/* Plzip - Massively parallel implementation of lzip Copyright (C) 2009 Laszlo Ersek. Copyright (C) 2009-2024 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include #include #include #include #include #include "lzip.h" #ifndef LLONG_MAX #define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL #endif /* Return the number of bytes really read. If (value returned < size) and (errno == 0), means EOF was reached. */ int readblock( const int fd, uint8_t * const buf, const int size ) { int sz = 0; errno = 0; while( sz < size ) { const int n = read( fd, buf + sz, size - sz ); if( n > 0 ) sz += n; else if( n == 0 ) break; // EOF else if( errno != EINTR ) break; errno = 0; } return sz; } /* Return the number of bytes really written. If (value returned < size), it is always an error. */ int writeblock( const int fd, const uint8_t * const buf, const int size ) { int sz = 0; errno = 0; while( sz < size ) { const int n = write( fd, buf + sz, size - sz ); if( n > 0 ) sz += n; else if( n < 0 && errno != EINTR ) break; errno = 0; } return sz; } void xinit_mutex( pthread_mutex_t * const mutex ) { const int errcode = pthread_mutex_init( mutex, 0 ); if( errcode ) { show_error( "pthread_mutex_init", errcode ); cleanup_and_fail(); } } void xinit_cond( pthread_cond_t * const cond ) { const int errcode = pthread_cond_init( cond, 0 ); if( errcode ) { show_error( "pthread_cond_init", errcode ); cleanup_and_fail(); } } void xdestroy_mutex( pthread_mutex_t * const mutex ) { const int errcode = pthread_mutex_destroy( mutex ); if( errcode ) { show_error( "pthread_mutex_destroy", errcode ); cleanup_and_fail(); } } void xdestroy_cond( pthread_cond_t * const cond ) { const int errcode = pthread_cond_destroy( cond ); if( errcode ) { show_error( "pthread_cond_destroy", errcode ); cleanup_and_fail(); } } void xlock( pthread_mutex_t * const mutex ) { const int errcode = pthread_mutex_lock( mutex ); if( errcode ) { show_error( "pthread_mutex_lock", errcode ); cleanup_and_fail(); } } void xunlock( pthread_mutex_t * const mutex ) { const int errcode = pthread_mutex_unlock( mutex ); if( errcode ) { show_error( "pthread_mutex_unlock", errcode ); cleanup_and_fail(); } } void xwait( pthread_cond_t * const cond, pthread_mutex_t * const mutex ) { const int errcode = pthread_cond_wait( cond, mutex ); if( errcode ) { show_error( "pthread_cond_wait", errcode ); cleanup_and_fail(); } } void xsignal( pthread_cond_t * const cond ) { const int errcode = pthread_cond_signal( cond ); if( errcode ) { show_error( "pthread_cond_signal", errcode ); cleanup_and_fail(); } } void xbroadcast( pthread_cond_t * const cond ) { const int errcode = pthread_cond_broadcast( cond ); if( errcode ) { show_error( "pthread_cond_broadcast", errcode ); cleanup_and_fail(); } } namespace { unsigned long long in_size = 0; unsigned long long out_size = 0; const char * const mem_msg2 = "Not enough memory. Try a smaller dictionary size."; struct Packet // data block with a serial number { uint8_t * data; int size; // number of bytes in data (if any) unsigned id; // serial number assigned as received Packet() : data( 0 ), size( 0 ), id( 0 ) {} void init( uint8_t * const d, const int s, const unsigned i ) { data = d; size = s; id = i; } }; class Packet_courier // moves packets around { public: unsigned icheck_counter; unsigned iwait_counter; unsigned ocheck_counter; unsigned owait_counter; private: unsigned receive_id; // id assigned to next packet received unsigned distrib_id; // id of next packet to be distributed unsigned deliver_id; // id of next packet to be delivered Slot_tally slot_tally; // limits the number of input packets std::vector< Packet > circular_ibuffer; std::vector< const Packet * > circular_obuffer; int num_working; // number of workers still running const int num_slots; // max packets in circulation pthread_mutex_t imutex; pthread_cond_t iav_or_eof; // input packet available or splitter done pthread_mutex_t omutex; pthread_cond_t oav_or_exit; // output packet available or all workers exited bool eof; // splitter done Packet_courier( const Packet_courier & ); // declared as private void operator=( const Packet_courier & ); // declared as private public: Packet_courier( const int workers, const int slots ) : icheck_counter( 0 ), iwait_counter( 0 ), ocheck_counter( 0 ), owait_counter( 0 ), receive_id( 0 ), distrib_id( 0 ), deliver_id( 0 ), slot_tally( slots ), circular_ibuffer( slots ), circular_obuffer( slots, (const Packet *) 0 ), num_working( workers ), num_slots( slots ), eof( false ) { xinit_mutex( &imutex ); xinit_cond( &iav_or_eof ); xinit_mutex( &omutex ); xinit_cond( &oav_or_exit ); } ~Packet_courier() { xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex ); xdestroy_cond( &iav_or_eof ); xdestroy_mutex( &imutex ); } // fill a packet with data received from splitter void receive_packet( uint8_t * const data, const int size ) { slot_tally.get_slot(); // wait for a free slot xlock( &imutex ); circular_ibuffer[receive_id % num_slots].init( data, size, receive_id ); ++receive_id; xsignal( &iav_or_eof ); xunlock( &imutex ); } // distribute a packet to a worker Packet * distribute_packet() { Packet * ipacket = 0; xlock( &imutex ); ++icheck_counter; while( receive_id == distrib_id && !eof ) // no packets to distribute { ++iwait_counter; xwait( &iav_or_eof, &imutex ); } if( receive_id != distrib_id ) { ipacket = &circular_ibuffer[distrib_id % num_slots]; ++distrib_id; } xunlock( &imutex ); if( !ipacket ) // EOF { xlock( &omutex ); // notify muxer when last worker exits if( --num_working == 0 ) xsignal( &oav_or_exit ); xunlock( &omutex ); } return ipacket; } // collect a packet from a worker void collect_packet( const Packet * const opacket ) { const int i = opacket->id % num_slots; xlock( &omutex ); // id collision shouldn't happen if( circular_obuffer[i] != 0 ) internal_error( "id collision in collect_packet." ); // merge packet into circular buffer circular_obuffer[i] = opacket; if( opacket->id == deliver_id ) xsignal( &oav_or_exit ); xunlock( &omutex ); } // deliver packets to muxer void deliver_packets( std::vector< const Packet * > & packet_vector ) { xlock( &omutex ); ++ocheck_counter; int i = deliver_id % num_slots; while( circular_obuffer[i] == 0 && num_working > 0 ) { ++owait_counter; xwait( &oav_or_exit, &omutex ); } packet_vector.clear(); while( true ) { const Packet * const opacket = circular_obuffer[i]; if( !opacket ) break; packet_vector.push_back( opacket ); circular_obuffer[i] = 0; ++deliver_id; i = deliver_id % num_slots; } xunlock( &omutex ); } void return_empty_packet() // return a slot to the tally { slot_tally.leave_slot(); } void finish( const int workers_spared ) { xlock( &imutex ); // splitter has no more packets to send eof = true; xbroadcast( &iav_or_eof ); xunlock( &imutex ); xlock( &omutex ); // notify muxer if all workers have exited num_working -= workers_spared; if( num_working <= 0 ) xsignal( &oav_or_exit ); xunlock( &omutex ); } bool finished() // all packets delivered to muxer { if( !slot_tally.all_free() || !eof || receive_id != distrib_id || num_working != 0 ) return false; for( int i = 0; i < num_slots; ++i ) if( circular_obuffer[i] != 0 ) return false; return true; } }; struct Worker_arg { Packet_courier * courier; const Pretty_print * pp; int dictionary_size; int match_len_limit; int offset; }; struct Splitter_arg { struct Worker_arg worker_arg; pthread_t * worker_threads; int infd; int data_size; int num_workers; // returned by splitter to main thread }; /* Get packets from courier, replace their contents, and return them to courier. */ extern "C" void * cworker( void * arg ) { const Worker_arg & tmp = *(const Worker_arg *)arg; Packet_courier & courier = *tmp.courier; const Pretty_print & pp = *tmp.pp; const int dictionary_size = tmp.dictionary_size; const int match_len_limit = tmp.match_len_limit; const int offset = tmp.offset; LZ_Encoder * encoder = 0; while( true ) { Packet * const packet = courier.distribute_packet(); if( !packet ) break; // no more packets to process if( !encoder ) { const bool fast = dictionary_size == 65535 && match_len_limit == 16; const int dict_size = fast ? dictionary_size : std::max( std::min( dictionary_size, packet->size ), LZ_min_dictionary_size() ); encoder = LZ_compress_open( dict_size, match_len_limit, LLONG_MAX ); if( !encoder || LZ_compress_errno( encoder ) != LZ_ok ) { if( !encoder || LZ_compress_errno( encoder ) == LZ_mem_error ) pp( mem_msg2 ); else internal_error( "invalid argument to encoder." ); cleanup_and_fail(); } } else if( LZ_compress_restart_member( encoder, LLONG_MAX ) < 0 ) { pp( "LZ_compress_restart_member failed." ); cleanup_and_fail(); } int written = 0; int new_pos = 0; while( true ) { if( written < packet->size ) { const int wr = LZ_compress_write( encoder, packet->data + offset + written, packet->size - written ); if( wr < 0 ) internal_error( "library error (LZ_compress_write)." ); written += wr; } if( written >= packet->size ) LZ_compress_finish( encoder ); const int rd = LZ_compress_read( encoder, packet->data + new_pos, offset + written - new_pos ); if( rd < 0 ) { pp(); if( verbosity >= 0 ) std::fprintf( stderr, "LZ_compress_read error: %s\n", LZ_strerror( LZ_compress_errno( encoder ) ) ); cleanup_and_fail(); } new_pos += rd; if( new_pos >= offset + written ) internal_error( "packet size exceeded in worker." ); if( LZ_compress_finished( encoder ) == 1 ) break; } if( packet->size > 0 ) show_progress( packet->size ); packet->size = new_pos; courier.collect_packet( packet ); } if( encoder && LZ_compress_close( encoder ) < 0 ) { pp( "LZ_compress_close failed." ); cleanup_and_fail(); } return 0; } /* Split data from input file into chunks and pass them to courier for packaging and distribution to workers. Start a worker per packet up to a maximum of num_workers. */ extern "C" void * csplitter( void * arg ) { Splitter_arg & tmp = *(Splitter_arg *)arg; Packet_courier & courier = *tmp.worker_arg.courier; const Pretty_print & pp = *tmp.worker_arg.pp; pthread_t * const worker_threads = tmp.worker_threads; const int offset = tmp.worker_arg.offset; const int infd = tmp.infd; const int data_size = tmp.data_size; int i = 0; // number of workers started for( bool first_post = true; ; first_post = false ) { uint8_t * const data = new( std::nothrow ) uint8_t[offset+data_size]; if( !data ) { pp( mem_msg2 ); cleanup_and_fail(); } const int size = readblock( infd, data + offset, data_size ); if( size != data_size && errno ) { pp(); show_error( "Read error", errno ); cleanup_and_fail(); } if( size > 0 || first_post ) // first packet may be empty { in_size += size; courier.receive_packet( data, size ); if( i < tmp.num_workers ) // start a new worker { const int errcode = pthread_create( &worker_threads[i++], 0, cworker, &tmp.worker_arg ); if( errcode ) { show_error( "Can't create worker threads", errcode ); cleanup_and_fail(); } } if( size < data_size ) break; // EOF } else { delete[] data; break; } } courier.finish( tmp.num_workers - i ); // no more packets to send tmp.num_workers = i; return 0; } /* Get from courier the processed and sorted packets, and write their contents to the output file. */ void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd ) { std::vector< const Packet * > packet_vector; while( true ) { courier.deliver_packets( packet_vector ); if( packet_vector.empty() ) break; // all workers exited for( unsigned i = 0; i < packet_vector.size(); ++i ) { const Packet * const opacket = packet_vector[i]; out_size += opacket->size; if( writeblock( outfd, opacket->data, opacket->size ) != opacket->size ) { pp(); show_error( "Write error", errno ); cleanup_and_fail(); } delete[] opacket->data; courier.return_empty_packet(); } } } } // end namespace /* Init the courier, then start the splitter and the workers and call the muxer. */ int compress( const unsigned long long cfile_size, const int data_size, const int dictionary_size, const int match_len_limit, const int num_workers, const int infd, const int outfd, const Pretty_print & pp, const int debug_level ) { const int offset = data_size / 8; // offset for compression in-place const int slots_per_worker = 2; const int num_slots = ( ( num_workers > 1 ) ? num_workers * slots_per_worker : 1 ); in_size = 0; out_size = 0; Packet_courier courier( num_workers, num_slots ); if( debug_level & 2 ) std::fputs( "compress.\n", stderr ); pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers]; if( !worker_threads ) { pp( mem_msg ); return 1; } Splitter_arg splitter_arg; splitter_arg.worker_arg.courier = &courier; splitter_arg.worker_arg.pp = &pp; splitter_arg.worker_arg.dictionary_size = dictionary_size; splitter_arg.worker_arg.match_len_limit = match_len_limit; splitter_arg.worker_arg.offset = offset; splitter_arg.worker_threads = worker_threads; splitter_arg.infd = infd; splitter_arg.data_size = data_size; splitter_arg.num_workers = num_workers; pthread_t splitter_thread; int errcode = pthread_create( &splitter_thread, 0, csplitter, &splitter_arg ); if( errcode ) { show_error( "Can't create splitter thread", errcode ); delete[] worker_threads; return 1; } if( verbosity >= 1 ) pp(); show_progress( 0, cfile_size, &pp ); // init muxer( courier, pp, outfd ); errcode = pthread_join( splitter_thread, 0 ); if( errcode ) { show_error( "Can't join splitter thread", errcode ); cleanup_and_fail(); } for( int i = splitter_arg.num_workers; --i >= 0; ) { // join only the workers started errcode = pthread_join( worker_threads[i], 0 ); if( errcode ) { show_error( "Can't join worker threads", errcode ); cleanup_and_fail(); } } delete[] worker_threads; if( verbosity >= 1 ) { if( in_size == 0 || out_size == 0 ) std::fputs( " no data compressed.\n", stderr ); else std::fprintf( stderr, "%6.3f:1, %5.2f%% ratio, %5.2f%% saved, " "%llu in, %llu out.\n", (double)in_size / out_size, ( 100.0 * out_size ) / in_size, 100.0 - ( ( 100.0 * out_size ) / in_size ), in_size, out_size ); } if( debug_level & 1 ) std::fprintf( stderr, "workers started %8u\n" "any worker tried to consume from splitter %8u times\n" "any worker had to wait %8u times\n" "muxer tried to consume from workers %8u times\n" "muxer had to wait %8u times\n", splitter_arg.num_workers, courier.icheck_counter, courier.iwait_counter, courier.ocheck_counter, courier.owait_counter ); if( !courier.finished() ) internal_error( "courier not finished." ); return 0; }