/* Plzip - Parallel compressor compatible with lzip
Copyright (C) 2009 Laszlo Ersek.
Copyright (C) 2009-2017 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "lzip.h"
namespace {
enum { max_packet_size = 1 << 20 };
unsigned long long in_size = 0;
unsigned long long out_size = 0;
struct Packet // data block
{
uint8_t * data; // data == 0 means end of member
int size; // number of bytes in data (if any)
explicit Packet( uint8_t * const d = 0, const int s = 0 )
: data( d ), size( s ) {}
};
class Packet_courier // moves packets around
{
public:
unsigned icheck_counter;
unsigned iwait_counter;
unsigned ocheck_counter;
unsigned owait_counter;
private:
int receive_worker_id; // worker queue currently receiving packets
int deliver_worker_id; // worker queue currently delivering packets
Slot_tally slot_tally; // limits the number of input packets
std::vector< std::queue< Packet * > > ipacket_queues;
std::vector< std::queue< Packet * > > opacket_queues;
int num_working; // number of workers still running
const int num_workers; // number of workers
const unsigned out_slots; // max output packets per queue
pthread_mutex_t imutex;
pthread_cond_t iav_or_eof; // input packet available or splitter done
pthread_mutex_t omutex;
pthread_cond_t oav_or_exit; // output packet available or all workers exited
std::vector< pthread_cond_t > slot_av; // output slot available
bool eof; // splitter done
Packet_courier( const Packet_courier & ); // declared as private
void operator=( const Packet_courier & ); // declared as private
public:
Packet_courier( const int workers, const int in_slots, const int oslots )
: icheck_counter( 0 ), iwait_counter( 0 ),
ocheck_counter( 0 ), owait_counter( 0 ),
receive_worker_id( 0 ), deliver_worker_id( 0 ),
slot_tally( in_slots ), ipacket_queues( workers ),
opacket_queues( workers ), num_working( workers ),
num_workers( workers ), out_slots( oslots ), slot_av( workers ),
eof( false )
{
xinit_mutex( &imutex ); xinit_cond( &iav_or_eof );
xinit_mutex( &omutex ); xinit_cond( &oav_or_exit );
for( unsigned i = 0; i < slot_av.size(); ++i ) xinit_cond( &slot_av[i] );
}
~Packet_courier()
{
for( unsigned i = 0; i < slot_av.size(); ++i ) xdestroy_cond( &slot_av[i] );
xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex );
xdestroy_cond( &iav_or_eof ); xdestroy_mutex( &imutex );
}
// make a packet with data received from splitter
// if data == 0, move to next queue
void receive_packet( uint8_t * const data, const int size )
{
Packet * const ipacket = new Packet( data, size );
if( data )
{ in_size += size; slot_tally.get_slot(); } // wait for a free slot
xlock( &imutex );
ipacket_queues[receive_worker_id].push( ipacket );
xbroadcast( &iav_or_eof );
xunlock( &imutex );
if( !data && ++receive_worker_id >= num_workers )
receive_worker_id = 0;
}
// distribute a packet to a worker
Packet * distribute_packet( const int worker_id )
{
Packet * ipacket = 0;
xlock( &imutex );
++icheck_counter;
while( ipacket_queues[worker_id].empty() && !eof )
{
++iwait_counter;
xwait( &iav_or_eof, &imutex );
}
if( !ipacket_queues[worker_id].empty() )
{
ipacket = ipacket_queues[worker_id].front();
ipacket_queues[worker_id].pop();
}
xunlock( &imutex );
if( ipacket )
{ if( ipacket->data ) slot_tally.leave_slot(); }
else
{
// notify muxer when last worker exits
xlock( &omutex );
if( --num_working == 0 ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
return ipacket;
}
// collect a packet from a worker
void collect_packet( Packet * const opacket, const int worker_id )
{
xlock( &omutex );
if( opacket->data )
{
while( opacket_queues[worker_id].size() >= out_slots )
xwait( &slot_av[worker_id], &omutex );
}
opacket_queues[worker_id].push( opacket );
if( worker_id == deliver_worker_id ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
// deliver a packet to muxer
// if packet data == 0, move to next queue and wait again
Packet * deliver_packet()
{
Packet * opacket = 0;
xlock( &omutex );
++ocheck_counter;
while( true )
{
while( opacket_queues[deliver_worker_id].empty() && num_working > 0 )
{
++owait_counter;
xwait( &oav_or_exit, &omutex );
}
if( opacket_queues[deliver_worker_id].empty() ) break;
opacket = opacket_queues[deliver_worker_id].front();
opacket_queues[deliver_worker_id].pop();
if( opacket_queues[deliver_worker_id].size() + 1 == out_slots )
xsignal( &slot_av[deliver_worker_id] );
if( opacket->data ) break;
if( ++deliver_worker_id >= num_workers ) deliver_worker_id = 0;
delete opacket; opacket = 0;
}
xunlock( &omutex );
return opacket;
}
void add_out_size( const unsigned long long partial_out_size )
{
xlock( &omutex );
out_size += partial_out_size;
xunlock( &omutex );
}
void finish() // splitter has no more packets to send
{
xlock( &imutex );
eof = true;
xbroadcast( &iav_or_eof );
xunlock( &imutex );
}
bool finished() // all packets delivered to muxer
{
if( !slot_tally.all_free() || !eof || num_working != 0 ) return false;
for( int i = 0; i < num_workers; ++i )
if( !ipacket_queues[i].empty() ) return false;
for( int i = 0; i < num_workers; ++i )
if( !opacket_queues[i].empty() ) return false;
return true;
}
};
// Search forward from 'pos' for "LZIP" (Boyer-Moore algorithm)
// Returns pos of found string or 'pos+size' if not found.
//
int find_magic( const uint8_t * const buffer, const int pos, const int size )
{
const uint8_t table[256] = {
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,1,4,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,2,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 };
for( int i = pos; i <= pos + size - 4; i += table[buffer[i+3]] )
if( buffer[i] == 'L' && buffer[i+1] == 'Z' &&
buffer[i+2] == 'I' && buffer[i+3] == 'P' )
return i; // magic string found
return pos + size;
}
struct Splitter_arg
{
Packet_courier * courier;
const Pretty_print * pp;
int infd;
};
// split data from input file into chunks and pass them to
// courier for packaging and distribution to workers.
extern "C" void * dsplitter_s( void * arg )
{
const Splitter_arg & tmp = *(Splitter_arg *)arg;
Packet_courier & courier = *tmp.courier;
const Pretty_print & pp = *tmp.pp;
const int infd = tmp.infd;
const int hsize = File_header::size;
const int tsize = File_trailer::size;
const int buffer_size = max_packet_size;
const int base_buffer_size = tsize + buffer_size + hsize;
uint8_t * const base_buffer = new( std::nothrow ) uint8_t[base_buffer_size];
if( !base_buffer ) { pp( "Not enough memory." ); cleanup_and_fail(); }
uint8_t * const buffer = base_buffer + tsize;
int size = readblock( infd, buffer, buffer_size + hsize ) - hsize;
bool at_stream_end = ( size < buffer_size );
if( size != buffer_size && errno )
{ pp(); show_error( "Read error", errno ); cleanup_and_fail(); }
if( size + hsize < min_member_size )
{ pp( "Input file is too short." ); cleanup_and_fail( 2 ); }
const File_header & header = *(File_header *)buffer;
if( !header.verify_magic() )
{ pp( bad_magic_msg ); cleanup_and_fail( 2 ); }
if( !header.verify_version() )
{ pp( bad_version( header.version() ) ); cleanup_and_fail( 2 ); }
const unsigned dictionary_size = header.dictionary_size();
if( !isvalid_ds( dictionary_size ) )
{ pp( bad_dict_msg ); cleanup_and_fail( 2 ); }
show_header( dictionary_size );
unsigned long long partial_member_size = 0;
while( true )
{
int pos = 0;
for( int newpos = 1; newpos <= size; ++newpos )
{
newpos = find_magic( buffer, newpos, size + 4 - newpos );
if( newpos <= size )
{
const File_trailer & trailer = *(File_trailer *)(buffer + newpos - tsize);
const unsigned long long member_size = trailer.member_size();
if( partial_member_size + newpos - pos == member_size )
{ // header found
const File_header & header = *(File_header *)(buffer + newpos);
if( !header.verify_version() )
{ pp( bad_version( header.version() ) ); cleanup_and_fail( 2 ); }
const unsigned dictionary_size = header.dictionary_size();
if( !isvalid_ds( dictionary_size ) )
{ pp( bad_dict_msg ); cleanup_and_fail( 2 ); }
uint8_t * const data = new( std::nothrow ) uint8_t[newpos - pos];
if( !data ) { pp( "Not enough memory." ); cleanup_and_fail(); }
std::memcpy( data, buffer + pos, newpos - pos );
courier.receive_packet( data, newpos - pos );
courier.receive_packet( 0, 0 ); // end of member token
partial_member_size = 0;
pos = newpos;
}
}
}
if( at_stream_end )
{
uint8_t * data = new( std::nothrow ) uint8_t[size + hsize - pos];
if( !data ) { pp( "Not enough memory." ); cleanup_and_fail(); }
std::memcpy( data, buffer + pos, size + hsize - pos );
courier.receive_packet( data, size + hsize - pos );
courier.receive_packet( 0, 0 ); // end of member token
break;
}
if( pos < buffer_size )
{
partial_member_size += buffer_size - pos;
uint8_t * data = new( std::nothrow ) uint8_t[buffer_size - pos];
if( !data ) { pp( "Not enough memory." ); cleanup_and_fail(); }
std::memcpy( data, buffer + pos, buffer_size - pos );
courier.receive_packet( data, buffer_size - pos );
}
std::memcpy( base_buffer, base_buffer + buffer_size, tsize + hsize );
size = readblock( infd, buffer + hsize, buffer_size );
at_stream_end = ( size < buffer_size );
if( size != buffer_size && errno )
{ pp(); show_error( "Read error", errno ); cleanup_and_fail(); }
}
delete[] base_buffer;
courier.finish(); // no more packets to send
return 0;
}
struct Worker_arg
{
Packet_courier * courier;
const Pretty_print * pp;
int worker_id;
bool ignore_trailing;
bool testing;
};
// consume packets from courier, decompress their contents and,
// if not testing, give the produced packets to courier.
extern "C" void * dworker_s( void * arg )
{
const Worker_arg & tmp = *(Worker_arg *)arg;
Packet_courier & courier = *tmp.courier;
const Pretty_print & pp = *tmp.pp;
const int worker_id = tmp.worker_id;
const bool ignore_trailing = tmp.ignore_trailing;
const bool testing = tmp.testing;
uint8_t * new_data = new( std::nothrow ) uint8_t[max_packet_size];
LZ_Decoder * const decoder = LZ_decompress_open();
if( !new_data || !decoder || LZ_decompress_errno( decoder ) != LZ_ok )
{ pp( "Not enough memory." ); cleanup_and_fail(); }
unsigned long long partial_out_size = 0;
int new_pos = 0;
bool trailing_data_found = false;
while( true )
{
const Packet * const ipacket = courier.distribute_packet( worker_id );
if( !ipacket ) break; // no more packets to process
if( !ipacket->data ) LZ_decompress_finish( decoder );
int written = 0;
while( !trailing_data_found )
{
if( LZ_decompress_write_size( decoder ) > 0 && written < ipacket->size )
{
const int wr = LZ_decompress_write( decoder, ipacket->data + written,
ipacket->size - written );
if( wr < 0 ) internal_error( "library error (LZ_decompress_write)." );
written += wr;
if( written > ipacket->size )
internal_error( "ipacket size exceeded in worker." );
}
while( !trailing_data_found ) // read and pack decompressed data
{
const int rd = LZ_decompress_read( decoder, new_data + new_pos,
max_packet_size - new_pos );
if( rd < 0 )
{
if( LZ_decompress_errno( decoder ) == LZ_header_error )
{
trailing_data_found = true;
if( !ignore_trailing )
{ pp( trailing_msg ); cleanup_and_fail( 2 ); }
}
else
cleanup_and_fail( decompress_read_error( decoder, pp, worker_id ) );
}
else new_pos += rd;
if( new_pos > max_packet_size )
internal_error( "opacket size exceeded in worker." );
if( new_pos == max_packet_size || trailing_data_found ||
LZ_decompress_finished( decoder ) == 1 )
{
if( !testing && new_pos > 0 ) // make data packet
{
Packet * const opacket = new Packet( new_data, new_pos );
courier.collect_packet( opacket, worker_id );
new_data = new( std::nothrow ) uint8_t[max_packet_size];
if( !new_data ) { pp( "Not enough memory." ); cleanup_and_fail(); }
}
partial_out_size += new_pos;
new_pos = 0;
if( trailing_data_found || LZ_decompress_finished( decoder ) == 1 )
{
if( !testing ) // end of member token
courier.collect_packet( new Packet, worker_id );
LZ_decompress_reset( decoder ); // prepare for new member
break;
}
}
if( rd == 0 ) break;
}
if( !ipacket->data || written == ipacket->size ) break;
}
if( ipacket->data ) delete[] ipacket->data;
delete ipacket;
}
delete[] new_data;
courier.add_out_size( partial_out_size );
if( LZ_decompress_member_position( decoder ) != 0 )
{ pp( "Error, some data remains in decoder." ); cleanup_and_fail(); }
if( LZ_decompress_close( decoder ) < 0 )
{ pp( "LZ_decompress_close failed." ); cleanup_and_fail(); }
return 0;
}
// get from courier the processed and sorted packets, and write
// their contents to the output file.
void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd )
{
while( true )
{
Packet * const opacket = courier.deliver_packet();
if( !opacket ) break; // queue is empty. all workers exited
const int wr = writeblock( outfd, opacket->data, opacket->size );
if( wr != opacket->size )
{ pp(); show_error( "Write error", errno ); cleanup_and_fail(); }
delete[] opacket->data;
delete opacket;
}
}
} // end namespace
// init the courier, then start the splitter and the workers and,
// if not testing, call the muxer.
int dec_stream( const int num_workers, const int infd, const int outfd,
const Pretty_print & pp, const int debug_level,
const bool ignore_trailing )
{
const int in_slots_per_worker = 2;
const int out_slots = 32;
const int in_slots = ( INT_MAX / num_workers >= in_slots_per_worker ) ?
num_workers * in_slots_per_worker : INT_MAX;
in_size = 0;
out_size = 0;
Packet_courier courier( num_workers, in_slots, out_slots );
Splitter_arg splitter_arg;
splitter_arg.courier = &courier;
splitter_arg.pp = &pp;
splitter_arg.infd = infd;
pthread_t splitter_thread;
int errcode = pthread_create( &splitter_thread, 0, dsplitter_s, &splitter_arg );
if( errcode )
{ show_error( "Can't create splitter thread", errcode ); cleanup_and_fail(); }
Worker_arg * worker_args = new( std::nothrow ) Worker_arg[num_workers];
pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
if( !worker_args || !worker_threads )
{ pp( "Not enough memory." ); cleanup_and_fail(); }
for( int i = 0; i < num_workers; ++i )
{
worker_args[i].courier = &courier;
worker_args[i].pp = &pp;
worker_args[i].worker_id = i;
worker_args[i].ignore_trailing = ignore_trailing;
worker_args[i].testing = ( outfd < 0 );
errcode = pthread_create( &worker_threads[i], 0, dworker_s, &worker_args[i] );
if( errcode )
{ show_error( "Can't create worker threads", errcode ); cleanup_and_fail(); }
}
if( outfd >= 0 ) muxer( courier, pp, outfd );
for( int i = num_workers - 1; i >= 0; --i )
{
errcode = pthread_join( worker_threads[i], 0 );
if( errcode )
{ show_error( "Can't join worker threads", errcode ); cleanup_and_fail(); }
}
delete[] worker_threads;
delete[] worker_args;
errcode = pthread_join( splitter_thread, 0 );
if( errcode )
{ show_error( "Can't join splitter thread", errcode ); cleanup_and_fail(); }
if( verbosity >= 2 && out_size > 0 && in_size > 0 )
std::fprintf( stderr, "%6.3f:1, %6.3f bits/byte, %5.2f%% saved. ",
(double)out_size / in_size,
( 8.0 * in_size ) / out_size,
100.0 * ( 1.0 - ( (double)in_size / out_size ) ) );
if( verbosity >= 4 )
std::fprintf( stderr, "decompressed %9llu, compressed %9llu. ",
out_size, in_size );
if( verbosity >= 1 ) std::fputs( (outfd < 0) ? "ok\n" : "done\n", stderr );
if( debug_level & 1 )
std::fprintf( stderr,
"any worker tried to consume from splitter %8u times\n"
"any worker had to wait %8u times\n"
"muxer tried to consume from workers %8u times\n"
"muxer had to wait %8u times\n",
courier.icheck_counter,
courier.iwait_counter,
courier.ocheck_counter,
courier.owait_counter );
if( !courier.finished() ) internal_error( "courier not finished." );
return 0;
}