summaryrefslogtreecommitdiffstats
path: root/compress.cc
blob: 5bcd999e064c5c912a425d8d0c8c1c2bd0b18a56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*  Plzip - Parallel compressor compatible with lzip
    Copyright (C) 2009 Laszlo Ersek.
    Copyright (C) 2009-2017 Antonio Diaz Diaz.

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#define _FILE_OFFSET_BITS 64

#include <algorithm>
#include <cerrno>
#include <climits>
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <vector>
#include <pthread.h>
#include <stdint.h>
#include <unistd.h>
#include <lzlib.h>

#include "lzip.h"

#ifndef LLONG_MAX
#define LLONG_MAX  0x7FFFFFFFFFFFFFFFLL
#endif


// Returns the number of bytes really read.
// If (returned value < size) and (errno == 0), means EOF was reached.
//
int readblock( const int fd, uint8_t * const buf, const int size )
  {
  int sz = 0;
  errno = 0;
  while( sz < size )
    {
    const int n = read( fd, buf + sz, size - sz );
    if( n > 0 ) sz += n;
    else if( n == 0 ) break;				// EOF
    else if( errno != EINTR ) break;
    errno = 0;
    }
  return sz;
  }


// Returns the number of bytes really written.
// If (returned value < size), it is always an error.
//
int writeblock( const int fd, const uint8_t * const buf, const int size )
  {
  int sz = 0;
  errno = 0;
  while( sz < size )
    {
    const int n = write( fd, buf + sz, size - sz );
    if( n > 0 ) sz += n;
    else if( n < 0 && errno != EINTR ) break;
    errno = 0;
    }
  return sz;
  }


void xinit_mutex( pthread_mutex_t * const mutex )
  {
  const int errcode = pthread_mutex_init( mutex, 0 );
  if( errcode )
    { show_error( "pthread_mutex_init", errcode ); cleanup_and_fail(); }
  }

void xinit_cond( pthread_cond_t * const cond )
  {
  const int errcode = pthread_cond_init( cond, 0 );
  if( errcode )
    { show_error( "pthread_cond_init", errcode ); cleanup_and_fail(); }
  }


void xdestroy_mutex( pthread_mutex_t * const mutex )
  {
  const int errcode = pthread_mutex_destroy( mutex );
  if( errcode )
    { show_error( "pthread_mutex_destroy", errcode ); cleanup_and_fail(); }
  }

void xdestroy_cond( pthread_cond_t * const cond )
  {
  const int errcode = pthread_cond_destroy( cond );
  if( errcode )
    { show_error( "pthread_cond_destroy", errcode ); cleanup_and_fail(); }
  }


void xlock( pthread_mutex_t * const mutex )
  {
  const int errcode = pthread_mutex_lock( mutex );
  if( errcode )
    { show_error( "pthread_mutex_lock", errcode ); cleanup_and_fail(); }
  }


void xunlock( pthread_mutex_t * const mutex )
  {
  const int errcode = pthread_mutex_unlock( mutex );
  if( errcode )
    { show_error( "pthread_mutex_unlock", errcode ); cleanup_and_fail(); }
  }


void xwait( pthread_cond_t * const cond, pthread_mutex_t * const mutex )
  {
  const int errcode = pthread_cond_wait( cond, mutex );
  if( errcode )
    { show_error( "pthread_cond_wait", errcode ); cleanup_and_fail(); }
  }


void xsignal( pthread_cond_t * const cond )
  {
  const int errcode = pthread_cond_signal( cond );
  if( errcode )
    { show_error( "pthread_cond_signal", errcode ); cleanup_and_fail(); }
  }


void xbroadcast( pthread_cond_t * const cond )
  {
  const int errcode = pthread_cond_broadcast( cond );
  if( errcode )
    { show_error( "pthread_cond_broadcast", errcode ); cleanup_and_fail(); }
  }


namespace {

unsigned long long in_size = 0;
unsigned long long out_size = 0;
const char * const mem_msg = "Not enough memory. Try a smaller dictionary size";


struct Packet			// data block with a serial number
  {
  uint8_t * data;
  int size;			// number of bytes in data (if any)
  unsigned id;			// serial number assigned as received
  Packet( uint8_t * const d, const int s, const unsigned i )
    : data( d ), size( s ), id( i ) {}
  };


class Packet_courier			// moves packets around
  {
public:
  unsigned icheck_counter;
  unsigned iwait_counter;
  unsigned ocheck_counter;
  unsigned owait_counter;
private:
  unsigned receive_id;			// id assigned to next packet received
  unsigned deliver_id;			// id of next packet to be delivered
  Slot_tally slot_tally;		// limits the number of input packets
  std::queue< Packet * > packet_queue;
  std::vector< const Packet * > circular_buffer;
  int num_working;			// number of workers still running
  const int num_slots;			// max packets in circulation
  pthread_mutex_t imutex;
  pthread_cond_t iav_or_eof;	// input packet available or splitter done
  pthread_mutex_t omutex;
  pthread_cond_t oav_or_exit;	// output packet available or all workers exited
  bool eof;				// splitter done

  Packet_courier( const Packet_courier & );	// declared as private
  void operator=( const Packet_courier & );	// declared as private

public:
  Packet_courier( const int workers, const int slots )
    : icheck_counter( 0 ), iwait_counter( 0 ),
      ocheck_counter( 0 ), owait_counter( 0 ),
      receive_id( 0 ), deliver_id( 0 ),
      slot_tally( slots ), circular_buffer( slots, (Packet *) 0 ),
      num_working( workers ), num_slots( slots ), eof( false )
    {
    xinit_mutex( &imutex ); xinit_cond( &iav_or_eof );
    xinit_mutex( &omutex ); xinit_cond( &oav_or_exit );
    }

  ~Packet_courier()
    {
    xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex );
    xdestroy_cond( &iav_or_eof ); xdestroy_mutex( &imutex );
    }

  // make a packet with data received from splitter
  void receive_packet( uint8_t * const data, const int size )
    {
    Packet * const ipacket = new Packet( data, size, receive_id++ );
    slot_tally.get_slot();		// wait for a free slot
    xlock( &imutex );
    packet_queue.push( ipacket );
    xsignal( &iav_or_eof );
    xunlock( &imutex );
    }

  // distribute a packet to a worker
  Packet * distribute_packet()
    {
    Packet * ipacket = 0;
    xlock( &imutex );
    ++icheck_counter;
    while( packet_queue.empty() && !eof )
      {
      ++iwait_counter;
      xwait( &iav_or_eof, &imutex );
      }
    if( !packet_queue.empty() )
      {
      ipacket = packet_queue.front();
      packet_queue.pop();
      }
    xunlock( &imutex );
    if( !ipacket )
      {
      // notify muxer when last worker exits
      xlock( &omutex );
      if( --num_working == 0 ) xsignal( &oav_or_exit );
      xunlock( &omutex );
      }
    return ipacket;
    }

  // collect a packet from a worker
  void collect_packet( const Packet * const opacket )
    {
    const int i = opacket->id % num_slots;
    xlock( &omutex );
    // id collision shouldn't happen
    if( circular_buffer[i] != 0 )
      internal_error( "id collision in collect_packet." );
    // merge packet into circular buffer
    circular_buffer[i] = opacket;
    if( opacket->id == deliver_id ) xsignal( &oav_or_exit );
    xunlock( &omutex );
    }

  // deliver packets to muxer
  void deliver_packets( std::vector< const Packet * > & packet_vector )
    {
    xlock( &omutex );
    ++ocheck_counter;
    int i = deliver_id % num_slots;
    while( circular_buffer[i] == 0 && num_working > 0 )
      {
      ++owait_counter;
      xwait( &oav_or_exit, &omutex );
      }
    packet_vector.clear();
    while( true )
      {
      const Packet * const opacket = circular_buffer[i];
      if( !opacket ) break;
      packet_vector.push_back( opacket );
      circular_buffer[i] = 0;
      ++deliver_id;
      i = deliver_id % num_slots;
      }
    xunlock( &omutex );
    if( packet_vector.size() )		// return slots to the tally
      slot_tally.leave_slots( packet_vector.size() );
    }

  void finish()			// splitter has no more packets to send
    {
    xlock( &imutex );
    eof = true;
    xbroadcast( &iav_or_eof );
    xunlock( &imutex );
    }

  bool finished()		// all packets delivered to muxer
    {
    if( !slot_tally.all_free() || !eof || !packet_queue.empty() ||
        num_working != 0 ) return false;
    for( int i = 0; i < num_slots; ++i )
      if( circular_buffer[i] != 0 ) return false;
    return true;
    }
  };


struct Splitter_arg
  {
  Packet_courier * courier;
  const Pretty_print * pp;
  int infd;
  int data_size;
  int offset;
  };


       // split data from input file into chunks and pass them to
       // courier for packaging and distribution to workers.
extern "C" void * csplitter( void * arg )
  {
  const Splitter_arg & tmp = *(Splitter_arg *)arg;
  Packet_courier & courier = *tmp.courier;
  const Pretty_print & pp = *tmp.pp;
  const int infd = tmp.infd;
  const int data_size = tmp.data_size;
  const int offset = tmp.offset;

  for( bool first_post = true; ; first_post = false )
    {
    uint8_t * const data = new( std::nothrow ) uint8_t[offset+data_size];
    if( !data ) { pp( mem_msg ); cleanup_and_fail(); }
    const int size = readblock( infd, data + offset, data_size );
    if( size != data_size && errno )
      { pp(); show_error( "Read error", errno ); cleanup_and_fail(); }

    if( size > 0 || first_post )	// first packet may be empty
      {
      in_size += size;
      courier.receive_packet( data, size );
      if( size < data_size ) break;	// EOF
      }
    else
      {
      delete[] data;
      break;
      }
    }
  courier.finish();			// no more packets to send
  return 0;
  }


struct Worker_arg
  {
  Packet_courier * courier;
  const Pretty_print * pp;
  int dictionary_size;
  int match_len_limit;
  int offset;
  };


       // get packets from courier, replace their contents, and return
       // them to courier.
extern "C" void * cworker( void * arg )
  {
  const Worker_arg & tmp = *(Worker_arg *)arg;
  Packet_courier & courier = *tmp.courier;
  const Pretty_print & pp = *tmp.pp;
  const int dictionary_size = tmp.dictionary_size;
  const int match_len_limit = tmp.match_len_limit;
  const int offset = tmp.offset;

  while( true )
    {
    Packet * const packet = courier.distribute_packet();
    if( !packet ) break;		// no more packets to process

    const bool fast = dictionary_size == 65535 && match_len_limit == 16;
    const int dict_size = fast ? dictionary_size :
                          std::max( std::min( dictionary_size, packet->size ),
                                    LZ_min_dictionary_size() );
    LZ_Encoder * const encoder =
      LZ_compress_open( dict_size, match_len_limit, LLONG_MAX );
    if( !encoder || LZ_compress_errno( encoder ) != LZ_ok )
      {
      if( !encoder || LZ_compress_errno( encoder ) == LZ_mem_error )
        pp( mem_msg );
      else
        internal_error( "invalid argument to encoder." );
      cleanup_and_fail();
      }

    int written = 0;
    int new_pos = 0;
    while( true )
      {
      if( LZ_compress_write_size( encoder ) > 0 )
        {
        if( written < packet->size )
          {
          const int wr = LZ_compress_write( encoder,
                                            packet->data + offset + written,
                                            packet->size - written );
          if( wr < 0 ) internal_error( "library error (LZ_compress_write)." );
          written += wr;
          }
        if( written >= packet->size ) LZ_compress_finish( encoder );
        }
      const int rd = LZ_compress_read( encoder, packet->data + new_pos,
                                       offset + written - new_pos );
      if( rd < 0 )
        {
        pp();
        if( verbosity >= 0 )
          std::fprintf( stderr, "LZ_compress_read error: %s\n",
                        LZ_strerror( LZ_compress_errno( encoder ) ) );
        cleanup_and_fail();
        }
      new_pos += rd;
      if( new_pos >= offset + written )
        internal_error( "packet size exceeded in worker." );
      if( LZ_compress_finished( encoder ) == 1 ) break;
      }

    if( LZ_compress_close( encoder ) < 0 )
      { pp( "LZ_compress_close failed." ); cleanup_and_fail(); }

    if( packet->size > 0 ) show_progress( packet->size );
    packet->size = new_pos;
    courier.collect_packet( packet );
    }
  return 0;
  }


     // get from courier the processed and sorted packets, and write
     // their contents to the output file.
void muxer( Packet_courier & courier, const Pretty_print & pp, const int outfd )
  {
  std::vector< const Packet * > packet_vector;
  while( true )
    {
    courier.deliver_packets( packet_vector );
    if( packet_vector.empty() ) break;		// all workers exited

    for( unsigned i = 0; i < packet_vector.size(); ++i )
      {
      const Packet * const opacket = packet_vector[i];
      out_size += opacket->size;

      const int wr = writeblock( outfd, opacket->data, opacket->size );
      if( wr != opacket->size )
        { pp(); show_error( "Write error", errno ); cleanup_and_fail(); }
      delete[] opacket->data;
      delete opacket;
      }
    }
  }

} // end namespace


    // init the courier, then start the splitter and the workers and
    // call the muxer.
int compress( const int data_size, const int dictionary_size,
              const int match_len_limit, const int num_workers,
              const int infd, const int outfd,
              const Pretty_print & pp, const int debug_level )
  {
  const int offset = data_size / 8;
  const int slots_per_worker = 2;
  const int num_slots =
    ( ( num_workers > 1 ) ? num_workers * slots_per_worker : 1 );
  in_size = 0;
  out_size = 0;
  Packet_courier courier( num_workers, num_slots );

  Splitter_arg splitter_arg;
  splitter_arg.courier = &courier;
  splitter_arg.pp = &pp;
  splitter_arg.infd = infd;
  splitter_arg.data_size = data_size;
  splitter_arg.offset = offset;

  pthread_t splitter_thread;
  int errcode = pthread_create( &splitter_thread, 0, csplitter, &splitter_arg );
  if( errcode )
    { show_error( "Can't create splitter thread", errcode ); cleanup_and_fail(); }

  Worker_arg worker_arg;
  worker_arg.courier = &courier;
  worker_arg.pp = &pp;
  worker_arg.dictionary_size = dictionary_size;
  worker_arg.match_len_limit = match_len_limit;
  worker_arg.offset = offset;

  pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
  if( !worker_threads ) { pp( mem_msg ); cleanup_and_fail(); }
  for( int i = 0; i < num_workers; ++i )
    {
    errcode = pthread_create( worker_threads + i, 0, cworker, &worker_arg );
    if( errcode )
      { show_error( "Can't create worker threads", errcode ); cleanup_and_fail(); }
    }

  muxer( courier, pp, outfd );

  for( int i = num_workers - 1; i >= 0; --i )
    {
    errcode = pthread_join( worker_threads[i], 0 );
    if( errcode )
      { show_error( "Can't join worker threads", errcode ); cleanup_and_fail(); }
    }
  delete[] worker_threads;

  errcode = pthread_join( splitter_thread, 0 );
  if( errcode )
    { show_error( "Can't join splitter thread", errcode ); cleanup_and_fail(); }

  if( verbosity >= 1 )
    {
    if( in_size == 0 || out_size == 0 )
      std::fputs( " no data compressed.\n", stderr );
    else
      std::fprintf( stderr, "%6.3f:1, %6.3f bits/byte, "
                            "%5.2f%% saved, %llu in, %llu out.\n",
                    (double)in_size / out_size,
                    ( 8.0 * out_size ) / in_size,
                    100.0 * ( 1.0 - ( (double)out_size / in_size ) ),
                    in_size, out_size );
    }

  if( debug_level & 1 )
    std::fprintf( stderr,
      "any worker tried to consume from splitter %8u times\n"
      "any worker had to wait                    %8u times\n"
      "muxer tried to consume from workers       %8u times\n"
      "muxer had to wait                         %8u times\n",
      courier.icheck_counter,
      courier.iwait_counter,
      courier.ocheck_counter,
      courier.owait_counter );

  if( !courier.finished() ) internal_error( "courier not finished." );
  return 0;
  }