/* Plzip - A parallel compressor compatible with lzip
Copyright (C) 2009 Laszlo Ersek.
Copyright (C) 2009, 2010, 2011, 2012 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "plzip.h"
namespace {
enum { max_packet_size = 1 << 20 };
long long in_size = 0;
long long out_size = 0;
struct Packet // data block
{
uint8_t * data; // data == 0 means end of member
int size; // number of bytes in data (if any)
};
class Packet_courier // moves packets around
{
public:
unsigned long icheck_counter;
unsigned long iwait_counter;
unsigned long ocheck_counter;
unsigned long owait_counter;
private:
int receive_worker_id; // worker queue currently receiving packets
int deliver_worker_id; // worker queue currently delivering packets
Slot_tally slot_tally; // limits the number of input packets
std::vector< std::queue< Packet * > > ipacket_queues;
std::vector< std::queue< Packet * > > opacket_queues;
int num_working; // number of workers still running
const int num_workers; // number of workers
int num_free; // remaining free output slots
pthread_mutex_t imutex;
pthread_cond_t iav_or_eof; // input packet available or splitter done
pthread_mutex_t omutex;
pthread_cond_t oav_or_exit; // output packet available or all workers exited
pthread_cond_t slot_av; // free output slot available
bool eof; // splitter done
Packet_courier( const Packet_courier & ); // declared as private
void operator=( const Packet_courier & ); // declared as private
public:
Packet_courier( const int workers, const int slots )
: icheck_counter( 0 ), iwait_counter( 0 ),
ocheck_counter( 0 ), owait_counter( 0 ),
receive_worker_id( 0 ), deliver_worker_id( 0 ),
slot_tally( slots ), ipacket_queues( workers ),
opacket_queues( workers ), num_working( workers ),
num_workers( workers ), num_free( 8 * slots ), eof( false )
{
xinit( &imutex ); xinit( &iav_or_eof );
xinit( &omutex ); xinit( &oav_or_exit ); xinit( &slot_av );
}
~Packet_courier()
{
xdestroy( &slot_av ); xdestroy( &oav_or_exit ); xdestroy( &omutex );
xdestroy( &iav_or_eof ); xdestroy( &imutex );
}
const Slot_tally & tally() const { return slot_tally; }
// make a packet with data received from splitter
// if data == 0, move to next queue
void receive_packet( uint8_t * const data, const int size )
{
Packet * ipacket = new Packet;
ipacket->data = data;
ipacket->size = size;
if( data != 0 )
{ in_size += size; slot_tally.get_slot(); } // wait for a free slot
xlock( &imutex );
ipacket_queues[receive_worker_id].push( ipacket );
xbroadcast( &iav_or_eof );
xunlock( &imutex );
if( data == 0 && ++receive_worker_id >= num_workers )
receive_worker_id = 0;
}
// distribute a packet to a worker
Packet * distribute_packet( const int worker_id )
{
Packet * ipacket = 0;
xlock( &imutex );
++icheck_counter;
while( ipacket_queues[worker_id].empty() && !eof )
{
++iwait_counter;
xwait( &iav_or_eof, &imutex );
++icheck_counter;
}
if( !ipacket_queues[worker_id].empty() )
{
ipacket = ipacket_queues[worker_id].front();
ipacket_queues[worker_id].pop();
}
xunlock( &imutex );
if( ipacket != 0 )
{ if( ipacket->data != 0 ) slot_tally.leave_slot(); }
else
{
// notify muxer when last worker exits
xlock( &omutex );
if( --num_working == 0 ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
return ipacket;
}
// collect a packet from a worker
void collect_packet( Packet * const opacket, const int worker_id )
{
xlock( &omutex );
if( opacket->data != 0 )
{
while( worker_id != deliver_worker_id && num_free <= 0 )
xwait( &slot_av, &omutex );
--num_free;
}
opacket_queues[worker_id].push( opacket );
if( worker_id == deliver_worker_id ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
// deliver a packet to muxer
// if packet data == 0, move to next queue and wait again
Packet * deliver_packet()
{
Packet * opacket = 0;
xlock( &omutex );
++ocheck_counter;
while( true )
{
while( opacket_queues[deliver_worker_id].empty() && num_working > 0 )
{
++owait_counter;
xwait( &oav_or_exit, &omutex );
++ocheck_counter;
}
if( opacket_queues[deliver_worker_id].empty() ) break;
opacket = opacket_queues[deliver_worker_id].front();
opacket_queues[deliver_worker_id].pop();
if( opacket->data != 0 )
{
if( ++num_free == 1 ) xsignal( &slot_av );
break;
}
if( ++deliver_worker_id >= num_workers ) deliver_worker_id = 0;
xbroadcast( &slot_av ); // restart deliver_worker_id thread
delete opacket; opacket = 0;
}
xunlock( &omutex );
return opacket;
}
void finish() // splitter has no more packets to send
{
xlock( &imutex );
eof = true;
xbroadcast( &iav_or_eof );
xunlock( &imutex );
}
bool finished() // all packets delivered to muxer
{
if( !slot_tally.all_free() || !eof || num_working != 0 ) return false;
for( int i = 0; i < num_workers; ++i )
if( !ipacket_queues[i].empty() ) return false;
for( int i = 0; i < num_workers; ++i )
if( !opacket_queues[i].empty() ) return false;
return true;
}
};
// Search forward from 'pos' for "LZIP" (Boyer-Moore algorithm)
// Return pos of found string or 'pos+size' if not found.
//
int find_magic( const uint8_t * const buffer, const int pos, const int size ) throw()
{
const uint8_t table[256] = {
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,1,4,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,2,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 };
for( int i = pos; i <= pos + size - 4; i += table[buffer[i+3]] )
if( buffer[i] == 'L' && buffer[i+1] == 'Z' &&
buffer[i+2] == 'I' && buffer[i+3] == 'P' )
return i; // magic string found
return pos + size;
}
struct Splitter_arg
{
Packet_courier * courier;
const Pretty_print * pp;
int infd;
};
// split data from input file into chunks and pass them to
// courier for packaging and distribution to workers.
extern "C" void * dsplitter( void * arg )
{
const Splitter_arg & tmp = *(Splitter_arg *)arg;
Packet_courier & courier = *tmp.courier;
const Pretty_print & pp = *tmp.pp;
const int infd = tmp.infd;
const int hsize = 6; // header size
const int tsize = 20; // trailer size
const int buffer_size = max_packet_size;
const int base_buffer_size = tsize + buffer_size + hsize;
uint8_t * const base_buffer = new( std::nothrow ) uint8_t[base_buffer_size];
if( base_buffer == 0 ) { pp( "Not enough memory" ); fatal(); }
uint8_t * const buffer = base_buffer + tsize;
int size = readblock( infd, buffer, buffer_size + hsize ) - hsize;
bool at_stream_end = ( size < buffer_size );
if( size != buffer_size && errno )
{ pp(); show_error( "Read error", errno ); fatal(); }
if( size <= tsize || find_magic( buffer, 0, 4 ) != 0 )
{ pp( "Bad magic number (file not in lzip format)" ); fatal(); }
long long partial_member_size = 0;
while( true )
{
int pos = 0;
for( int newpos = 1; newpos <= size; ++newpos )
{
newpos = find_magic( buffer, newpos, size + 4 - newpos );
if( newpos <= size )
{
long long member_size = 0;
for( int i = 1; i <= 8; ++i )
{ member_size <<= 8; member_size += base_buffer[tsize+newpos-i]; }
if( partial_member_size + newpos - pos == member_size )
{ // header found
uint8_t * const data = new( std::nothrow ) uint8_t[newpos - pos];
if( data == 0 ) { pp( "Not enough memory" ); fatal(); }
std::memcpy( data, buffer + pos, newpos - pos );
courier.receive_packet( data, newpos - pos );
courier.receive_packet( 0, 0 ); // end of member token
partial_member_size = 0;
pos = newpos;
}
}
}
if( at_stream_end )
{
uint8_t * data = new( std::nothrow ) uint8_t[size + hsize - pos];
if( data == 0 ) { pp( "Not enough memory" ); fatal(); }
std::memcpy( data, buffer + pos, size + hsize - pos );
courier.receive_packet( data, size + hsize - pos );
courier.receive_packet( 0, 0 ); // end of member token
break;
}
if( pos < buffer_size )
{
partial_member_size += buffer_size - pos;
uint8_t * data = new( std::nothrow ) uint8_t[buffer_size - pos];
if( data == 0 ) { pp( "Not enough memory" ); fatal(); }
std::memcpy( data, buffer + pos, buffer_size - pos );
courier.receive_packet( data, buffer_size - pos );
}
std::memcpy( base_buffer, base_buffer + buffer_size, tsize + hsize );
size = readblock( infd, buffer + hsize, buffer_size );
at_stream_end = ( size < buffer_size );
if( size != buffer_size && errno )
{ pp(); show_error( "Read error", errno ); fatal(); }
}
delete[] base_buffer;
courier.finish(); // no more packets to send
return 0;
}
struct Worker_arg
{
Packet_courier * courier;
const Pretty_print * pp;
int worker_id;
};
// consume packets from courier, decompress their contents, and
// give the produced packets to courier.
extern "C" void * dworker( void * arg )
{
const Worker_arg & tmp = *(Worker_arg *)arg;
Packet_courier & courier = *tmp.courier;
const Pretty_print & pp = *tmp.pp;
const int worker_id = tmp.worker_id;
const int new_data_size = max_packet_size;
uint8_t * new_data = new( std::nothrow ) uint8_t[new_data_size];
LZ_Decoder * const decoder = LZ_decompress_open();
if( !new_data || !decoder || LZ_decompress_errno( decoder ) != LZ_ok )
{ pp( "Not enough memory" ); fatal(); }
int new_pos = 0;
while( true )
{
const Packet * const ipacket = courier.distribute_packet( worker_id );
if( ipacket == 0 ) break; // no more packets to process
if( ipacket->data == 0 ) LZ_decompress_finish( decoder );
int written = 0;
while( true )
{
if( LZ_decompress_write_size( decoder ) > 0 && written < ipacket->size )
{
const int wr = LZ_decompress_write( decoder, ipacket->data + written,
ipacket->size - written );
if( wr < 0 ) internal_error( "library error (LZ_decompress_write)" );
written += wr;
if( written > ipacket->size )
internal_error( "ipacket size exceeded in worker" );
}
while( true ) // read and pack decompressed data
{
const int rd = LZ_decompress_read( decoder, new_data + new_pos,
new_data_size - new_pos );
if( rd < 0 )
{
pp();
if( verbosity >= 0 )
std::fprintf( stderr, "LZ_decompress_read error in worker %d: %s.\n",
worker_id, LZ_strerror( LZ_decompress_errno( decoder ) ) );
fatal();
}
new_pos += rd;
if( new_pos > new_data_size )
internal_error( "opacket size exceeded in worker" );
if( new_pos == new_data_size || LZ_decompress_finished( decoder ) == 1 )
{
if( new_pos > 0 ) // make data packet
{
Packet * opacket = new Packet;
opacket->data = new_data;
opacket->size = new_pos;
courier.collect_packet( opacket, worker_id );
new_pos = 0;
new_data = new( std::nothrow ) uint8_t[new_data_size];
if( new_data == 0 ) { pp( "Not enough memory" ); fatal(); }
}
if( LZ_decompress_finished( decoder ) == 1 )
{
LZ_decompress_reset( decoder ); // prepare for new ipacket
Packet * opacket = new Packet; // end of member token
opacket->data = 0;
opacket->size = 0;
courier.collect_packet( opacket, worker_id );
break;
}
}
if( rd == 0 ) break;
}
if( ipacket->data == 0 ) { delete ipacket; break; }
if( written == ipacket->size )
{ delete[] ipacket->data; delete ipacket; break; }
}
}
delete[] new_data;
if( LZ_decompress_member_position( decoder ) != 0 )
{ pp( "Error, some data remains in decoder" ); fatal(); }
if( LZ_decompress_close( decoder ) < 0 )
{ pp( "LZ_decompress_close failed" ); fatal(); }
return 0;
}
// get from courier the processed and sorted packets, and write
// their contents to the output file.
void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd )
{
while( true )
{
Packet * opacket = courier.deliver_packet();
if( opacket == 0 ) break; // queue is empty. all workers exited
out_size += opacket->size;
if( outfd >= 0 )
{
const int wr = writeblock( outfd, opacket->data, opacket->size );
if( wr != opacket->size )
{ pp(); show_error( "Write error", errno ); fatal(); }
}
delete[] opacket->data;
delete opacket;
}
}
} // end namespace
// init the courier, then start the splitter and the workers and
// call the muxer.
int decompress( const int num_workers, const int infd, const int outfd,
const Pretty_print & pp, const int debug_level,
const bool testing )
{
const int slots_per_worker = 2;
const int num_slots = ( ( INT_MAX / num_workers >= slots_per_worker ) ?
num_workers * slots_per_worker : INT_MAX );
in_size = 0;
out_size = 0;
Packet_courier courier( num_workers, num_slots );
Splitter_arg splitter_arg;
splitter_arg.courier = &courier;
splitter_arg.pp = &pp;
splitter_arg.infd = infd;
pthread_t splitter_thread;
int errcode = pthread_create( &splitter_thread, 0, dsplitter, &splitter_arg );
if( errcode )
{ show_error( "Can't create splitter thread", errcode ); fatal(); }
Worker_arg * worker_args = new( std::nothrow ) Worker_arg[num_workers];
pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
if( worker_args == 0 || worker_threads == 0 )
{ pp( "Not enough memory" ); fatal(); }
for( int i = 0; i < num_workers; ++i )
{
worker_args[i].courier = &courier;
worker_args[i].pp = &pp;
worker_args[i].worker_id = i;
errcode = pthread_create( &worker_threads[i], 0, dworker, &worker_args[i] );
if( errcode )
{ show_error( "Can't create worker threads", errcode ); fatal(); }
}
muxer( courier, pp, outfd );
for( int i = num_workers - 1; i >= 0; --i )
{
errcode = pthread_join( worker_threads[i], 0 );
if( errcode )
{ show_error( "Can't join worker threads", errcode ); fatal(); }
}
delete[] worker_threads; worker_threads = 0;
delete[] worker_args; worker_args = 0;
errcode = pthread_join( splitter_thread, 0 );
if( errcode )
{ show_error( "Can't join splitter thread", errcode ); fatal(); }
if( verbosity >= 3 && out_size > 0 && in_size > 0 )
std::fprintf( stderr, "%6.3f:1, %6.3f bits/byte, %5.2f%% saved. ",
(double)out_size / in_size,
( 8.0 * in_size ) / out_size,
100.0 * ( 1.0 - ( (double)in_size / out_size ) ) );
if( verbosity >= 2 )
std::fprintf( stderr, "decompressed size %9lld, size %9lld. ",
out_size, in_size );
if( verbosity >= 1 )
{ if( testing ) std::fprintf( stderr, "ok\n" );
else std::fprintf( stderr, "done\n" ); }
if( debug_level & 1 )
std::fprintf( stderr,
"splitter tried to send a packet %8lu times\n"
"splitter had to wait %8lu times\n"
"any worker tried to consume from splitter %8lu times\n"
"any worker had to wait %8lu times\n"
"muxer tried to consume from workers %8lu times\n"
"muxer had to wait %8lu times\n",
courier.tally().check_counter,
courier.tally().wait_counter,
courier.icheck_counter,
courier.iwait_counter,
courier.ocheck_counter,
courier.owait_counter );
if( !courier.finished() ) internal_error( "courier not finished" );
return 0;
}