/* Plzip - A parallel compressor compatible with lzip Copyright (C) 2009 Laszlo Ersek. Copyright (C) 2009, 2010 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "plzip.h" namespace { long long in_size = 0; long long out_size = 0; struct Packet // data block { uint8_t * data; // data == 0 means end of member int size; // number of bytes in data (if any) }; class Packet_courier // moves packets around { public: unsigned long icheck_counter; unsigned long iwait_counter; unsigned long ocheck_counter; unsigned long owait_counter; private: int receive_worker_id; // worker queue currently receiving packets int deliver_worker_id; // worker queue currently delivering packets Slot_tally slot_tally; std::vector< std::queue< Packet * > > ipacket_queues; std::vector< std::queue< Packet * > > opacket_queues; int num_working; // Number of workers still running const int num_workers; // Number of workers const int num_slots; // max packets in circulation pthread_mutex_t imutex; pthread_cond_t iav_or_eof; // input packet available or splitter done pthread_mutex_t omutex; pthread_cond_t oav_or_exit; // output packet available or all workers exited bool eof; // splitter done public: Packet_courier( const int workers, const int slots ) : icheck_counter( 0 ), iwait_counter( 0 ), ocheck_counter( 0 ), owait_counter( 0 ), receive_worker_id( 0 ), deliver_worker_id( 0 ), slot_tally( slots ), ipacket_queues( workers ), opacket_queues( workers ), num_working( workers ), num_workers( workers ), num_slots( slots ), eof( false ) { xinit( &iav_or_eof, &imutex ); xinit( &oav_or_exit, &omutex ); } ~Packet_courier() { xdestroy( &iav_or_eof, &imutex ); xdestroy( &oav_or_exit, &omutex ); } // make a packet with data received from splitter // if data == 0, move to next queue void receive_packet( uint8_t * const data, const int size ) { Packet * ipacket = new Packet; ipacket->data = data; ipacket->size = size; if( data != 0 ) { in_size += size; slot_tally.get_slot(); } // wait for a free slot xlock( &imutex ); ipacket_queues[receive_worker_id].push( ipacket ); xbroadcast( &iav_or_eof ); xunlock( &imutex ); if( data == 0 && ++receive_worker_id >= num_workers ) receive_worker_id = 0; } // distribute a packet to a worker Packet * distribute_packet( const int worker_id ) { Packet * ipacket = 0; xlock( &imutex ); ++icheck_counter; while( ipacket_queues[worker_id].empty() && !eof ) { ++iwait_counter; xwait( &iav_or_eof, &imutex ); ++icheck_counter; } if( !ipacket_queues[worker_id].empty() ) { ipacket = ipacket_queues[worker_id].front(); ipacket_queues[worker_id].pop(); } xunlock( &imutex ); if( ipacket != 0 ) { if( ipacket->data != 0 ) slot_tally.leave_slot(); } else { // Notify muxer when last worker exits xlock( &omutex ); if( --num_working == 0 ) xsignal( &oav_or_exit ); xunlock( &omutex ); } return ipacket; } // collect a packet from a worker void collect_packet( Packet * const opacket, const int worker_id ) { xlock( &omutex ); opacket_queues[worker_id].push( opacket ); if( worker_id == deliver_worker_id ) xsignal( &oav_or_exit ); xunlock( &omutex ); } // deliver a packet to muxer // if packet data == 0, move to next queue and wait again Packet * deliver_packet() { Packet * opacket = 0; xlock( &omutex ); ++ocheck_counter; while( true ) { while( opacket_queues[deliver_worker_id].empty() && num_working > 0 ) { ++owait_counter; xwait( &oav_or_exit, &omutex ); ++ocheck_counter; } if( opacket_queues[deliver_worker_id].empty() ) break; opacket = opacket_queues[deliver_worker_id].front(); opacket_queues[deliver_worker_id].pop(); if( opacket->data != 0 ) break; else { if( ++deliver_worker_id >= num_workers ) deliver_worker_id = 0; delete opacket; opacket = 0; } } xunlock( &omutex ); return opacket; } void finish() // splitter has no more packets to send { xlock( &imutex ); eof = true; xbroadcast( &iav_or_eof ); xunlock( &imutex ); } bool finished() // all packets delivered to muxer { if( !slot_tally.all_free() || !eof || num_working != 0 ) return false; for( int i = 0; i < num_workers; ++i ) if( !ipacket_queues[i].empty() ) return false; for( int i = 0; i < num_workers; ++i ) if( !opacket_queues[i].empty() ) return false; return true; } const Slot_tally & tally() const { return slot_tally; } }; struct Splitter_arg { Packet_courier * courier; const Pretty_print * pp; int infd; int packet_size; }; // split data from input file into chunks and pass them to // courier for packaging and distribution to workers. extern "C" void * dsplitter( void * arg ) { const Splitter_arg & tmp = *(Splitter_arg *)arg; Packet_courier & courier = *tmp.courier; const Pretty_print & pp = *tmp.pp; const int infd = tmp.infd; const int hsize = 6; // header size const int tsize = 20; // trailer size const int buffer_size = tmp.packet_size; const int base_buffer_size = tsize + buffer_size + hsize; uint8_t * const base_buffer = new( std::nothrow ) uint8_t[base_buffer_size]; if( base_buffer == 0 ) { pp( "not enough memory" ); fatal(); } uint8_t * const buffer = base_buffer + tsize; int size = readblock( infd, buffer, buffer_size + hsize ) - hsize; bool at_stream_end = ( size < buffer_size ); if( size != buffer_size && errno ) { pp(); show_error( "read error", errno ); fatal(); } if( size <= tsize || buffer[0] != 'L' || buffer[1] != 'Z' || buffer[2] != 'I' || buffer[3] != 'P' ) { pp( "bad magic number (file not in lzip format)" ); fatal(); } long long partial_member_size = 0; while( true ) { int pos = 0; for( int newpos = 1; newpos <= size; ++newpos ) if( buffer[newpos] == 'L' && buffer[newpos+1] == 'Z' && buffer[newpos+2] == 'I' && buffer[newpos+3] == 'P' ) { long long member_size = 0; for( int i = 1; i <= 8; ++i ) { member_size <<= 8; member_size += base_buffer[tsize+newpos-i]; } if( partial_member_size + newpos - pos == member_size ) { // header found uint8_t * data = new( std::nothrow ) uint8_t[newpos - pos]; if( data == 0 ) { pp( "not enough memory" ); fatal(); } std::memcpy( data, buffer + pos, newpos - pos ); courier.receive_packet( data, newpos - pos ); courier.receive_packet( 0, 0 ); // end of member token partial_member_size = 0; pos = newpos; } } if( at_stream_end ) { uint8_t * data = new( std::nothrow ) uint8_t[size + hsize - pos]; if( data == 0 ) { pp( "not enough memory" ); fatal(); } std::memcpy( data, buffer + pos, size + hsize - pos ); courier.receive_packet( data, size + hsize - pos ); courier.receive_packet( 0, 0 ); // end of member token break; } if( pos < buffer_size ) { partial_member_size += buffer_size - pos; uint8_t * data = new( std::nothrow ) uint8_t[buffer_size - pos]; if( data == 0 ) { pp( "not enough memory" ); fatal(); } std::memcpy( data, buffer + pos, buffer_size - pos ); courier.receive_packet( data, buffer_size - pos ); } std::memcpy( base_buffer, base_buffer + buffer_size, tsize + hsize ); size = readblock( infd, buffer + hsize, buffer_size ); at_stream_end = ( size < buffer_size ); if( size != buffer_size && errno ) { pp(); show_error( "read error", errno ); fatal(); } } delete[] base_buffer; courier.finish(); // no more packets to send return 0; } struct Worker_arg { Packet_courier * courier; const Pretty_print * pp; int worker_id; int packet_size; }; // consume packets from courier, decompress their contents, and // give the produced packets to courier. extern "C" void * dworker( void * arg ) { const Worker_arg & tmp = *(Worker_arg *)arg; Packet_courier & courier = *tmp.courier; const Pretty_print & pp = *tmp.pp; const int worker_id = tmp.worker_id; const int new_data_size = tmp.packet_size; uint8_t * new_data = new( std::nothrow ) uint8_t[new_data_size]; LZ_Decoder * const decoder = LZ_decompress_open(); if( !new_data || !decoder || LZ_decompress_errno( decoder ) != LZ_ok ) { pp( "not enough memory" ); fatal(); } int new_pos = 0; while( true ) { Packet * ipacket = courier.distribute_packet( worker_id ); if( ipacket == 0 ) break; // no more packets to process if( ipacket->data == 0 ) LZ_decompress_finish( decoder ); int written = 0; while( true ) { if( LZ_decompress_write_size( decoder ) > 0 && written < ipacket->size ) { const int wr = LZ_decompress_write( decoder, ipacket->data + written, ipacket->size - written ); if( wr < 0 ) internal_error( "library error (LZ_decompress_write)" ); written += wr; if( written > ipacket->size ) internal_error( "ipacket size exceeded in worker" ); } while( true ) // read and pack decompressed data { const int rd = LZ_decompress_read( decoder, new_data + new_pos, new_data_size - new_pos ); if( rd < 0 ) { pp(); if( verbosity >= 0 ) std::fprintf( stderr, "LZ_decompress_read error in worker %d: %s.\n", worker_id, LZ_strerror( LZ_decompress_errno( decoder ) ) ); fatal(); } new_pos += rd; if( new_pos > new_data_size ) internal_error( "opacket size exceeded in worker" ); if( new_pos == new_data_size || LZ_decompress_finished( decoder ) == 1 ) { if( new_pos > 0 ) // make data packet { Packet * opacket = new Packet; opacket->data = new_data; opacket->size = new_pos; courier.collect_packet( opacket, worker_id ); new_pos = 0; new_data = new( std::nothrow ) uint8_t[new_data_size]; if( new_data == 0 ) { pp( "not enough memory" ); fatal(); } } if( LZ_decompress_finished( decoder ) == 1 ) { LZ_decompress_reset( decoder ); Packet * opacket = new Packet; // end of member token opacket->data = 0; opacket->size = 0; courier.collect_packet( opacket, worker_id ); break; } } if( rd == 0 ) break; } if( ipacket->data == 0 ) { delete ipacket; break; } if( written == ipacket->size ) { delete[] ipacket->data; delete ipacket; break; } } } delete[] new_data; if( LZ_decompress_total_in_size( decoder ) != 0 ) { pp( "error, remaining data in decoder" ); fatal(); } LZ_decompress_close( decoder ); return 0; } // get from courier the processed and sorted packets, and write // their contents to the output file. void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd ) { while( true ) { Packet * opacket = courier.deliver_packet(); if( opacket == 0 ) break; // queue is empty. all workers exited out_size += opacket->size; if( outfd >= 0 ) { const int wr = writeblock( outfd, opacket->data, opacket->size ); if( wr != opacket->size ) { pp(); show_error( "write error", errno ); fatal(); } } delete[] opacket->data; delete opacket; } } } // end namespace // init the courier, then start the splitter and the workers and // call the muxer. int decompress( const int num_workers, const int num_slots, const int infd, const int outfd, const Pretty_print & pp, const int debug_level, const bool testing ) { in_size = 0; out_size = 0; const int packet_size = 1 << 20; Packet_courier courier( num_workers, num_slots ); Splitter_arg splitter_arg; splitter_arg.courier = &courier; splitter_arg.pp = &pp; splitter_arg.infd = infd; splitter_arg.packet_size = packet_size; pthread_t splitter_thread; int errcode = pthread_create( &splitter_thread, 0, dsplitter, &splitter_arg ); if( errcode ) { show_error( "can't create splitter thread", errcode ); fatal(); } Worker_arg * worker_args = new( std::nothrow ) Worker_arg[num_workers]; pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers]; if( worker_args == 0 || worker_threads == 0 ) { pp( "not enough memory" ); fatal(); } for( int i = 0; i < num_workers; ++i ) { worker_args[i].courier = &courier; worker_args[i].pp = &pp; worker_args[i].worker_id = i; worker_args[i].packet_size = packet_size; errcode = pthread_create( &worker_threads[i], 0, dworker, &worker_args[i] ); if( errcode ) { show_error( "can't create worker threads", errcode ); fatal(); } } muxer( courier, pp, outfd ); for( int i = num_workers - 1; i >= 0; --i ) { errcode = pthread_join( worker_threads[i], 0 ); if( errcode ) { show_error( "can't join worker threads", errcode ); fatal(); } } delete[] worker_threads; worker_threads = 0; delete[] worker_args; worker_args = 0; errcode = pthread_join( splitter_thread, 0 ); if( errcode ) { show_error( "can't join splitter thread", errcode ); fatal(); } if( verbosity >= 2 ) std::fprintf( stderr, "decompressed size %9lld, size %9lld. ", out_size, in_size ); if( verbosity >= 1 ) { if( testing ) std::fprintf( stderr, "ok\n" ); else std::fprintf( stderr, "done\n" ); } if( debug_level & 1 ) std::fprintf( stderr, "splitter tried to send a packet %8lu times\n" "splitter had to wait %8lu times\n" "any worker tried to consume from splitter %8lu times\n" "any worker had to wait %8lu times\n" "muxer tried to consume from workers %8lu times\n" "muxer had to wait %8lu times\n", courier.tally().check_counter, courier.tally().wait_counter, courier.icheck_counter, courier.iwait_counter, courier.ocheck_counter, courier.owait_counter ); if( !courier.finished() ) internal_error( "courier not finished" ); return 0; }