/* Plzip - A parallel version of the lzip data compressor Copyright (C) 2009 Laszlo Ersek. Copyright (C) 2009, 2010 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include #include #include #include #include #include #include #include "plzip.h" #ifndef LLONG_MAX #define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL #endif #ifndef LLONG_MIN #define LLONG_MIN (-LLONG_MAX - 1LL) #endif #ifndef ULLONG_MAX #define ULLONG_MAX 0xFFFFFFFFFFFFFFFFULL #endif namespace { long long in_size = 0; long long out_size = 0; void *(*mallocf)( size_t size ); void (*freef)( void *ptr ); void * trace_malloc( size_t size ) { int save_errno = 0; void * ret = malloc( size ); if( ret == 0 ) save_errno = errno; std::fprintf( stderr, "malloc(%lu) == %p\n", (unsigned long)size, ret ); if( ret == 0 ) errno = save_errno; return ret; } void trace_free( void *ptr ) { std::fprintf( stderr, "free(%p)\n", ptr ); free( ptr ); } void * xalloc( size_t size ) { void *ret = (*mallocf)( size ); if( ret == 0 ) { show_error( "not enough memory", errno ); fatal(); } return ret; } void xinit( pthread_cond_t * cond, pthread_mutex_t * mutex ) { int ret = pthread_mutex_init( mutex, 0 ); if( ret != 0 ) { show_error( "pthread_mutex_init", ret ); fatal(); } ret = pthread_cond_init( cond, 0 ); if( ret != 0 ) { show_error( "pthread_cond_init", ret ); fatal(); } } void xdestroy( pthread_cond_t * cond, pthread_mutex_t * mutex ) { int ret = pthread_cond_destroy( cond ); if( ret != 0 ) { show_error( "pthread_cond_destroy", ret ); fatal(); } ret = pthread_mutex_destroy( mutex ); if( ret != 0 ) { show_error( "pthread_mutex_destroy", ret ); fatal(); } } void xlock( pthread_mutex_t * mutex ) { int ret = pthread_mutex_lock( mutex ); if( ret != 0 ) { show_error( "pthread_mutex_lock", ret ); fatal(); } } void xunlock( pthread_mutex_t * mutex ) { int ret = pthread_mutex_unlock( mutex ); if( ret != 0 ) { show_error( "pthread_mutex_unlock", ret ); fatal(); } } void xwait( pthread_cond_t * cond, pthread_mutex_t * mutex ) { int ret = pthread_cond_wait( cond, mutex ); if( ret != 0 ) { show_error( "pthread_cond_wait", ret ); fatal(); } } void xsignal( pthread_cond_t * cond ) { int ret = pthread_cond_signal( cond ); if( ret != 0 ) { show_error( "pthread_cond_signal", ret ); fatal(); } } void xbroadcast( pthread_cond_t * cond ) { int ret = pthread_cond_broadcast( cond ); if( ret != 0 ) { show_error( "pthread_cond_broadcast", ret ); fatal(); } } void xcreate( pthread_t *thread, void *(*routine)(void *), void *arg ) { int ret = pthread_create( thread, 0, routine, arg ); if( ret != 0 ) { show_error( "pthread_create", ret ); fatal(); } } void xjoin( pthread_t thread ) { int ret = pthread_join( thread, 0 ); if( ret != 0 ) { show_error( "pthread_join", ret ); fatal(); } } struct Slot_tally // Synchronizes splitter to muxer { unsigned long check_counter; unsigned long wait_counter; int num_free; // Number of free slots pthread_mutex_t mutex; pthread_cond_t slot_av; // Free slot available Slot_tally( const int slots ) : check_counter( 0 ), wait_counter( 0 ), num_free( slots ) { xinit( &slot_av, &mutex ); } ~Slot_tally() { xdestroy( &slot_av, &mutex ); } }; struct S2w_blk // Splitter to worker data block { unsigned long long id; // Block serial number as read from infd S2w_blk *next; // Next in queue int loaded; // # of bytes in plain, may be 0 for 1st uint8_t plain[1]; // Data read from infd, allocated: data_size }; struct S2w_queue { S2w_blk * head; // Next ready worker shall compress this S2w_blk * tail; // Splitter will append here unsigned long check_counter; unsigned long wait_counter; pthread_mutex_t mutex; pthread_cond_t av_or_eof; // New block available or splitter done bool eof; // Splitter done S2w_queue() : head( 0 ), tail( 0 ), check_counter( 0 ), wait_counter( 0 ), eof( false ) { xinit( &av_or_eof, &mutex ); } ~S2w_queue() { xdestroy( &av_or_eof, &mutex ); } }; struct W2m_blk // Worker to muxer data block { unsigned long long id; // Block index as read from infd W2m_blk *next; // Next block in list (unordered) int produced; // Number of bytes in compr uint8_t compr[1]; // Data to write to outfd, alloc.: compr_size }; struct W2m_queue { unsigned long long needed_id; // Block needed for resuming writing W2m_blk *head; // Block list (unordered) unsigned long check_counter; unsigned long wait_counter; int num_working; // Number of workers still running pthread_mutex_t mutex; pthread_cond_t av_or_exit; // New block available or all workers exited W2m_queue( const int num_workers ) : needed_id( 0 ), head( 0 ), check_counter( 0 ), wait_counter( 0 ), num_working( num_workers ) { xinit( &av_or_exit, &mutex ); } ~W2m_queue() { xdestroy( &av_or_exit, &mutex ); } }; struct Splitter_arg { Slot_tally * slot_tally; S2w_queue * s2w_queue; int infd; int data_size; int s2w_blk_size; }; void * splitter( void * arg ) { const Splitter_arg & tmp = *(Splitter_arg *)arg; Slot_tally & slot_tally = *tmp.slot_tally; S2w_queue & s2w_queue = *tmp.s2w_queue; const int infd = tmp.infd; const int data_size = tmp.data_size; const int s2w_blk_size = tmp.s2w_blk_size; for( unsigned long long id = 0; ; ++id ) { S2w_blk * s2w_blk = (S2w_blk *)xalloc( s2w_blk_size ); // Fill block const int rd = readblock( infd, s2w_blk->plain, data_size ); if( rd != data_size && errno ) { show_error( "read", errno ); fatal(); } if( rd > 0 || id == 0 ) // first block can be empty { s2w_blk->id = id; s2w_blk->next = 0; s2w_blk->loaded = rd; in_size += rd; xlock( &slot_tally.mutex ); // Grab a free slot ++slot_tally.check_counter; while( slot_tally.num_free == 0 ) { ++slot_tally.wait_counter; xwait( &slot_tally.slot_av, &slot_tally.mutex ); } --slot_tally.num_free; xunlock( &slot_tally.mutex ); } else { (*freef)( s2w_blk ); s2w_blk = 0; } xlock( &s2w_queue.mutex ); if( s2w_blk != 0 ) { if( s2w_queue.tail == 0 ) s2w_queue.head = s2w_blk; else s2w_queue.tail->next = s2w_blk; s2w_queue.tail = s2w_blk; xsignal( &s2w_queue.av_or_eof ); } else { s2w_queue.eof = true; xbroadcast( &s2w_queue.av_or_eof ); } xunlock( &s2w_queue.mutex ); if( s2w_blk == 0 ) break; } return 0; } void work_compr( const int dictionary_size, const int match_len_limit, const S2w_blk & s2w_blk, W2m_queue & w2m_queue, const int compr_size, const int w2m_blk_size ) { assert( s2w_blk.loaded > 0 || s2w_blk.id == 0 ); W2m_blk * w2m_blk = (W2m_blk *)xalloc( w2m_blk_size ); const int dict_size = std::max( LZ_min_dictionary_size(), std::min( dictionary_size, s2w_blk.loaded ) ); LZ_Encoder * const encoder = LZ_compress_open( dict_size, match_len_limit, LLONG_MAX ); if( !encoder || LZ_compress_errno( encoder ) != LZ_ok ) { show_error( "LZ_compress_open failed." ); fatal(); } int written = 0; w2m_blk->produced = 0; while( true ) { if( LZ_compress_write_size( encoder ) > 0 ) { if( written < s2w_blk.loaded ) { const int wr = LZ_compress_write( encoder, s2w_blk.plain + written, s2w_blk.loaded - written ); if( wr < 0 ) { show_error( "LZ_compress_write failed." ); fatal(); } written += wr; } if( written >= s2w_blk.loaded ) LZ_compress_finish( encoder ); } assert( w2m_blk->produced < compr_size ); const int rd = LZ_compress_read( encoder, w2m_blk->compr + w2m_blk->produced, compr_size - w2m_blk->produced ); if( rd < 0 ) { show_error( "LZ_compress_read failed." ); fatal(); } w2m_blk->produced += rd; if( LZ_compress_finished( encoder ) == 1 ) break; } if( LZ_compress_close( encoder ) < 0 ) { show_error( "LZ_compress_close failed." ); fatal(); } w2m_blk->id = s2w_blk.id; // Push block to muxer queue xlock( &w2m_queue.mutex ); w2m_blk->next = w2m_queue.head; w2m_queue.head = w2m_blk; if( w2m_blk->id == w2m_queue.needed_id ) xsignal( &w2m_queue.av_or_exit ); xunlock( &w2m_queue.mutex ); } struct Worker_arg { int dictionary_size; int match_len_limit; S2w_queue * s2w_queue; W2m_queue * w2m_queue; int compr_size; int w2m_blk_size; }; void * worker( void * arg ) { const Worker_arg & tmp = *(Worker_arg *)arg; const int dictionary_size = tmp.dictionary_size; const int match_len_limit = tmp.match_len_limit; S2w_queue & s2w_queue = *tmp.s2w_queue; W2m_queue & w2m_queue = *tmp.w2m_queue; const int compr_size = tmp.compr_size; const int w2m_blk_size = tmp.w2m_blk_size; while( true ) { S2w_blk *s2w_blk; // Grab a block to work on xlock( &s2w_queue.mutex ); ++s2w_queue.check_counter; while( s2w_queue.head == 0 && !s2w_queue.eof ) { ++s2w_queue.wait_counter; xwait( &s2w_queue.av_or_eof, &s2w_queue.mutex ); } if( s2w_queue.head == 0 ) // No blocks available and splitter exited { xunlock( &s2w_queue.mutex ); break; } s2w_blk = s2w_queue.head; s2w_queue.head = s2w_blk->next; if( s2w_queue.head == 0 ) s2w_queue.tail = 0; xunlock( &s2w_queue.mutex ); work_compr( dictionary_size, match_len_limit, *s2w_blk, w2m_queue, compr_size, w2m_blk_size ); (*freef)( s2w_blk ); } // Notify muxer when last worker exits xlock( &w2m_queue.mutex ); if( --w2m_queue.num_working == 0 && w2m_queue.head == 0 ) xsignal( &w2m_queue.av_or_exit ); xunlock( &w2m_queue.mutex ); return 0; } void muxer( Slot_tally & slot_tally, W2m_queue & w2m_queue, const int num_slots, const int outfd ) { unsigned long long needed_id = 0; std::vector< W2m_blk * > circular_buffer( num_slots, (W2m_blk *)0 ); xlock( &w2m_queue.mutex ); while( true ) { // Grab all available compressed blocks in one step ++w2m_queue.check_counter; while( w2m_queue.head == 0 && w2m_queue.num_working > 0 ) { ++w2m_queue.wait_counter; xwait( &w2m_queue.av_or_exit, &w2m_queue.mutex ); } if( w2m_queue.head == 0 ) break; // queue is empty. all workers exited W2m_blk * w2m_blk = w2m_queue.head; w2m_queue.head = 0; xunlock( &w2m_queue.mutex ); // Merge blocks fetched this time into circular buffer do { // id collision shouldn't happen assert( circular_buffer[w2m_blk->id%num_slots] == 0 ); circular_buffer[w2m_blk->id%num_slots] = w2m_blk; W2m_blk * next = w2m_blk->next; w2m_blk->next = 0; w2m_blk = next; } while( w2m_blk != 0 ); // Write out initial continuous sequence of reordered blocks while( true ) { w2m_blk = circular_buffer[needed_id%num_slots]; if( w2m_blk == 0 ) break; out_size += w2m_blk->produced; if( outfd >= 0 ) { const int wr = writeblock( outfd, w2m_blk->compr, w2m_blk->produced ); if( wr != w2m_blk->produced ) { show_error( "write", errno ); fatal(); } } circular_buffer[needed_id%num_slots] = 0; ++needed_id; xlock( &slot_tally.mutex ); if( slot_tally.num_free++ == 0 ) xsignal( &slot_tally.slot_av ); xunlock( &slot_tally.mutex ); (*freef)( w2m_blk ); } xlock( &w2m_queue.mutex ); w2m_queue.needed_id = needed_id; } xunlock( &w2m_queue.mutex ); for( int i = 0; i < num_slots; ++i ) if( circular_buffer[i] != 0 ) { show_error( "circular buffer not empty" ); fatal(); } } } // end namespace int compress( const int data_size, const int dictionary_size, const int match_len_limit, const int num_workers, const int num_slots, const int infd, const int outfd, const int debug_level ) { if( debug_level & 2 ) { mallocf = trace_malloc; freef = trace_free; } else { mallocf = malloc; freef = free; } Slot_tally slot_tally( num_slots ); S2w_queue s2w_queue; W2m_queue w2m_queue( num_workers ); Splitter_arg splitter_arg; splitter_arg.slot_tally = &slot_tally; splitter_arg.s2w_queue = &s2w_queue; splitter_arg.infd = infd; splitter_arg.data_size = data_size; splitter_arg.s2w_blk_size = sizeof (S2w_blk) + data_size - 1; pthread_t splitter_thread; xcreate( &splitter_thread, splitter, &splitter_arg ); Worker_arg worker_arg; worker_arg.dictionary_size = dictionary_size; worker_arg.match_len_limit = match_len_limit; worker_arg.s2w_queue = &s2w_queue; worker_arg.w2m_queue = &w2m_queue; worker_arg.compr_size = 6 + 20 + ( ( data_size / 8 ) * 9 ); worker_arg.w2m_blk_size = sizeof (W2m_blk) + worker_arg.compr_size - 1; pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers]; if( worker_threads == 0 ) { show_error( "not enough memory.", errno ); fatal(); } for( int i = 0; i < num_workers; ++i ) xcreate( &worker_threads[i], worker, &worker_arg ); muxer( slot_tally, w2m_queue, num_slots, outfd ); for( int i = num_workers - 1; i >= 0; --i ) xjoin(worker_threads[i]); delete[] worker_threads; worker_threads = 0; xjoin( splitter_thread ); if( verbosity >= 1 ) { if( in_size <= 0 || out_size <= 0 ) std::fprintf( stderr, "no data compressed.\n" ); else std::fprintf( stderr, "%6.3f:1, %6.3f bits/byte, " "%5.2f%% saved, %lld in, %lld out.\n", (double)in_size / out_size, ( 8.0 * out_size ) / in_size, 100.0 * ( 1.0 - ( (double)out_size / in_size ) ), in_size, out_size ); } const int FW = ( sizeof (unsigned long) * 8 ) / 3 + 1; if( debug_level & 1 ) std::fprintf( stderr, "any worker tried to consume from splitter: %*lu\n" "any worker stalled : %*lu\n" "muxer tried to consume from workers : %*lu\n" "muxer stalled : %*lu\n" "splitter tried to fill a block : %*lu\n" "splitter stalled : %*lu\n", FW, s2w_queue.check_counter, FW, s2w_queue.wait_counter, FW, w2m_queue.check_counter, FW, w2m_queue.wait_counter, FW, slot_tally.check_counter, FW, slot_tally.wait_counter ); assert( slot_tally.num_free == num_slots ); assert( s2w_queue.eof ); assert( s2w_queue.head == 0 ); assert( s2w_queue.tail == 0 ); assert( w2m_queue.num_working == 0 ); assert( w2m_queue.head == 0 ); return 0; }