courier, const int outfd )
{
while( true )
{
Packet * opacket = courier.deliver_packet();
if( opacket == 0 ) break; // queue is empty. all workers exited
out_size += opacket->size;
if( outfd >= 0 )
{
const int wr = writeblock( outfd, opacket->data, opacket->size );
if( wr != opacket->size )
{ show_error( "write", errno ); fatal(); }
}
delete[] opacket->data;
delete opacket;
}
}
} // end namespace
// init the courier, then start the splitter and the workers and
// call the muxer.
int compress( const int data_size, const int dictionary_size,
const int match_len_limit, const int num_workers,
const int num_slots, const int infd, const int outfd,
const int debug_level )
{
in_size = 0;
out_size = 0;
Packet_courier courier( num_workers, num_slots );
Splitter_arg splitter_arg;
splitter_arg.courier = &courier;
splitter_arg.infd = infd;
splitter_arg.data_size = data_size;
pthread_t splitter_thread;
xcreate( &splitter_thread, splitter, &splitter_arg );
Worker_arg worker_arg;
worker_arg.dictionary_size = dictionary_size;
worker_arg.match_len_limit = match_len_limit;
worker_arg.courier = &courier;
pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
if( worker_threads == 0 )
{ show_error( "not enough memory" ); fatal(); }
for( int i = 0; i < num_workers; ++i )
xcreate( &worker_threads[i], worker, &worker_arg );
muxer( courier, outfd );
for( int i = num_workers - 1; i >= 0; --i )
xjoin(worker_threads[i]);
delete[] worker_threads; worker_threads = 0;
xjoin( splitter_thread );
if( verbosity >= 1 )
{
if( in_size <= 0 || out_size <= 0 )
std::fprintf( stderr, "no data compressed.\n" );
else
std::fprintf( stderr, "%6.3f:1, %6.3f bits/byte, "
"%5.2f%% saved, %lld in, %lld out.\n",
(double)in_size / out_size,
( 8.0 * out_size ) / in_size,
100.0 * ( 1.0 - ( (double)out_size / in_size ) ),
in_size, out_size );
}
if( debug_level & 1 )
std::fprintf( stderr,
"splitter tried to send a packet %8lu times\n"
"splitter had to wait %8lu times\n"
"any worker tried to consume from splitter %8lu times\n"
"any worker had to wait %8lu times\n"
"muxer tried to consume from workers %8lu times\n"
"muxer had to wait %8lu times\n",
courier.tally().check_counter,
courier.tally().wait_counter,
courier.icheck_counter,
courier.iwait_counter,
courier.ocheck_counter,
courier.owait_counter );
assert( courier.finished() );
return 0;
}