diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2022-10-21 09:29:23 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2022-10-21 09:29:23 +0000 |
commit | dab6ba29e8eb9a5c2890ac3be8eab6e994aeb10e (patch) | |
tree | 0d209cfc6f7b9c794c254601c29aa5d8b9414876 /tests/dataframe/integration | |
parent | Adding upstream version 7.1.3. (diff) | |
download | sqlglot-dab6ba29e8eb9a5c2890ac3be8eab6e994aeb10e.tar.xz sqlglot-dab6ba29e8eb9a5c2890ac3be8eab6e994aeb10e.zip |
Adding upstream version 9.0.1.upstream/9.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tests/dataframe/integration')
-rw-r--r-- | tests/dataframe/integration/__init__.py | 0 | ||||
-rw-r--r-- | tests/dataframe/integration/dataframe_validator.py | 149 | ||||
-rw-r--r-- | tests/dataframe/integration/test_dataframe.py | 1103 | ||||
-rw-r--r-- | tests/dataframe/integration/test_grouped_data.py | 71 | ||||
-rw-r--r-- | tests/dataframe/integration/test_session.py | 28 |
5 files changed, 1351 insertions, 0 deletions
diff --git a/tests/dataframe/integration/__init__.py b/tests/dataframe/integration/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/tests/dataframe/integration/__init__.py diff --git a/tests/dataframe/integration/dataframe_validator.py b/tests/dataframe/integration/dataframe_validator.py new file mode 100644 index 0000000..6c4642f --- /dev/null +++ b/tests/dataframe/integration/dataframe_validator.py @@ -0,0 +1,149 @@ +import typing as t +import unittest +import warnings + +import sqlglot +from tests.helpers import SKIP_INTEGRATION + +if t.TYPE_CHECKING: + from pyspark.sql import DataFrame as SparkDataFrame + + +@unittest.skipIf(SKIP_INTEGRATION, "Skipping Integration Tests since `SKIP_INTEGRATION` is set") +class DataFrameValidator(unittest.TestCase): + spark = None + sqlglot = None + df_employee = None + df_store = None + df_district = None + spark_employee_schema = None + sqlglot_employee_schema = None + spark_store_schema = None + sqlglot_store_schema = None + spark_district_schema = None + sqlglot_district_schema = None + + @classmethod + def setUpClass(cls): + from pyspark import SparkConf + from pyspark.sql import SparkSession, types + + from sqlglot.dataframe.sql import types as sqlglotSparkTypes + from sqlglot.dataframe.sql.session import SparkSession as SqlglotSparkSession + + # This is for test `test_branching_root_dataframes` + config = SparkConf().setAll([("spark.sql.analyzer.failAmbiguousSelfJoin", "false")]) + cls.spark = SparkSession.builder.master("local[*]").appName("Unit-tests").config(conf=config).getOrCreate() + cls.spark.sparkContext.setLogLevel("ERROR") + cls.sqlglot = SqlglotSparkSession() + cls.spark_employee_schema = types.StructType( + [ + types.StructField("employee_id", types.IntegerType(), False), + types.StructField("fname", types.StringType(), False), + types.StructField("lname", types.StringType(), False), + types.StructField("age", types.IntegerType(), False), + types.StructField("store_id", types.IntegerType(), False), + ] + ) + cls.sqlglot_employee_schema = sqlglotSparkTypes.StructType( + [ + sqlglotSparkTypes.StructField("employee_id", sqlglotSparkTypes.IntegerType(), False), + sqlglotSparkTypes.StructField("fname", sqlglotSparkTypes.StringType(), False), + sqlglotSparkTypes.StructField("lname", sqlglotSparkTypes.StringType(), False), + sqlglotSparkTypes.StructField("age", sqlglotSparkTypes.IntegerType(), False), + sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False), + ] + ) + employee_data = [ + (1, "Jack", "Shephard", 37, 1), + (2, "John", "Locke", 65, 1), + (3, "Kate", "Austen", 37, 2), + (4, "Claire", "Littleton", 27, 2), + (5, "Hugo", "Reyes", 29, 100), + ] + cls.df_employee = cls.spark.createDataFrame(data=employee_data, schema=cls.spark_employee_schema) + cls.dfs_employee = cls.sqlglot.createDataFrame(data=employee_data, schema=cls.sqlglot_employee_schema) + cls.df_employee.createOrReplaceTempView("employee") + + cls.spark_store_schema = types.StructType( + [ + types.StructField("store_id", types.IntegerType(), False), + types.StructField("store_name", types.StringType(), False), + types.StructField("district_id", types.IntegerType(), False), + types.StructField("num_sales", types.IntegerType(), False), + ] + ) + cls.sqlglot_store_schema = sqlglotSparkTypes.StructType( + [ + sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False), + sqlglotSparkTypes.StructField("store_name", sqlglotSparkTypes.StringType(), False), + sqlglotSparkTypes.StructField("district_id", sqlglotSparkTypes.IntegerType(), False), + sqlglotSparkTypes.StructField("num_sales", sqlglotSparkTypes.IntegerType(), False), + ] + ) + store_data = [ + (1, "Hydra", 1, 37), + (2, "Arrow", 2, 2000), + ] + cls.df_store = cls.spark.createDataFrame(data=store_data, schema=cls.spark_store_schema) + cls.dfs_store = cls.sqlglot.createDataFrame(data=store_data, schema=cls.sqlglot_store_schema) + cls.df_store.createOrReplaceTempView("store") + + cls.spark_district_schema = types.StructType( + [ + types.StructField("district_id", types.IntegerType(), False), + types.StructField("district_name", types.StringType(), False), + types.StructField("manager_name", types.StringType(), False), + ] + ) + cls.sqlglot_district_schema = sqlglotSparkTypes.StructType( + [ + sqlglotSparkTypes.StructField("district_id", sqlglotSparkTypes.IntegerType(), False), + sqlglotSparkTypes.StructField("district_name", sqlglotSparkTypes.StringType(), False), + sqlglotSparkTypes.StructField("manager_name", sqlglotSparkTypes.StringType(), False), + ] + ) + district_data = [ + (1, "Temple", "Dogen"), + (2, "Lighthouse", "Jacob"), + ] + cls.df_district = cls.spark.createDataFrame(data=district_data, schema=cls.spark_district_schema) + cls.dfs_district = cls.sqlglot.createDataFrame(data=district_data, schema=cls.sqlglot_district_schema) + cls.df_district.createOrReplaceTempView("district") + sqlglot.schema.add_table("employee", cls.sqlglot_employee_schema) + sqlglot.schema.add_table("store", cls.sqlglot_store_schema) + sqlglot.schema.add_table("district", cls.sqlglot_district_schema) + + def setUp(self) -> None: + warnings.filterwarnings("ignore", category=ResourceWarning) + self.df_spark_store = self.df_store.alias("df_store") # type: ignore + self.df_spark_employee = self.df_employee.alias("df_employee") # type: ignore + self.df_spark_district = self.df_district.alias("df_district") # type: ignore + self.df_sqlglot_store = self.dfs_store.alias("store") # type: ignore + self.df_sqlglot_employee = self.dfs_employee.alias("employee") # type: ignore + self.df_sqlglot_district = self.dfs_district.alias("district") # type: ignore + + def compare_spark_with_sqlglot( + self, df_spark, df_sqlglot, no_empty=True, skip_schema_compare=False + ) -> t.Tuple["SparkDataFrame", "SparkDataFrame"]: + def compare_schemas(schema_1, schema_2): + for schema in [schema_1, schema_2]: + for struct_field in schema.fields: + struct_field.metadata = {} + self.assertEqual(schema_1, schema_2) + + for statement in df_sqlglot.sql(): + actual_df_sqlglot = self.spark.sql(statement) # type: ignore + df_sqlglot_results = actual_df_sqlglot.collect() + df_spark_results = df_spark.collect() + if not skip_schema_compare: + compare_schemas(df_spark.schema, actual_df_sqlglot.schema) + self.assertEqual(df_spark_results, df_sqlglot_results) + if no_empty: + self.assertNotEqual(len(df_spark_results), 0) + self.assertNotEqual(len(df_sqlglot_results), 0) + return df_spark, actual_df_sqlglot + + @classmethod + def get_explain_plan(cls, df: "SparkDataFrame", mode: str = "extended") -> str: + return df._sc._jvm.PythonSQLUtils.explainString(df._jdf.queryExecution(), mode) # type: ignore diff --git a/tests/dataframe/integration/test_dataframe.py b/tests/dataframe/integration/test_dataframe.py new file mode 100644 index 0000000..c740bec --- /dev/null +++ b/tests/dataframe/integration/test_dataframe.py @@ -0,0 +1,1103 @@ +from pyspark.sql import functions as F + +from sqlglot.dataframe.sql import functions as SF +from tests.dataframe.integration.dataframe_validator import DataFrameValidator + + +class TestDataframeFunc(DataFrameValidator): + def test_simple_select(self): + df_employee = self.df_spark_employee.select(F.col("employee_id")) + dfs_employee = self.df_sqlglot_employee.select(SF.col("employee_id")) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_simple_select_from_table(self): + df = self.df_spark_employee + dfs = self.sqlglot.read.table("employee") + self.compare_spark_with_sqlglot(df, dfs) + + def test_simple_select_df_attribute(self): + df_employee = self.df_spark_employee.select(self.df_spark_employee.employee_id) + dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee.employee_id) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_simple_select_df_dict(self): + df_employee = self.df_spark_employee.select(self.df_spark_employee["employee_id"]) + dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee["employee_id"]) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_multiple_selects(self): + df_employee = self.df_spark_employee.select( + self.df_spark_employee["employee_id"], F.col("fname"), self.df_spark_employee.lname + ) + dfs_employee = self.df_sqlglot_employee.select( + self.df_sqlglot_employee["employee_id"], SF.col("fname"), self.df_sqlglot_employee.lname + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_alias_no_op(self): + df_employee = self.df_spark_employee.alias("df_employee") + dfs_employee = self.df_sqlglot_employee.alias("dfs_employee") + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_alias_with_select(self): + df_employee = self.df_spark_employee.alias("df_employee").select( + self.df_spark_employee["employee_id"], F.col("df_employee.fname"), self.df_spark_employee.lname + ) + dfs_employee = self.df_sqlglot_employee.alias("dfs_employee").select( + self.df_sqlglot_employee["employee_id"], SF.col("dfs_employee.fname"), self.df_sqlglot_employee.lname + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_case_when_otherwise(self): + df = self.df_spark_employee.select( + F.when((F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)), F.lit("between 40 and 60")) + .when(F.col("age") < F.lit(40), "less than 40") + .otherwise("greater than 60") + ) + + dfs = self.df_sqlglot_employee.select( + SF.when((SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)), SF.lit("between 40 and 60")) + .when(SF.col("age") < SF.lit(40), "less than 40") + .otherwise("greater than 60") + ) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_case_when_no_otherwise(self): + df = self.df_spark_employee.select( + F.when((F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)), F.lit("between 40 and 60")).when( + F.col("age") < F.lit(40), "less than 40" + ) + ) + + dfs = self.df_sqlglot_employee.select( + SF.when((SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)), SF.lit("between 40 and 60")).when( + SF.col("age") < SF.lit(40), "less than 40" + ) + ) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_where_clause_single(self): + df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37)) + dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_where_clause_multiple_and(self): + df_employee = self.df_spark_employee.where((F.col("age") == F.lit(37)) & (F.col("fname") == F.lit("Jack"))) + dfs_employee = self.df_sqlglot_employee.where( + (SF.col("age") == SF.lit(37)) & (SF.col("fname") == SF.lit("Jack")) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_where_many_and(self): + df_employee = self.df_spark_employee.where( + (F.col("age") == F.lit(37)) + & (F.col("fname") == F.lit("Jack")) + & (F.col("lname") == F.lit("Shephard")) + & (F.col("employee_id") == F.lit(1)) + ) + dfs_employee = self.df_sqlglot_employee.where( + (SF.col("age") == SF.lit(37)) + & (SF.col("fname") == SF.lit("Jack")) + & (SF.col("lname") == SF.lit("Shephard")) + & (SF.col("employee_id") == SF.lit(1)) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_where_clause_multiple_or(self): + df_employee = self.df_spark_employee.where((F.col("age") == F.lit(37)) | (F.col("fname") == F.lit("Kate"))) + dfs_employee = self.df_sqlglot_employee.where( + (SF.col("age") == SF.lit(37)) | (SF.col("fname") == SF.lit("Kate")) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_where_many_or(self): + df_employee = self.df_spark_employee.where( + (F.col("age") == F.lit(37)) + | (F.col("fname") == F.lit("Kate")) + | (F.col("lname") == F.lit("Littleton")) + | (F.col("employee_id") == F.lit(2)) + ) + dfs_employee = self.df_sqlglot_employee.where( + (SF.col("age") == SF.lit(37)) + | (SF.col("fname") == SF.lit("Kate")) + | (SF.col("lname") == SF.lit("Littleton")) + | (SF.col("employee_id") == SF.lit(2)) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_where_mixed_and_or(self): + df_employee = self.df_spark_employee.where( + ((F.col("age") == F.lit(65)) & (F.col("fname") == F.lit("John"))) + | ((F.col("lname") == F.lit("Shephard")) & (F.col("age") == F.lit(37))) + ) + dfs_employee = self.df_sqlglot_employee.where( + ((SF.col("age") == SF.lit(65)) & (SF.col("fname") == SF.lit("John"))) + | ((SF.col("lname") == SF.lit("Shephard")) & (SF.col("age") == SF.lit(37))) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_where_multiple_chained(self): + df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37)).where( + self.df_spark_employee.fname == F.lit("Jack") + ) + dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37)).where( + self.df_sqlglot_employee.fname == SF.lit("Jack") + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_operators(self): + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] < F.lit(50)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] < SF.lit(50)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] <= F.lit(37)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] <= SF.lit(37)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] > F.lit(50)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] > SF.lit(50)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] >= F.lit(37)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] >= SF.lit(37)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] != F.lit(50)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] != SF.lit(50)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] == F.lit(37)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] == SF.lit(37)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] % F.lit(5) == F.lit(0)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] % SF.lit(5) == SF.lit(0)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] + F.lit(5) > F.lit(28)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] + SF.lit(5) > SF.lit(28)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] - F.lit(5) > F.lit(28)) + dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] - SF.lit(5) > SF.lit(28)) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + df_employee = self.df_spark_employee.where( + self.df_spark_employee["age"] * F.lit(0.5) == self.df_spark_employee["age"] / F.lit(2) + ) + dfs_employee = self.df_sqlglot_employee.where( + self.df_sqlglot_employee["age"] * SF.lit(0.5) == self.df_sqlglot_employee["age"] / SF.lit(2) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_join_inner(self): + df_joined = self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="inner").select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + F.col("store_id"), + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="inner").select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + SF.col("store_id"), + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_join_inner_no_select(self): + df_joined = self.df_spark_employee.select(F.col("store_id"), F.col("fname"), F.col("lname")).join( + self.df_spark_store.select(F.col("store_id"), F.col("store_name")), on=["store_id"], how="inner" + ) + dfs_joined = self.df_sqlglot_employee.select(SF.col("store_id"), SF.col("fname"), SF.col("lname")).join( + self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")), on=["store_id"], how="inner" + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_join_inner_equality_single(self): + df_joined = self.df_spark_employee.join( + self.df_spark_store, on=self.df_spark_employee.store_id == self.df_spark_store.store_id, how="inner" + ).select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + self.df_spark_employee.store_id, + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join( + self.df_sqlglot_store, on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id, how="inner" + ).select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + self.df_sqlglot_employee.store_id, + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_join_inner_equality_multiple(self): + df_joined = self.df_spark_employee.join( + self.df_spark_store, + on=[ + self.df_spark_employee.store_id == self.df_spark_store.store_id, + self.df_spark_employee.age == self.df_spark_store.num_sales, + ], + how="inner", + ).select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + self.df_spark_employee.store_id, + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join( + self.df_sqlglot_store, + on=[ + self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id, + self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales, + ], + how="inner", + ).select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + self.df_sqlglot_employee.store_id, + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_join_inner_equality_multiple_bitwise_and(self): + df_joined = self.df_spark_employee.join( + self.df_spark_store, + on=(self.df_spark_employee.store_id == self.df_spark_store.store_id) + & (self.df_spark_employee.age == self.df_spark_store.num_sales), + how="inner", + ).select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + self.df_spark_employee.store_id, + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join( + self.df_sqlglot_store, + on=(self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id) + & (self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales), + how="inner", + ).select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + self.df_sqlglot_employee.store_id, + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_join_left_outer(self): + df_joined = ( + self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="left_outer") + .select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + F.col("store_id"), + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + .orderBy(F.col("employee_id")) + ) + dfs_joined = ( + self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="left_outer") + .select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + SF.col("store_id"), + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + .orderBy(SF.col("employee_id")) + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_join_full_outer(self): + df_joined = self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="full_outer").select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + F.col("store_id"), + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="full_outer").select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + SF.col("store_id"), + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_triple_join(self): + df = ( + self.df_employee.join(self.df_store, on=self.df_employee.employee_id == self.df_store.store_id) + .join(self.df_district, on=self.df_store.store_id == self.df_district.district_id) + .select( + self.df_employee.employee_id, + self.df_store.store_id, + self.df_district.district_id, + self.df_employee.fname, + self.df_store.store_name, + self.df_district.district_name, + ) + ) + dfs = ( + self.dfs_employee.join(self.dfs_store, on=self.dfs_employee.employee_id == self.dfs_store.store_id) + .join(self.dfs_district, on=self.dfs_store.store_id == self.dfs_district.district_id) + .select( + self.dfs_employee.employee_id, + self.dfs_store.store_id, + self.dfs_district.district_id, + self.dfs_employee.fname, + self.dfs_store.store_name, + self.dfs_district.district_name, + ) + ) + self.compare_spark_with_sqlglot(df, dfs) + + def test_join_select_and_select_start(self): + df = self.df_spark_employee.select(F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")).join( + self.df_spark_store, "store_id", "inner" + ) + + dfs = self.df_sqlglot_employee.select(SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")).join( + self.df_sqlglot_store, "store_id", "inner" + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_branching_root_dataframes(self): + """ + Test a pattern that has non-intuitive behavior in spark + + Scenario: You do a self-join in a dataframe using an original dataframe and then a modified version + of it. You then reference the columns by the dataframe name instead of the column function. + Spark will use the root dataframe's column in the result. + """ + df_hydra_employees_only = self.df_spark_employee.where(F.col("store_id") == F.lit(1)) + df_joined = ( + self.df_spark_employee.where(F.col("store_id") == F.lit(2)) + .alias("df_arrow_employees_only") + .join( + df_hydra_employees_only.alias("df_hydra_employees_only"), + on=["store_id"], + how="full_outer", + ) + .select( + self.df_spark_employee.fname, + F.col("df_arrow_employees_only.fname"), + df_hydra_employees_only.fname, + F.col("df_hydra_employees_only.fname"), + ) + ) + + dfs_hydra_employees_only = self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(1)) + dfs_joined = ( + self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(2)) + .alias("dfs_arrow_employees_only") + .join( + dfs_hydra_employees_only.alias("dfs_hydra_employees_only"), + on=["store_id"], + how="full_outer", + ) + .select( + self.df_sqlglot_employee.fname, + SF.col("dfs_arrow_employees_only.fname"), + dfs_hydra_employees_only.fname, + SF.col("dfs_hydra_employees_only.fname"), + ) + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_basic_union(self): + df_unioned = self.df_spark_employee.select(F.col("employee_id"), F.col("age")).union( + self.df_spark_store.select(F.col("store_id"), F.col("num_sales")) + ) + + dfs_unioned = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")).union( + self.df_sqlglot_store.select(SF.col("store_id"), SF.col("num_sales")) + ) + self.compare_spark_with_sqlglot(df_unioned, dfs_unioned) + + def test_union_with_join(self): + df_joined = self.df_spark_employee.join( + self.df_spark_store, + on="store_id", + how="inner", + ) + df_unioned = df_joined.select(F.col("store_id"), F.col("store_name")).union( + self.df_spark_district.select(F.col("district_id"), F.col("district_name")) + ) + + dfs_joined = self.df_sqlglot_employee.join( + self.df_sqlglot_store, + on="store_id", + how="inner", + ) + dfs_unioned = dfs_joined.select(SF.col("store_id"), SF.col("store_name")).union( + self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name")) + ) + + self.compare_spark_with_sqlglot(df_unioned, dfs_unioned) + + def test_double_union_all(self): + df_unioned = ( + self.df_spark_employee.select(F.col("employee_id"), F.col("fname")) + .unionAll(self.df_spark_store.select(F.col("store_id"), F.col("store_name"))) + .unionAll(self.df_spark_district.select(F.col("district_id"), F.col("district_name"))) + ) + + dfs_unioned = ( + self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("fname")) + .unionAll(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name"))) + .unionAll(self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name"))) + ) + + self.compare_spark_with_sqlglot(df_unioned, dfs_unioned) + + def test_union_by_name(self): + df = self.df_spark_employee.select(F.col("employee_id"), F.col("fname"), F.col("lname")).unionByName( + self.df_spark_store.select( + F.col("store_name").alias("lname"), + F.col("store_id").alias("employee_id"), + F.col("store_name").alias("fname"), + ) + ) + + dfs = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("fname"), SF.col("lname")).unionByName( + self.df_sqlglot_store.select( + SF.col("store_name").alias("lname"), + SF.col("store_id").alias("employee_id"), + SF.col("store_name").alias("fname"), + ) + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_union_by_name_allow_missing(self): + df = self.df_spark_employee.select( + F.col("age"), F.col("employee_id"), F.col("fname"), F.col("lname") + ).unionByName( + self.df_spark_store.select( + F.col("store_name").alias("lname"), + F.col("store_id").alias("employee_id"), + F.col("store_name").alias("fname"), + F.col("num_sales"), + ), + allowMissingColumns=True, + ) + + dfs = self.df_sqlglot_employee.select( + SF.col("age"), SF.col("employee_id"), SF.col("fname"), SF.col("lname") + ).unionByName( + self.df_sqlglot_store.select( + SF.col("store_name").alias("lname"), + SF.col("store_id").alias("employee_id"), + SF.col("store_name").alias("fname"), + SF.col("num_sales"), + ), + allowMissingColumns=True, + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_order_by_default(self): + df = self.df_spark_store.groupBy(F.col("district_id")).agg(F.min("num_sales")).orderBy(F.col("district_id")) + + dfs = ( + self.df_sqlglot_store.groupBy(SF.col("district_id")).agg(SF.min("num_sales")).orderBy(SF.col("district_id")) + ) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_order_by_array_bool(self): + df = ( + self.df_spark_store.groupBy(F.col("district_id")) + .agg(F.min("num_sales").alias("total_sales")) + .orderBy(F.col("total_sales"), F.col("district_id"), ascending=[1, 0]) + ) + + dfs = ( + self.df_sqlglot_store.groupBy(SF.col("district_id")) + .agg(SF.min("num_sales").alias("total_sales")) + .orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=[1, 0]) + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_order_by_single_bool(self): + df = ( + self.df_spark_store.groupBy(F.col("district_id")) + .agg(F.min("num_sales").alias("total_sales")) + .orderBy(F.col("total_sales"), F.col("district_id"), ascending=False) + ) + + dfs = ( + self.df_sqlglot_store.groupBy(SF.col("district_id")) + .agg(SF.min("num_sales").alias("total_sales")) + .orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=False) + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_order_by_column_sort_method(self): + df = ( + self.df_spark_store.groupBy(F.col("district_id")) + .agg(F.min("num_sales").alias("total_sales")) + .orderBy(F.col("total_sales").asc(), F.col("district_id").desc()) + ) + + dfs = ( + self.df_sqlglot_store.groupBy(SF.col("district_id")) + .agg(SF.min("num_sales").alias("total_sales")) + .orderBy(SF.col("total_sales").asc(), SF.col("district_id").desc()) + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_order_by_column_sort_method_nulls_last(self): + df = ( + self.df_spark_store.groupBy(F.col("district_id")) + .agg(F.min("num_sales").alias("total_sales")) + .orderBy(F.when(F.col("district_id") == F.lit(2), F.col("district_id")).asc_nulls_last()) + ) + + dfs = ( + self.df_sqlglot_store.groupBy(SF.col("district_id")) + .agg(SF.min("num_sales").alias("total_sales")) + .orderBy(SF.when(SF.col("district_id") == SF.lit(2), SF.col("district_id")).asc_nulls_last()) + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_order_by_column_sort_method_nulls_first(self): + df = ( + self.df_spark_store.groupBy(F.col("district_id")) + .agg(F.min("num_sales").alias("total_sales")) + .orderBy(F.when(F.col("district_id") == F.lit(1), F.col("district_id")).desc_nulls_first()) + ) + + dfs = ( + self.df_sqlglot_store.groupBy(SF.col("district_id")) + .agg(SF.min("num_sales").alias("total_sales")) + .orderBy(SF.when(SF.col("district_id") == SF.lit(1), SF.col("district_id")).desc_nulls_first()) + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_intersect(self): + df_employee_duplicate = self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")).union( + self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")) + ) + + df_store_duplicate = self.df_spark_store.select(F.col("store_id"), F.col("district_id")).union( + self.df_spark_store.select(F.col("store_id"), F.col("district_id")) + ) + + df = df_employee_duplicate.intersect(df_store_duplicate) + + dfs_employee_duplicate = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")).union( + self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")) + ) + + dfs_store_duplicate = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")).union( + self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")) + ) + + dfs = dfs_employee_duplicate.intersect(dfs_store_duplicate) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_intersect_all(self): + df_employee_duplicate = self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")).union( + self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")) + ) + + df_store_duplicate = self.df_spark_store.select(F.col("store_id"), F.col("district_id")).union( + self.df_spark_store.select(F.col("store_id"), F.col("district_id")) + ) + + df = df_employee_duplicate.intersectAll(df_store_duplicate) + + dfs_employee_duplicate = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")).union( + self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")) + ) + + dfs_store_duplicate = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")).union( + self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")) + ) + + dfs = dfs_employee_duplicate.intersectAll(dfs_store_duplicate) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_except_all(self): + df_employee_duplicate = self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")).union( + self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")) + ) + + df_store_duplicate = self.df_spark_store.select(F.col("store_id"), F.col("district_id")).union( + self.df_spark_store.select(F.col("store_id"), F.col("district_id")) + ) + + df = df_employee_duplicate.exceptAll(df_store_duplicate) + + dfs_employee_duplicate = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")).union( + self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")) + ) + + dfs_store_duplicate = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")).union( + self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")) + ) + + dfs = dfs_employee_duplicate.exceptAll(dfs_store_duplicate) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_distinct(self): + df = self.df_spark_employee.select(F.col("age")).distinct() + + dfs = self.df_sqlglot_employee.select(SF.col("age")).distinct() + + self.compare_spark_with_sqlglot(df, dfs) + + def test_union_distinct(self): + df_unioned = ( + self.df_spark_employee.select(F.col("employee_id"), F.col("age")) + .union(self.df_spark_employee.select(F.col("employee_id"), F.col("age"))) + .distinct() + ) + + dfs_unioned = ( + self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")) + .union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age"))) + .distinct() + ) + self.compare_spark_with_sqlglot(df_unioned, dfs_unioned) + + def test_drop_duplicates_no_subset(self): + df = self.df_spark_employee.select("age").dropDuplicates() + dfs = self.df_sqlglot_employee.select("age").dropDuplicates() + self.compare_spark_with_sqlglot(df, dfs) + + def test_drop_duplicates_subset(self): + df = self.df_spark_employee.dropDuplicates(["age"]) + dfs = self.df_sqlglot_employee.dropDuplicates(["age"]) + self.compare_spark_with_sqlglot(df, dfs) + + def test_drop_na_default(self): + df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).dropna() + + dfs = self.df_sqlglot_employee.select( + SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).dropna() + + self.compare_spark_with_sqlglot(df, dfs) + + def test_dropna_how(self): + df = self.df_spark_employee.select( + F.lit(None), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age") + ).dropna(how="all") + + dfs = self.df_sqlglot_employee.select( + SF.lit(None), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).dropna(how="all") + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_dropna_thresh(self): + df = self.df_spark_employee.select( + F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age") + ).dropna(how="any", thresh=2) + + dfs = self.df_sqlglot_employee.select( + SF.lit(None), SF.lit(1), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).dropna(how="any", thresh=2) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_dropna_subset(self): + df = self.df_spark_employee.select( + F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age") + ).dropna(thresh=1, subset="the_age") + + dfs = self.df_sqlglot_employee.select( + SF.lit(None), SF.lit(1), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).dropna(thresh=1, subset="the_age") + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_dropna_na_function(self): + df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).na.drop() + + dfs = self.df_sqlglot_employee.select( + SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).na.drop() + + self.compare_spark_with_sqlglot(df, dfs) + + def test_fillna_default(self): + df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).fillna(100) + + dfs = self.df_sqlglot_employee.select( + SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).fillna(100) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_fillna_dict_replacement(self): + df = self.df_spark_employee.select( + F.col("fname"), + F.when(F.col("lname").startswith("L"), F.col("lname")).alias("l_lname"), + F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age"), + ).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"}) + + dfs = self.df_sqlglot_employee.select( + SF.col("fname"), + SF.when(SF.col("lname").startswith("L"), SF.col("lname")).alias("l_lname"), + SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"), + ).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"}) + + # For some reason the sqlglot results sets a column as nullable when it doesn't need to + # This seems to be a nuance in how spark dataframe from sql works so we can ignore + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_fillna_na_func(self): + df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).na.fill(100) + + dfs = self.df_sqlglot_employee.select( + SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age") + ).na.fill(100) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_replace_basic(self): + df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(to_replace=37, value=100) + + dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace( + to_replace=37, value=100 + ) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_replace_basic_subset(self): + df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace( + to_replace=37, value=100, subset="age" + ) + + dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace( + to_replace=37, value=100, subset="age" + ) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_replace_mapping(self): + df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace({37: 100}) + + dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace({37: 100}) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_replace_mapping_subset(self): + df = self.df_spark_employee.select( + F.col("age"), F.lit(37).alias("test_col"), F.lit(50).alias("test_col_2") + ).replace({37: 100, 50: 1}, subset=["age", "test_col_2"]) + + dfs = self.df_sqlglot_employee.select( + SF.col("age"), SF.lit(37).alias("test_col"), SF.lit(50).alias("test_col_2") + ).replace({37: 100, 50: 1}, subset=["age", "test_col_2"]) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_replace_na_func_basic(self): + df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).na.replace( + to_replace=37, value=100 + ) + + dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).na.replace( + to_replace=37, value=100 + ) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_with_column(self): + df = self.df_spark_employee.withColumn("test", F.col("age")) + + dfs = self.df_sqlglot_employee.withColumn("test", SF.col("age")) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_with_column_existing_name(self): + df = self.df_spark_employee.withColumn("fname", F.lit("blah")) + + dfs = self.df_sqlglot_employee.withColumn("fname", SF.lit("blah")) + + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) + + def test_with_column_renamed(self): + df = self.df_spark_employee.withColumnRenamed("fname", "first_name") + + dfs = self.df_sqlglot_employee.withColumnRenamed("fname", "first_name") + + self.compare_spark_with_sqlglot(df, dfs) + + def test_with_column_renamed_double(self): + df = self.df_spark_employee.select(F.col("fname").alias("first_name")).withColumnRenamed( + "first_name", "first_name_again" + ) + + dfs = self.df_sqlglot_employee.select(SF.col("fname").alias("first_name")).withColumnRenamed( + "first_name", "first_name_again" + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_drop_column_single(self): + df = self.df_spark_employee.select(F.col("fname"), F.col("lname"), F.col("age")).drop("age") + + dfs = self.df_sqlglot_employee.select(SF.col("fname"), SF.col("lname"), SF.col("age")).drop("age") + + self.compare_spark_with_sqlglot(df, dfs) + + def test_drop_column_reference_join(self): + df_spark_employee_cols = self.df_spark_employee.select( + F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id") + ) + df_spark_store_cols = self.df_spark_store.select(F.col("store_id"), F.col("store_name")) + df = df_spark_employee_cols.join(df_spark_store_cols, on="store_id", how="inner").drop( + df_spark_employee_cols.age, + ) + + df_sqlglot_employee_cols = self.df_sqlglot_employee.select( + SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id") + ) + df_sqlglot_store_cols = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")) + dfs = df_sqlglot_employee_cols.join(df_sqlglot_store_cols, on="store_id", how="inner").drop( + df_sqlglot_employee_cols.age, + ) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_limit(self): + df = self.df_spark_employee.limit(1) + + dfs = self.df_sqlglot_employee.limit(1) + + self.compare_spark_with_sqlglot(df, dfs) + + def test_hint_broadcast_alias(self): + df_joined = self.df_spark_employee.join( + self.df_spark_store.alias("store").hint("broadcast", "store"), + on=self.df_spark_employee.store_id == self.df_spark_store.store_id, + how="inner", + ).select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + self.df_spark_employee.store_id, + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join( + self.df_sqlglot_store.alias("store").hint("broadcast", "store"), + on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id, + how="inner", + ).select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + self.df_sqlglot_employee.store_id, + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined) + self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df)) + self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs)) + + def test_hint_broadcast_no_alias(self): + df_joined = self.df_spark_employee.join( + self.df_spark_store.hint("broadcast"), + on=self.df_spark_employee.store_id == self.df_spark_store.store_id, + how="inner", + ).select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + self.df_spark_employee.store_id, + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join( + self.df_sqlglot_store.hint("broadcast"), + on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id, + how="inner", + ).select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + self.df_sqlglot_employee.store_id, + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined) + self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df)) + self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs)) + + # TODO: Add test to make sure with and without alias are the same once ids are deterministic + + def test_broadcast_func(self): + df_joined = self.df_spark_employee.join( + F.broadcast(self.df_spark_store), + on=self.df_spark_employee.store_id == self.df_spark_store.store_id, + how="inner", + ).select( + self.df_spark_employee.employee_id, + self.df_spark_employee["fname"], + F.col("lname"), + F.col("age"), + self.df_spark_employee.store_id, + self.df_spark_store.store_name, + self.df_spark_store["num_sales"], + ) + dfs_joined = self.df_sqlglot_employee.join( + SF.broadcast(self.df_sqlglot_store), + on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id, + how="inner", + ).select( + self.df_sqlglot_employee.employee_id, + self.df_sqlglot_employee["fname"], + SF.col("lname"), + SF.col("age"), + self.df_sqlglot_employee.store_id, + self.df_sqlglot_store.store_name, + self.df_sqlglot_store["num_sales"], + ) + df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined) + self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df)) + self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs)) + + def test_repartition_by_num(self): + """ + The results are different when doing the repartition on a table created using VALUES in SQL. + So I just use the views instead for these tests + """ + df = self.df_spark_employee.repartition(63) + + dfs = self.sqlglot.read.table("employee").repartition(63) + df, dfs = self.compare_spark_with_sqlglot(df, dfs) + spark_num_partitions = df.rdd.getNumPartitions() + sqlglot_num_partitions = dfs.rdd.getNumPartitions() + self.assertEqual(spark_num_partitions, 63) + self.assertEqual(spark_num_partitions, sqlglot_num_partitions) + + def test_repartition_name_only(self): + """ + We use the view here to help ensure the explain plans are similar enough to compare + """ + df = self.df_spark_employee.repartition("age") + + dfs = self.sqlglot.read.table("employee").repartition("age") + df, dfs = self.compare_spark_with_sqlglot(df, dfs) + self.assertIn("RepartitionByExpression [age", self.get_explain_plan(df)) + self.assertIn("RepartitionByExpression [age", self.get_explain_plan(dfs)) + + def test_repartition_num_and_multiple_names(self): + """ + We use the view here to help ensure the explain plans are similar enough to compare + """ + df = self.df_spark_employee.repartition(53, "age", "fname") + + dfs = self.sqlglot.read.table("employee").repartition(53, "age", "fname") + df, dfs = self.compare_spark_with_sqlglot(df, dfs) + spark_num_partitions = df.rdd.getNumPartitions() + sqlglot_num_partitions = dfs.rdd.getNumPartitions() + self.assertEqual(spark_num_partitions, 53) + self.assertEqual(spark_num_partitions, sqlglot_num_partitions) + self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(df)) + self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(dfs)) + + def test_coalesce(self): + df = self.df_spark_employee.coalesce(1) + dfs = self.df_sqlglot_employee.coalesce(1) + df, dfs = self.compare_spark_with_sqlglot(df, dfs) + spark_num_partitions = df.rdd.getNumPartitions() + sqlglot_num_partitions = dfs.rdd.getNumPartitions() + self.assertEqual(spark_num_partitions, 1) + self.assertEqual(spark_num_partitions, sqlglot_num_partitions) + + def test_cache_select(self): + df_employee = ( + self.df_spark_employee.groupBy("store_id") + .agg(F.countDistinct("employee_id").alias("num_employees")) + .cache() + ) + df_joined = df_employee.join(self.df_spark_store, on="store_id").select( + self.df_spark_store.store_id, df_employee.num_employees + ) + dfs_employee = ( + self.df_sqlglot_employee.groupBy("store_id") + .agg(SF.countDistinct("employee_id").alias("num_employees")) + .cache() + ) + dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select( + self.df_sqlglot_store.store_id, dfs_employee.num_employees + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) + + def test_persist_select(self): + df_employee = ( + self.df_spark_employee.groupBy("store_id") + .agg(F.countDistinct("employee_id").alias("num_employees")) + .persist() + ) + df_joined = df_employee.join(self.df_spark_store, on="store_id").select( + self.df_spark_store.store_id, df_employee.num_employees + ) + dfs_employee = ( + self.df_sqlglot_employee.groupBy("store_id") + .agg(SF.countDistinct("employee_id").alias("num_employees")) + .persist() + ) + dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select( + self.df_sqlglot_store.store_id, dfs_employee.num_employees + ) + self.compare_spark_with_sqlglot(df_joined, dfs_joined) diff --git a/tests/dataframe/integration/test_grouped_data.py b/tests/dataframe/integration/test_grouped_data.py new file mode 100644 index 0000000..2768dda --- /dev/null +++ b/tests/dataframe/integration/test_grouped_data.py @@ -0,0 +1,71 @@ +from pyspark.sql import functions as F + +from sqlglot.dataframe.sql import functions as SF +from tests.dataframe.integration.dataframe_validator import DataFrameValidator + + +class TestDataframeFunc(DataFrameValidator): + def test_group_by(self): + df_employee = self.df_spark_employee.groupBy(self.df_spark_employee.age).agg( + F.min(self.df_spark_employee.employee_id) + ) + dfs_employee = self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age).agg( + SF.min(self.df_sqlglot_employee.employee_id) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee, skip_schema_compare=True) + + def test_group_by_where_non_aggregate(self): + df_employee = ( + self.df_spark_employee.groupBy(self.df_spark_employee.age) + .agg(F.min(self.df_spark_employee.employee_id).alias("min_employee_id")) + .where(F.col("age") > F.lit(50)) + ) + dfs_employee = ( + self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age) + .agg(SF.min(self.df_sqlglot_employee.employee_id).alias("min_employee_id")) + .where(SF.col("age") > SF.lit(50)) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_group_by_where_aggregate_like_having(self): + df_employee = ( + self.df_spark_employee.groupBy(self.df_spark_employee.age) + .agg(F.min(self.df_spark_employee.employee_id).alias("min_employee_id")) + .where(F.col("min_employee_id") > F.lit(1)) + ) + dfs_employee = ( + self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age) + .agg(SF.min(self.df_sqlglot_employee.employee_id).alias("min_employee_id")) + .where(SF.col("min_employee_id") > SF.lit(1)) + ) + self.compare_spark_with_sqlglot(df_employee, dfs_employee) + + def test_count(self): + df = self.df_spark_employee.groupBy(self.df_spark_employee.age).count() + dfs = self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age).count() + self.compare_spark_with_sqlglot(df, dfs) + + def test_mean(self): + df = self.df_spark_employee.groupBy().mean("age", "store_id") + dfs = self.df_sqlglot_employee.groupBy().mean("age", "store_id") + self.compare_spark_with_sqlglot(df, dfs) + + def test_avg(self): + df = self.df_spark_employee.groupBy("age").avg("store_id") + dfs = self.df_sqlglot_employee.groupBy("age").avg("store_id") + self.compare_spark_with_sqlglot(df, dfs) + + def test_max(self): + df = self.df_spark_employee.groupBy("age").max("store_id") + dfs = self.df_sqlglot_employee.groupBy("age").max("store_id") + self.compare_spark_with_sqlglot(df, dfs) + + def test_min(self): + df = self.df_spark_employee.groupBy("age").min("store_id") + dfs = self.df_sqlglot_employee.groupBy("age").min("store_id") + self.compare_spark_with_sqlglot(df, dfs) + + def test_sum(self): + df = self.df_spark_employee.groupBy("age").sum("store_id") + dfs = self.df_sqlglot_employee.groupBy("age").sum("store_id") + self.compare_spark_with_sqlglot(df, dfs) diff --git a/tests/dataframe/integration/test_session.py b/tests/dataframe/integration/test_session.py new file mode 100644 index 0000000..ff1477b --- /dev/null +++ b/tests/dataframe/integration/test_session.py @@ -0,0 +1,28 @@ +from pyspark.sql import functions as F + +from sqlglot.dataframe.sql import functions as SF +from tests.dataframe.integration.dataframe_validator import DataFrameValidator + + +class TestSessionFunc(DataFrameValidator): + def test_sql_simple_select(self): + query = "SELECT fname, lname FROM employee" + df = self.spark.sql(query) + dfs = self.sqlglot.sql(query) + self.compare_spark_with_sqlglot(df, dfs) + + def test_sql_with_join(self): + query = """ + SELECT + e.employee_id + , s.store_id + FROM + employee e + INNER JOIN + store s + ON + e.store_id = s.store_id + """ + df = self.spark.sql(query).groupBy(F.col("store_id")).agg(F.countDistinct(F.col("employee_id"))) + dfs = self.sqlglot.sql(query).groupBy(SF.col("store_id")).agg(SF.countDistinct(SF.col("employee_id"))) + self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True) |