summaryrefslogtreecommitdiffstats
path: root/plzip.cc
blob: dcae860ba1cd37d5300352da619aa4ba5304e0d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*  Plzip - A parallel version of the lzip data compressor
    Copyright (C) 2009 Laszlo Ersek.
    Copyright (C) 2009, 2010 Antonio Diaz Diaz.

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#define _FILE_OFFSET_BITS 64

#include <algorithm>
#include <cassert>
#include <cerrno>
#include <climits>
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <pthread.h>
#include <stdint.h>
#include <unistd.h>
#include <lzlib.h>

#include "plzip.h"

#ifndef LLONG_MAX
#define LLONG_MAX  0x7FFFFFFFFFFFFFFFLL
#endif
#ifndef LLONG_MIN
#define LLONG_MIN  (-LLONG_MAX - 1LL)
#endif
#ifndef ULLONG_MAX
#define ULLONG_MAX 0xFFFFFFFFFFFFFFFFULL
#endif


namespace {

long long in_size = 0;
long long out_size = 0;

void *(*mallocf)( size_t size );
void (*freef)( void *ptr );


void * trace_malloc( size_t size )
  {
  int save_errno = 0;

  void * ret = malloc( size );
  if( ret == 0 ) save_errno = errno;
  std::fprintf( stderr, "malloc(%lu) == %p\n", (unsigned long)size, ret );
  if( ret == 0 ) errno = save_errno;
  return ret;
  }


void trace_free( void *ptr )
  {
  std::fprintf( stderr, "free(%p)\n", ptr );
  free( ptr );
  }


void * xalloc( size_t size )
  {
  void *ret = (*mallocf)( size );
  if( ret == 0 ) { show_error( "not enough memory", errno ); fatal(); }
  return ret;
  }


void xinit( pthread_cond_t * cond, pthread_mutex_t * mutex )
  {
  int ret = pthread_mutex_init( mutex, 0 );
  if( ret != 0 ) { show_error( "pthread_mutex_init", ret ); fatal(); }

  ret = pthread_cond_init( cond, 0 );
  if( ret != 0 ) { show_error( "pthread_cond_init", ret ); fatal(); }
  }


void xdestroy( pthread_cond_t * cond, pthread_mutex_t * mutex )
  {
  int ret = pthread_cond_destroy( cond );
  if( ret != 0 ) { show_error( "pthread_cond_destroy", ret ); fatal(); }

  ret = pthread_mutex_destroy( mutex );
  if( ret != 0 ) { show_error( "pthread_mutex_destroy", ret ); fatal(); }
  }


void xlock( pthread_mutex_t * mutex )
  {
  int ret = pthread_mutex_lock( mutex );
  if( ret != 0 ) { show_error( "pthread_mutex_lock", ret ); fatal(); }
  }


void xunlock( pthread_mutex_t * mutex )
  {
  int ret = pthread_mutex_unlock( mutex );
  if( ret != 0 ) { show_error( "pthread_mutex_unlock", ret ); fatal(); }
  }


void xwait( pthread_cond_t * cond, pthread_mutex_t * mutex )
  {
  int ret = pthread_cond_wait( cond, mutex );
  if( ret != 0 ) { show_error( "pthread_cond_wait", ret ); fatal(); }
  }


void xsignal( pthread_cond_t * cond )
  {
  int ret = pthread_cond_signal( cond );
  if( ret != 0 ) { show_error( "pthread_cond_signal", ret ); fatal(); }
  }


void xbroadcast( pthread_cond_t * cond )
  {
  int ret = pthread_cond_broadcast( cond );
  if( ret != 0 ) { show_error( "pthread_cond_broadcast", ret ); fatal(); }
  }


void xcreate( pthread_t *thread, void *(*routine)(void *), void *arg )
  {
  int ret = pthread_create( thread, 0, routine, arg );
  if( ret != 0 ) { show_error( "pthread_create", ret ); fatal(); }
  }


void xjoin( pthread_t thread )
  {
  int ret = pthread_join( thread, 0 );
  if( ret != 0 ) { show_error( "pthread_join", ret ); fatal(); }
  }


struct Slot_tally			// Synchronizes splitter to muxer
  {
  unsigned long check_counter;
  unsigned long wait_counter;
  int num_free;				// Number of free slots
  pthread_mutex_t mutex;
  pthread_cond_t slot_av;		// Free slot available

  Slot_tally( const int slots )
    : check_counter( 0 ), wait_counter( 0 ), num_free( slots )
    { xinit( &slot_av, &mutex ); }

  ~Slot_tally() { xdestroy( &slot_av, &mutex ); }
  };


struct S2w_blk			// Splitter to worker data block
  {
  unsigned long long id;	// Block serial number as read from infd
  S2w_blk *next;		// Next in queue
  int loaded;			// # of bytes in plain, may be 0 for 1st
  uint8_t plain[1];		// Data read from infd, allocated: data_size
  };


struct S2w_queue
  {
  S2w_blk * head;		// Next ready worker shall compress this
  S2w_blk * tail;		// Splitter will append here
  unsigned long check_counter;
  unsigned long wait_counter;
  pthread_mutex_t mutex;
  pthread_cond_t av_or_eof;	// New block available or splitter done
  bool eof;			// Splitter done

  S2w_queue()
    : head( 0 ), tail( 0 ), check_counter( 0 ), wait_counter( 0 ), eof( false )
    { xinit( &av_or_eof, &mutex ); }

  ~S2w_queue() { xdestroy( &av_or_eof, &mutex ); }
  };


struct W2m_blk			// Worker to muxer data block
  {
  unsigned long long id;	// Block index as read from infd
  W2m_blk *next;		// Next block in list (unordered)
  int produced;			// Number of bytes in compr
  uint8_t compr[1];		// Data to write to outfd, alloc.: compr_size
  };


struct W2m_queue
  {
  unsigned long long needed_id;	// Block needed for resuming writing
  W2m_blk *head;		// Block list (unordered)
  unsigned long check_counter;
  unsigned long wait_counter;
  int num_working;		// Number of workers still running
  pthread_mutex_t mutex;
  pthread_cond_t av_or_exit;	// New block available or all workers exited

  W2m_queue( const int num_workers )
    : needed_id( 0 ), head( 0 ), check_counter( 0 ), wait_counter( 0 ),
      num_working( num_workers )
    { xinit( &av_or_exit, &mutex ); }

  ~W2m_queue() { xdestroy( &av_or_exit, &mutex ); }
  };


struct Splitter_arg
  {
  Slot_tally * slot_tally;
  S2w_queue * s2w_queue;
  int infd;
  int data_size;
  int s2w_blk_size;
  };


void * splitter( void * arg )
  {
  const Splitter_arg & tmp = *(Splitter_arg *)arg;
  Slot_tally & slot_tally = *tmp.slot_tally;
  S2w_queue & s2w_queue = *tmp.s2w_queue;
  const int infd = tmp.infd;
  const int data_size = tmp.data_size;
  const int s2w_blk_size = tmp.s2w_blk_size;

  for( unsigned long long id = 0; ; ++id )
    {
    S2w_blk * s2w_blk = (S2w_blk *)xalloc( s2w_blk_size );

    // Fill block
    const int rd = readblock( infd, s2w_blk->plain, data_size );
    if( rd != data_size && errno ) { show_error( "read", errno ); fatal(); }

    if( rd > 0 || id == 0 )		// first block can be empty
      {
      s2w_blk->id = id;
      s2w_blk->next = 0;
      s2w_blk->loaded = rd;
      in_size += rd;
      xlock( &slot_tally.mutex );		// Grab a free slot
      ++slot_tally.check_counter;
      while( slot_tally.num_free == 0 )
        {
        ++slot_tally.wait_counter;
        xwait( &slot_tally.slot_av, &slot_tally.mutex );
        }
      --slot_tally.num_free;
      xunlock( &slot_tally.mutex );
      }
    else
      { (*freef)( s2w_blk ); s2w_blk = 0; }

    xlock( &s2w_queue.mutex );
    if( s2w_blk != 0 )
      {
      if( s2w_queue.tail == 0 ) s2w_queue.head = s2w_blk;
      else s2w_queue.tail->next = s2w_blk;
      s2w_queue.tail = s2w_blk;
      xsignal( &s2w_queue.av_or_eof );
      }
    else
      {
      s2w_queue.eof = true;
      xbroadcast( &s2w_queue.av_or_eof );
      }
    xunlock( &s2w_queue.mutex );

    if( s2w_blk == 0 ) break;
    }
  return 0;
  }


void work_compr( const int dictionary_size, const int match_len_limit,
                 const S2w_blk & s2w_blk, W2m_queue & w2m_queue,
                 const int compr_size, const int w2m_blk_size )
  {
  assert( s2w_blk.loaded > 0 || s2w_blk.id == 0 );

  W2m_blk * w2m_blk = (W2m_blk *)xalloc( w2m_blk_size );

  const int dict_size = std::max( LZ_min_dictionary_size(),
                                  std::min( dictionary_size, s2w_blk.loaded ) );
  LZ_Encoder * const encoder =
    LZ_compress_open( dict_size, match_len_limit, LLONG_MAX );
  if( !encoder || LZ_compress_errno( encoder ) != LZ_ok )
    { show_error( "LZ_compress_open failed." ); fatal(); }

  int written = 0;
  w2m_blk->produced = 0;
  while( true )
    {
    if( LZ_compress_write_size( encoder ) > 0 )
      {
      if( written < s2w_blk.loaded )
        {
        const int wr = LZ_compress_write( encoder, s2w_blk.plain + written,
                                          s2w_blk.loaded - written );
        if( wr < 0 ) { show_error( "LZ_compress_write failed." ); fatal(); }
        written += wr;
        }
      if( written >= s2w_blk.loaded ) LZ_compress_finish( encoder );
      }
    assert( w2m_blk->produced < compr_size );
    const int rd = LZ_compress_read( encoder, w2m_blk->compr + w2m_blk->produced,
                                     compr_size - w2m_blk->produced );
    if( rd < 0 ) { show_error( "LZ_compress_read failed." ); fatal(); }
    w2m_blk->produced += rd;
    if( LZ_compress_finished( encoder ) == 1 ) break;
    }

  if( LZ_compress_close( encoder ) < 0 )
    { show_error( "LZ_compress_close failed." ); fatal(); }

  w2m_blk->id = s2w_blk.id;

  // Push block to muxer queue
  xlock( &w2m_queue.mutex );
  w2m_blk->next = w2m_queue.head;
  w2m_queue.head = w2m_blk;
  if( w2m_blk->id == w2m_queue.needed_id ) xsignal( &w2m_queue.av_or_exit );
  xunlock( &w2m_queue.mutex );
  }


struct Worker_arg
  {
  int dictionary_size;
  int match_len_limit;
  S2w_queue * s2w_queue;
  W2m_queue * w2m_queue;
  int compr_size;
  int w2m_blk_size;
  };


void * worker( void * arg )
  {
  const Worker_arg & tmp = *(Worker_arg *)arg;
  const int dictionary_size = tmp.dictionary_size;
  const int match_len_limit = tmp.match_len_limit;
  S2w_queue & s2w_queue = *tmp.s2w_queue;
  W2m_queue & w2m_queue = *tmp.w2m_queue;
  const int compr_size = tmp.compr_size;
  const int w2m_blk_size = tmp.w2m_blk_size;

  while( true )
    {
    S2w_blk *s2w_blk;

    // Grab a block to work on
    xlock( &s2w_queue.mutex );
    ++s2w_queue.check_counter;
    while( s2w_queue.head == 0 && !s2w_queue.eof )
      {
      ++s2w_queue.wait_counter;
      xwait( &s2w_queue.av_or_eof, &s2w_queue.mutex );
      }
    if( s2w_queue.head == 0 )	// No blocks available and splitter exited
      {
      xunlock( &s2w_queue.mutex );
      break;
      }
    s2w_blk = s2w_queue.head;
    s2w_queue.head = s2w_blk->next;
    if( s2w_queue.head == 0 ) s2w_queue.tail = 0;
    xunlock( &s2w_queue.mutex );

    work_compr( dictionary_size, match_len_limit, *s2w_blk, w2m_queue,
                compr_size, w2m_blk_size );
    (*freef)( s2w_blk );
    }

  // Notify muxer when last worker exits
  xlock( &w2m_queue.mutex );
  if( --w2m_queue.num_working == 0 && w2m_queue.head == 0 )
    xsignal( &w2m_queue.av_or_exit );
  xunlock( &w2m_queue.mutex );
  return 0;
  }


void muxer( Slot_tally & slot_tally, W2m_queue & w2m_queue,
            const int num_slots, const int outfd )
  {
  unsigned long long needed_id = 0;
  std::vector< W2m_blk * > circular_buffer( num_slots, (W2m_blk *)0 );

  xlock( &w2m_queue.mutex );
  while( true )
    {
    // Grab all available compressed blocks in one step
    ++w2m_queue.check_counter;
    while( w2m_queue.head == 0 && w2m_queue.num_working > 0 )
      {
      ++w2m_queue.wait_counter;
      xwait( &w2m_queue.av_or_exit, &w2m_queue.mutex );
      }
    if( w2m_queue.head == 0 ) break;	// queue is empty. all workers exited

    W2m_blk * w2m_blk = w2m_queue.head;
    w2m_queue.head = 0;
    xunlock( &w2m_queue.mutex );

    // Merge blocks fetched this time into circular buffer
    do {
      // id collision shouldn't happen
      assert( circular_buffer[w2m_blk->id%num_slots] == 0 );
      circular_buffer[w2m_blk->id%num_slots] = w2m_blk;
      W2m_blk * next = w2m_blk->next;
      w2m_blk->next = 0;
      w2m_blk = next;
      } while( w2m_blk != 0 );

    // Write out initial continuous sequence of reordered blocks
    while( true )
      {
      w2m_blk = circular_buffer[needed_id%num_slots];
      if( w2m_blk == 0 ) break;

      out_size += w2m_blk->produced;

      if( outfd >= 0 )
        {
        const int wr = writeblock( outfd, w2m_blk->compr, w2m_blk->produced );
        if( wr != w2m_blk->produced )
          { show_error( "write", errno ); fatal(); }
        }
      circular_buffer[needed_id%num_slots] = 0;
      ++needed_id;

      xlock( &slot_tally.mutex );
      if( slot_tally.num_free++ == 0 ) xsignal( &slot_tally.slot_av );
      xunlock( &slot_tally.mutex );

      (*freef)( w2m_blk );
      }

    xlock( &w2m_queue.mutex );
    w2m_queue.needed_id = needed_id;
    }
  xunlock( &w2m_queue.mutex );

  for( int i = 0; i < num_slots; ++i )
    if( circular_buffer[i] != 0 )
      { show_error( "circular buffer not empty" ); fatal(); }
  }

} // end namespace


int compress( const int data_size, const int dictionary_size,
              const int match_len_limit, const int num_workers,
              const int num_slots, const int infd, const int outfd,
              const int debug_level )
  {
  if( debug_level & 2 ) { mallocf = trace_malloc; freef = trace_free; }
  else { mallocf = malloc; freef = free; }

  Slot_tally slot_tally( num_slots );
  S2w_queue s2w_queue;
  W2m_queue w2m_queue( num_workers );

  Splitter_arg splitter_arg;
  splitter_arg.slot_tally = &slot_tally;
  splitter_arg.s2w_queue = &s2w_queue;
  splitter_arg.infd = infd;
  splitter_arg.data_size = data_size;
  splitter_arg.s2w_blk_size = sizeof (S2w_blk) + data_size - 1;

  pthread_t splitter_thread;
  xcreate( &splitter_thread, splitter, &splitter_arg );

  Worker_arg worker_arg;
  worker_arg.dictionary_size = dictionary_size;
  worker_arg.match_len_limit = match_len_limit;
  worker_arg.s2w_queue = &s2w_queue;
  worker_arg.w2m_queue = &w2m_queue;
  worker_arg.compr_size = 6 + 20 + ( ( data_size / 8 ) * 9 );
  worker_arg.w2m_blk_size = sizeof (W2m_blk) + worker_arg.compr_size - 1;

  pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
  if( worker_threads == 0 )
    { show_error( "not enough memory.", errno ); fatal(); }
  for( int i = 0; i < num_workers; ++i )
    xcreate( &worker_threads[i], worker, &worker_arg );

  muxer( slot_tally, w2m_queue, num_slots, outfd );

  for( int i = num_workers - 1; i >= 0; --i )
    xjoin(worker_threads[i]);
  delete[] worker_threads; worker_threads = 0;

  xjoin( splitter_thread );

  if( verbosity >= 1 )
    {
    if( in_size <= 0 || out_size <= 0 )
      std::fprintf( stderr, "no data compressed.\n" );
    else
      std::fprintf( stderr, "%6.3f:1, %6.3f bits/byte, "
                            "%5.2f%% saved, %lld in, %lld out.\n",
                    (double)in_size / out_size,
                    ( 8.0 * out_size ) / in_size,
                    100.0 * ( 1.0 - ( (double)out_size / in_size ) ),
                    in_size, out_size );
    }

  const int FW = ( sizeof (unsigned long) * 8 ) / 3 + 1;
  if( debug_level & 1 )
    std::fprintf( stderr,
      "any worker tried to consume from splitter: %*lu\n"
      "any worker stalled                       : %*lu\n"
      "muxer tried to consume from workers      : %*lu\n"
      "muxer stalled                            : %*lu\n"
      "splitter tried to fill a block           : %*lu\n"
      "splitter stalled                         : %*lu\n",
      FW, s2w_queue.check_counter,
      FW, s2w_queue.wait_counter,
      FW, w2m_queue.check_counter,
      FW, w2m_queue.wait_counter,
      FW, slot_tally.check_counter,
      FW, slot_tally.wait_counter );

  assert( slot_tally.num_free == num_slots );
  assert( s2w_queue.eof );
  assert( s2w_queue.head == 0 );
  assert( s2w_queue.tail == 0 );
  assert( w2m_queue.num_working == 0 );
  assert( w2m_queue.head == 0 );
  return 0;
  }