/* Plzip - Massively parallel implementation of lzip Copyright (C) 2009 Laszlo Ersek. Copyright (C) 2009-2019 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lzip.h" #include "lzip_index.h" namespace { enum { max_packet_size = 1 << 20 }; struct Packet // data block { uint8_t * data; // data == 0 means end of member int size; // number of bytes in data (if any) explicit Packet( uint8_t * const d = 0, const int s = 0 ) : data( d ), size( s ) {} }; class Packet_courier // moves packets around { public: unsigned ocheck_counter; unsigned owait_counter; private: int deliver_worker_id; // worker queue currently delivering packets std::vector< std::queue< Packet * > > opacket_queues; int num_working; // number of workers still running const int num_workers; // number of workers const unsigned out_slots; // max output packets per queue pthread_mutex_t omutex; pthread_cond_t oav_or_exit; // output packet available or all workers exited std::vector< pthread_cond_t > slot_av; // output slot available Packet_courier( const Packet_courier & ); // declared as private void operator=( const Packet_courier & ); // declared as private public: Packet_courier( const int workers, const int slots ) : ocheck_counter( 0 ), owait_counter( 0 ), deliver_worker_id( 0 ), opacket_queues( workers ), num_working( workers ), num_workers( workers ), out_slots( slots ), slot_av( workers ) { xinit_mutex( &omutex ); xinit_cond( &oav_or_exit ); for( unsigned i = 0; i < slot_av.size(); ++i ) xinit_cond( &slot_av[i] ); } ~Packet_courier() { for( unsigned i = 0; i < slot_av.size(); ++i ) xdestroy_cond( &slot_av[i] ); xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex ); } void worker_finished() { // notify muxer when last worker exits xlock( &omutex ); if( --num_working == 0 ) xsignal( &oav_or_exit ); xunlock( &omutex ); } // collect a packet from a worker void collect_packet( Packet * const opacket, const int worker_id ) { xlock( &omutex ); if( opacket->data ) { while( opacket_queues[worker_id].size() >= out_slots ) xwait( &slot_av[worker_id], &omutex ); } opacket_queues[worker_id].push( opacket ); if( worker_id == deliver_worker_id ) xsignal( &oav_or_exit ); xunlock( &omutex ); } // deliver a packet to muxer // if packet data == 0, move to next queue and wait again Packet * deliver_packet() { Packet * opacket = 0; xlock( &omutex ); ++ocheck_counter; while( true ) { while( opacket_queues[deliver_worker_id].empty() && num_working > 0 ) { ++owait_counter; xwait( &oav_or_exit, &omutex ); } if( opacket_queues[deliver_worker_id].empty() ) break; opacket = opacket_queues[deliver_worker_id].front(); opacket_queues[deliver_worker_id].pop(); if( opacket_queues[deliver_worker_id].size() + 1 == out_slots ) xsignal( &slot_av[deliver_worker_id] ); if( opacket->data ) break; if( ++deliver_worker_id >= num_workers ) deliver_worker_id = 0; delete opacket; opacket = 0; } xunlock( &omutex ); return opacket; } bool finished() // all packets delivered to muxer { if( num_working != 0 ) return false; for( int i = 0; i < num_workers; ++i ) if( !opacket_queues[i].empty() ) return false; return true; } }; struct Worker_arg { const Lzip_index * lzip_index; Packet_courier * courier; const Pretty_print * pp; int worker_id; int num_workers; int infd; }; // read members from file, decompress their contents, and // give the produced packets to courier. extern "C" void * dworker_o( void * arg ) { const Worker_arg & tmp = *(const Worker_arg *)arg; const Lzip_index & lzip_index = *tmp.lzip_index; Packet_courier & courier = *tmp.courier; const Pretty_print & pp = *tmp.pp; const int worker_id = tmp.worker_id; const int num_workers = tmp.num_workers; const int infd = tmp.infd; const int buffer_size = 65536; uint8_t * new_data = new( std::nothrow ) uint8_t[max_packet_size]; uint8_t * const ibuffer = new( std::nothrow ) uint8_t[buffer_size]; LZ_Decoder * const decoder = LZ_decompress_open(); if( !new_data || !ibuffer || !decoder || LZ_decompress_errno( decoder ) != LZ_ok ) { pp( "Not enough memory." ); cleanup_and_fail(); } int new_pos = 0; for( long i = worker_id; i < lzip_index.members(); i += num_workers ) { long long member_pos = lzip_index.mblock( i ).pos(); long long member_rest = lzip_index.mblock( i ).size(); while( member_rest > 0 ) { while( LZ_decompress_write_size( decoder ) > 0 ) { const int size = std::min( LZ_decompress_write_size( decoder ), (int)std::min( (long long)buffer_size, member_rest ) ); if( size > 0 ) { if( preadblock( infd, ibuffer, size, member_pos ) != size ) { pp(); show_error( "Read error", errno ); cleanup_and_fail(); } member_pos += size; member_rest -= size; if( LZ_decompress_write( decoder, ibuffer, size ) != size ) internal_error( "library error (LZ_decompress_write)." ); } if( member_rest <= 0 ) { LZ_decompress_finish( decoder ); break; } } while( true ) // read and pack decompressed data { const int rd = LZ_decompress_read( decoder, new_data + new_pos, max_packet_size - new_pos ); if( rd < 0 ) cleanup_and_fail( decompress_read_error( decoder, pp, worker_id ) ); new_pos += rd; if( new_pos > max_packet_size ) internal_error( "opacket size exceeded in worker." ); if( new_pos == max_packet_size || LZ_decompress_finished( decoder ) == 1 ) { if( new_pos > 0 ) // make data packet { Packet * const opacket = new Packet( new_data, new_pos ); courier.collect_packet( opacket, worker_id ); new_pos = 0; new_data = new( std::nothrow ) uint8_t[max_packet_size]; if( !new_data ) { pp( "Not enough memory." ); cleanup_and_fail(); } } if( LZ_decompress_finished( decoder ) == 1 ) { // end of member token courier.collect_packet( new Packet, worker_id ); LZ_decompress_reset( decoder ); // prepare for new member break; } } if( rd == 0 ) break; } } show_progress( lzip_index.mblock( i ).size() ); } delete[] ibuffer; delete[] new_data; if( LZ_decompress_member_position( decoder ) != 0 ) { pp( "Error, some data remains in decoder." ); cleanup_and_fail(); } if( LZ_decompress_close( decoder ) < 0 ) { pp( "LZ_decompress_close failed." ); cleanup_and_fail(); } courier.worker_finished(); return 0; } // get from courier the processed and sorted packets, and write // their contents to the output file. void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd ) { while( true ) { Packet * const opacket = courier.deliver_packet(); if( !opacket ) break; // queue is empty. all workers exited const int wr = writeblock( outfd, opacket->data, opacket->size ); if( wr != opacket->size ) { pp(); show_error( "Write error", errno ); cleanup_and_fail(); } delete[] opacket->data; delete opacket; } } } // end namespace // init the courier, then start the workers and call the muxer. int dec_stdout( const int num_workers, const int infd, const int outfd, const Pretty_print & pp, const int debug_level, const int out_slots, const Lzip_index & lzip_index ) { Packet_courier courier( num_workers, out_slots ); Worker_arg * worker_args = new( std::nothrow ) Worker_arg[num_workers]; pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers]; if( !worker_args || !worker_threads ) { pp( "Not enough memory." ); cleanup_and_fail(); } for( int i = 0; i < num_workers; ++i ) { worker_args[i].lzip_index = &lzip_index; worker_args[i].courier = &courier; worker_args[i].pp = &pp; worker_args[i].worker_id = i; worker_args[i].num_workers = num_workers; worker_args[i].infd = infd; const int errcode = pthread_create( &worker_threads[i], 0, dworker_o, &worker_args[i] ); if( errcode ) { show_error( "Can't create worker threads", errcode ); cleanup_and_fail(); } } muxer( courier, pp, outfd ); for( int i = num_workers - 1; i >= 0; --i ) { const int errcode = pthread_join( worker_threads[i], 0 ); if( errcode ) { show_error( "Can't join worker threads", errcode ); cleanup_and_fail(); } } delete[] worker_threads; delete[] worker_args; if( verbosity >= 2 ) { if( verbosity >= 4 ) show_header( lzip_index.dictionary_size( 0 ) ); const unsigned long long in_size = lzip_index.cdata_size(); const unsigned long long out_size = lzip_index.udata_size(); if( out_size == 0 || in_size == 0 ) std::fputs( "no data compressed. ", stderr ); else std::fprintf( stderr, "%6.3f:1, %5.2f%% ratio, %5.2f%% saved. ", (double)out_size / in_size, ( 100.0 * in_size ) / out_size, 100.0 - ( ( 100.0 * in_size ) / out_size ) ); if( verbosity >= 3 ) std::fprintf( stderr, "decompressed %9llu, compressed %8llu. ", out_size, in_size ); } if( verbosity >= 1 ) std::fputs( "done\n", stderr ); if( debug_level & 1 ) std::fprintf( stderr, "muxer tried to consume from workers %8u times\n" "muxer had to wait %8u times\n", courier.ocheck_counter, courier.owait_counter ); if( !courier.finished() ) internal_error( "courier not finished." ); return 0; }