summaryrefslogtreecommitdiffstats
path: root/tests/dataframe/integration
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--tests/dataframe/integration/__init__.py0
-rw-r--r--tests/dataframe/integration/dataframe_validator.py149
-rw-r--r--tests/dataframe/integration/test_dataframe.py1103
-rw-r--r--tests/dataframe/integration/test_grouped_data.py71
-rw-r--r--tests/dataframe/integration/test_session.py28
5 files changed, 1351 insertions, 0 deletions
diff --git a/tests/dataframe/integration/__init__.py b/tests/dataframe/integration/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/tests/dataframe/integration/__init__.py
diff --git a/tests/dataframe/integration/dataframe_validator.py b/tests/dataframe/integration/dataframe_validator.py
new file mode 100644
index 0000000..6c4642f
--- /dev/null
+++ b/tests/dataframe/integration/dataframe_validator.py
@@ -0,0 +1,149 @@
+import typing as t
+import unittest
+import warnings
+
+import sqlglot
+from tests.helpers import SKIP_INTEGRATION
+
+if t.TYPE_CHECKING:
+ from pyspark.sql import DataFrame as SparkDataFrame
+
+
+@unittest.skipIf(SKIP_INTEGRATION, "Skipping Integration Tests since `SKIP_INTEGRATION` is set")
+class DataFrameValidator(unittest.TestCase):
+ spark = None
+ sqlglot = None
+ df_employee = None
+ df_store = None
+ df_district = None
+ spark_employee_schema = None
+ sqlglot_employee_schema = None
+ spark_store_schema = None
+ sqlglot_store_schema = None
+ spark_district_schema = None
+ sqlglot_district_schema = None
+
+ @classmethod
+ def setUpClass(cls):
+ from pyspark import SparkConf
+ from pyspark.sql import SparkSession, types
+
+ from sqlglot.dataframe.sql import types as sqlglotSparkTypes
+ from sqlglot.dataframe.sql.session import SparkSession as SqlglotSparkSession
+
+ # This is for test `test_branching_root_dataframes`
+ config = SparkConf().setAll([("spark.sql.analyzer.failAmbiguousSelfJoin", "false")])
+ cls.spark = SparkSession.builder.master("local[*]").appName("Unit-tests").config(conf=config).getOrCreate()
+ cls.spark.sparkContext.setLogLevel("ERROR")
+ cls.sqlglot = SqlglotSparkSession()
+ cls.spark_employee_schema = types.StructType(
+ [
+ types.StructField("employee_id", types.IntegerType(), False),
+ types.StructField("fname", types.StringType(), False),
+ types.StructField("lname", types.StringType(), False),
+ types.StructField("age", types.IntegerType(), False),
+ types.StructField("store_id", types.IntegerType(), False),
+ ]
+ )
+ cls.sqlglot_employee_schema = sqlglotSparkTypes.StructType(
+ [
+ sqlglotSparkTypes.StructField("employee_id", sqlglotSparkTypes.IntegerType(), False),
+ sqlglotSparkTypes.StructField("fname", sqlglotSparkTypes.StringType(), False),
+ sqlglotSparkTypes.StructField("lname", sqlglotSparkTypes.StringType(), False),
+ sqlglotSparkTypes.StructField("age", sqlglotSparkTypes.IntegerType(), False),
+ sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False),
+ ]
+ )
+ employee_data = [
+ (1, "Jack", "Shephard", 37, 1),
+ (2, "John", "Locke", 65, 1),
+ (3, "Kate", "Austen", 37, 2),
+ (4, "Claire", "Littleton", 27, 2),
+ (5, "Hugo", "Reyes", 29, 100),
+ ]
+ cls.df_employee = cls.spark.createDataFrame(data=employee_data, schema=cls.spark_employee_schema)
+ cls.dfs_employee = cls.sqlglot.createDataFrame(data=employee_data, schema=cls.sqlglot_employee_schema)
+ cls.df_employee.createOrReplaceTempView("employee")
+
+ cls.spark_store_schema = types.StructType(
+ [
+ types.StructField("store_id", types.IntegerType(), False),
+ types.StructField("store_name", types.StringType(), False),
+ types.StructField("district_id", types.IntegerType(), False),
+ types.StructField("num_sales", types.IntegerType(), False),
+ ]
+ )
+ cls.sqlglot_store_schema = sqlglotSparkTypes.StructType(
+ [
+ sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False),
+ sqlglotSparkTypes.StructField("store_name", sqlglotSparkTypes.StringType(), False),
+ sqlglotSparkTypes.StructField("district_id", sqlglotSparkTypes.IntegerType(), False),
+ sqlglotSparkTypes.StructField("num_sales", sqlglotSparkTypes.IntegerType(), False),
+ ]
+ )
+ store_data = [
+ (1, "Hydra", 1, 37),
+ (2, "Arrow", 2, 2000),
+ ]
+ cls.df_store = cls.spark.createDataFrame(data=store_data, schema=cls.spark_store_schema)
+ cls.dfs_store = cls.sqlglot.createDataFrame(data=store_data, schema=cls.sqlglot_store_schema)
+ cls.df_store.createOrReplaceTempView("store")
+
+ cls.spark_district_schema = types.StructType(
+ [
+ types.StructField("district_id", types.IntegerType(), False),
+ types.StructField("district_name", types.StringType(), False),
+ types.StructField("manager_name", types.StringType(), False),
+ ]
+ )
+ cls.sqlglot_district_schema = sqlglotSparkTypes.StructType(
+ [
+ sqlglotSparkTypes.StructField("district_id", sqlglotSparkTypes.IntegerType(), False),
+ sqlglotSparkTypes.StructField("district_name", sqlglotSparkTypes.StringType(), False),
+ sqlglotSparkTypes.StructField("manager_name", sqlglotSparkTypes.StringType(), False),
+ ]
+ )
+ district_data = [
+ (1, "Temple", "Dogen"),
+ (2, "Lighthouse", "Jacob"),
+ ]
+ cls.df_district = cls.spark.createDataFrame(data=district_data, schema=cls.spark_district_schema)
+ cls.dfs_district = cls.sqlglot.createDataFrame(data=district_data, schema=cls.sqlglot_district_schema)
+ cls.df_district.createOrReplaceTempView("district")
+ sqlglot.schema.add_table("employee", cls.sqlglot_employee_schema)
+ sqlglot.schema.add_table("store", cls.sqlglot_store_schema)
+ sqlglot.schema.add_table("district", cls.sqlglot_district_schema)
+
+ def setUp(self) -> None:
+ warnings.filterwarnings("ignore", category=ResourceWarning)
+ self.df_spark_store = self.df_store.alias("df_store") # type: ignore
+ self.df_spark_employee = self.df_employee.alias("df_employee") # type: ignore
+ self.df_spark_district = self.df_district.alias("df_district") # type: ignore
+ self.df_sqlglot_store = self.dfs_store.alias("store") # type: ignore
+ self.df_sqlglot_employee = self.dfs_employee.alias("employee") # type: ignore
+ self.df_sqlglot_district = self.dfs_district.alias("district") # type: ignore
+
+ def compare_spark_with_sqlglot(
+ self, df_spark, df_sqlglot, no_empty=True, skip_schema_compare=False
+ ) -> t.Tuple["SparkDataFrame", "SparkDataFrame"]:
+ def compare_schemas(schema_1, schema_2):
+ for schema in [schema_1, schema_2]:
+ for struct_field in schema.fields:
+ struct_field.metadata = {}
+ self.assertEqual(schema_1, schema_2)
+
+ for statement in df_sqlglot.sql():
+ actual_df_sqlglot = self.spark.sql(statement) # type: ignore
+ df_sqlglot_results = actual_df_sqlglot.collect()
+ df_spark_results = df_spark.collect()
+ if not skip_schema_compare:
+ compare_schemas(df_spark.schema, actual_df_sqlglot.schema)
+ self.assertEqual(df_spark_results, df_sqlglot_results)
+ if no_empty:
+ self.assertNotEqual(len(df_spark_results), 0)
+ self.assertNotEqual(len(df_sqlglot_results), 0)
+ return df_spark, actual_df_sqlglot
+
+ @classmethod
+ def get_explain_plan(cls, df: "SparkDataFrame", mode: str = "extended") -> str:
+ return df._sc._jvm.PythonSQLUtils.explainString(df._jdf.queryExecution(), mode) # type: ignore
diff --git a/tests/dataframe/integration/test_dataframe.py b/tests/dataframe/integration/test_dataframe.py
new file mode 100644
index 0000000..c740bec
--- /dev/null
+++ b/tests/dataframe/integration/test_dataframe.py
@@ -0,0 +1,1103 @@
+from pyspark.sql import functions as F
+
+from sqlglot.dataframe.sql import functions as SF
+from tests.dataframe.integration.dataframe_validator import DataFrameValidator
+
+
+class TestDataframeFunc(DataFrameValidator):
+ def test_simple_select(self):
+ df_employee = self.df_spark_employee.select(F.col("employee_id"))
+ dfs_employee = self.df_sqlglot_employee.select(SF.col("employee_id"))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_simple_select_from_table(self):
+ df = self.df_spark_employee
+ dfs = self.sqlglot.read.table("employee")
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_simple_select_df_attribute(self):
+ df_employee = self.df_spark_employee.select(self.df_spark_employee.employee_id)
+ dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee.employee_id)
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_simple_select_df_dict(self):
+ df_employee = self.df_spark_employee.select(self.df_spark_employee["employee_id"])
+ dfs_employee = self.df_sqlglot_employee.select(self.df_sqlglot_employee["employee_id"])
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_multiple_selects(self):
+ df_employee = self.df_spark_employee.select(
+ self.df_spark_employee["employee_id"], F.col("fname"), self.df_spark_employee.lname
+ )
+ dfs_employee = self.df_sqlglot_employee.select(
+ self.df_sqlglot_employee["employee_id"], SF.col("fname"), self.df_sqlglot_employee.lname
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_alias_no_op(self):
+ df_employee = self.df_spark_employee.alias("df_employee")
+ dfs_employee = self.df_sqlglot_employee.alias("dfs_employee")
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_alias_with_select(self):
+ df_employee = self.df_spark_employee.alias("df_employee").select(
+ self.df_spark_employee["employee_id"], F.col("df_employee.fname"), self.df_spark_employee.lname
+ )
+ dfs_employee = self.df_sqlglot_employee.alias("dfs_employee").select(
+ self.df_sqlglot_employee["employee_id"], SF.col("dfs_employee.fname"), self.df_sqlglot_employee.lname
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_case_when_otherwise(self):
+ df = self.df_spark_employee.select(
+ F.when((F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)), F.lit("between 40 and 60"))
+ .when(F.col("age") < F.lit(40), "less than 40")
+ .otherwise("greater than 60")
+ )
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.when((SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)), SF.lit("between 40 and 60"))
+ .when(SF.col("age") < SF.lit(40), "less than 40")
+ .otherwise("greater than 60")
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_case_when_no_otherwise(self):
+ df = self.df_spark_employee.select(
+ F.when((F.col("age") >= F.lit(40)) & (F.col("age") <= F.lit(60)), F.lit("between 40 and 60")).when(
+ F.col("age") < F.lit(40), "less than 40"
+ )
+ )
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.when((SF.col("age") >= SF.lit(40)) & (SF.col("age") <= SF.lit(60)), SF.lit("between 40 and 60")).when(
+ SF.col("age") < SF.lit(40), "less than 40"
+ )
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_where_clause_single(self):
+ df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37))
+ dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_where_clause_multiple_and(self):
+ df_employee = self.df_spark_employee.where((F.col("age") == F.lit(37)) & (F.col("fname") == F.lit("Jack")))
+ dfs_employee = self.df_sqlglot_employee.where(
+ (SF.col("age") == SF.lit(37)) & (SF.col("fname") == SF.lit("Jack"))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_where_many_and(self):
+ df_employee = self.df_spark_employee.where(
+ (F.col("age") == F.lit(37))
+ & (F.col("fname") == F.lit("Jack"))
+ & (F.col("lname") == F.lit("Shephard"))
+ & (F.col("employee_id") == F.lit(1))
+ )
+ dfs_employee = self.df_sqlglot_employee.where(
+ (SF.col("age") == SF.lit(37))
+ & (SF.col("fname") == SF.lit("Jack"))
+ & (SF.col("lname") == SF.lit("Shephard"))
+ & (SF.col("employee_id") == SF.lit(1))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_where_clause_multiple_or(self):
+ df_employee = self.df_spark_employee.where((F.col("age") == F.lit(37)) | (F.col("fname") == F.lit("Kate")))
+ dfs_employee = self.df_sqlglot_employee.where(
+ (SF.col("age") == SF.lit(37)) | (SF.col("fname") == SF.lit("Kate"))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_where_many_or(self):
+ df_employee = self.df_spark_employee.where(
+ (F.col("age") == F.lit(37))
+ | (F.col("fname") == F.lit("Kate"))
+ | (F.col("lname") == F.lit("Littleton"))
+ | (F.col("employee_id") == F.lit(2))
+ )
+ dfs_employee = self.df_sqlglot_employee.where(
+ (SF.col("age") == SF.lit(37))
+ | (SF.col("fname") == SF.lit("Kate"))
+ | (SF.col("lname") == SF.lit("Littleton"))
+ | (SF.col("employee_id") == SF.lit(2))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_where_mixed_and_or(self):
+ df_employee = self.df_spark_employee.where(
+ ((F.col("age") == F.lit(65)) & (F.col("fname") == F.lit("John")))
+ | ((F.col("lname") == F.lit("Shephard")) & (F.col("age") == F.lit(37)))
+ )
+ dfs_employee = self.df_sqlglot_employee.where(
+ ((SF.col("age") == SF.lit(65)) & (SF.col("fname") == SF.lit("John")))
+ | ((SF.col("lname") == SF.lit("Shephard")) & (SF.col("age") == SF.lit(37)))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_where_multiple_chained(self):
+ df_employee = self.df_spark_employee.where(F.col("age") == F.lit(37)).where(
+ self.df_spark_employee.fname == F.lit("Jack")
+ )
+ dfs_employee = self.df_sqlglot_employee.where(SF.col("age") == SF.lit(37)).where(
+ self.df_sqlglot_employee.fname == SF.lit("Jack")
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_operators(self):
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] < F.lit(50))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] < SF.lit(50))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] <= F.lit(37))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] <= SF.lit(37))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] > F.lit(50))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] > SF.lit(50))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] >= F.lit(37))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] >= SF.lit(37))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] != F.lit(50))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] != SF.lit(50))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] == F.lit(37))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] == SF.lit(37))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] % F.lit(5) == F.lit(0))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] % SF.lit(5) == SF.lit(0))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] + F.lit(5) > F.lit(28))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] + SF.lit(5) > SF.lit(28))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(self.df_spark_employee["age"] - F.lit(5) > F.lit(28))
+ dfs_employee = self.df_sqlglot_employee.where(self.df_sqlglot_employee["age"] - SF.lit(5) > SF.lit(28))
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ df_employee = self.df_spark_employee.where(
+ self.df_spark_employee["age"] * F.lit(0.5) == self.df_spark_employee["age"] / F.lit(2)
+ )
+ dfs_employee = self.df_sqlglot_employee.where(
+ self.df_sqlglot_employee["age"] * SF.lit(0.5) == self.df_sqlglot_employee["age"] / SF.lit(2)
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_join_inner(self):
+ df_joined = self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="inner").select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ F.col("store_id"),
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="inner").select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ SF.col("store_id"),
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_join_inner_no_select(self):
+ df_joined = self.df_spark_employee.select(F.col("store_id"), F.col("fname"), F.col("lname")).join(
+ self.df_spark_store.select(F.col("store_id"), F.col("store_name")), on=["store_id"], how="inner"
+ )
+ dfs_joined = self.df_sqlglot_employee.select(SF.col("store_id"), SF.col("fname"), SF.col("lname")).join(
+ self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")), on=["store_id"], how="inner"
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_join_inner_equality_single(self):
+ df_joined = self.df_spark_employee.join(
+ self.df_spark_store, on=self.df_spark_employee.store_id == self.df_spark_store.store_id, how="inner"
+ ).select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ self.df_spark_employee.store_id,
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(
+ self.df_sqlglot_store, on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id, how="inner"
+ ).select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ self.df_sqlglot_employee.store_id,
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_join_inner_equality_multiple(self):
+ df_joined = self.df_spark_employee.join(
+ self.df_spark_store,
+ on=[
+ self.df_spark_employee.store_id == self.df_spark_store.store_id,
+ self.df_spark_employee.age == self.df_spark_store.num_sales,
+ ],
+ how="inner",
+ ).select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ self.df_spark_employee.store_id,
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(
+ self.df_sqlglot_store,
+ on=[
+ self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
+ self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales,
+ ],
+ how="inner",
+ ).select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ self.df_sqlglot_employee.store_id,
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_join_inner_equality_multiple_bitwise_and(self):
+ df_joined = self.df_spark_employee.join(
+ self.df_spark_store,
+ on=(self.df_spark_employee.store_id == self.df_spark_store.store_id)
+ & (self.df_spark_employee.age == self.df_spark_store.num_sales),
+ how="inner",
+ ).select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ self.df_spark_employee.store_id,
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(
+ self.df_sqlglot_store,
+ on=(self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id)
+ & (self.df_sqlglot_employee.age == self.df_sqlglot_store.num_sales),
+ how="inner",
+ ).select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ self.df_sqlglot_employee.store_id,
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_join_left_outer(self):
+ df_joined = (
+ self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="left_outer")
+ .select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ F.col("store_id"),
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ .orderBy(F.col("employee_id"))
+ )
+ dfs_joined = (
+ self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="left_outer")
+ .select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ SF.col("store_id"),
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ .orderBy(SF.col("employee_id"))
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_join_full_outer(self):
+ df_joined = self.df_spark_employee.join(self.df_spark_store, on=["store_id"], how="full_outer").select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ F.col("store_id"),
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(self.df_sqlglot_store, on=["store_id"], how="full_outer").select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ SF.col("store_id"),
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_triple_join(self):
+ df = (
+ self.df_employee.join(self.df_store, on=self.df_employee.employee_id == self.df_store.store_id)
+ .join(self.df_district, on=self.df_store.store_id == self.df_district.district_id)
+ .select(
+ self.df_employee.employee_id,
+ self.df_store.store_id,
+ self.df_district.district_id,
+ self.df_employee.fname,
+ self.df_store.store_name,
+ self.df_district.district_name,
+ )
+ )
+ dfs = (
+ self.dfs_employee.join(self.dfs_store, on=self.dfs_employee.employee_id == self.dfs_store.store_id)
+ .join(self.dfs_district, on=self.dfs_store.store_id == self.dfs_district.district_id)
+ .select(
+ self.dfs_employee.employee_id,
+ self.dfs_store.store_id,
+ self.dfs_district.district_id,
+ self.dfs_employee.fname,
+ self.dfs_store.store_name,
+ self.dfs_district.district_name,
+ )
+ )
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_join_select_and_select_start(self):
+ df = self.df_spark_employee.select(F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")).join(
+ self.df_spark_store, "store_id", "inner"
+ )
+
+ dfs = self.df_sqlglot_employee.select(SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")).join(
+ self.df_sqlglot_store, "store_id", "inner"
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_branching_root_dataframes(self):
+ """
+ Test a pattern that has non-intuitive behavior in spark
+
+ Scenario: You do a self-join in a dataframe using an original dataframe and then a modified version
+ of it. You then reference the columns by the dataframe name instead of the column function.
+ Spark will use the root dataframe's column in the result.
+ """
+ df_hydra_employees_only = self.df_spark_employee.where(F.col("store_id") == F.lit(1))
+ df_joined = (
+ self.df_spark_employee.where(F.col("store_id") == F.lit(2))
+ .alias("df_arrow_employees_only")
+ .join(
+ df_hydra_employees_only.alias("df_hydra_employees_only"),
+ on=["store_id"],
+ how="full_outer",
+ )
+ .select(
+ self.df_spark_employee.fname,
+ F.col("df_arrow_employees_only.fname"),
+ df_hydra_employees_only.fname,
+ F.col("df_hydra_employees_only.fname"),
+ )
+ )
+
+ dfs_hydra_employees_only = self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(1))
+ dfs_joined = (
+ self.df_sqlglot_employee.where(SF.col("store_id") == SF.lit(2))
+ .alias("dfs_arrow_employees_only")
+ .join(
+ dfs_hydra_employees_only.alias("dfs_hydra_employees_only"),
+ on=["store_id"],
+ how="full_outer",
+ )
+ .select(
+ self.df_sqlglot_employee.fname,
+ SF.col("dfs_arrow_employees_only.fname"),
+ dfs_hydra_employees_only.fname,
+ SF.col("dfs_hydra_employees_only.fname"),
+ )
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_basic_union(self):
+ df_unioned = self.df_spark_employee.select(F.col("employee_id"), F.col("age")).union(
+ self.df_spark_store.select(F.col("store_id"), F.col("num_sales"))
+ )
+
+ dfs_unioned = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")).union(
+ self.df_sqlglot_store.select(SF.col("store_id"), SF.col("num_sales"))
+ )
+ self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
+
+ def test_union_with_join(self):
+ df_joined = self.df_spark_employee.join(
+ self.df_spark_store,
+ on="store_id",
+ how="inner",
+ )
+ df_unioned = df_joined.select(F.col("store_id"), F.col("store_name")).union(
+ self.df_spark_district.select(F.col("district_id"), F.col("district_name"))
+ )
+
+ dfs_joined = self.df_sqlglot_employee.join(
+ self.df_sqlglot_store,
+ on="store_id",
+ how="inner",
+ )
+ dfs_unioned = dfs_joined.select(SF.col("store_id"), SF.col("store_name")).union(
+ self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name"))
+ )
+
+ self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
+
+ def test_double_union_all(self):
+ df_unioned = (
+ self.df_spark_employee.select(F.col("employee_id"), F.col("fname"))
+ .unionAll(self.df_spark_store.select(F.col("store_id"), F.col("store_name")))
+ .unionAll(self.df_spark_district.select(F.col("district_id"), F.col("district_name")))
+ )
+
+ dfs_unioned = (
+ self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("fname"))
+ .unionAll(self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name")))
+ .unionAll(self.df_sqlglot_district.select(SF.col("district_id"), SF.col("district_name")))
+ )
+
+ self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
+
+ def test_union_by_name(self):
+ df = self.df_spark_employee.select(F.col("employee_id"), F.col("fname"), F.col("lname")).unionByName(
+ self.df_spark_store.select(
+ F.col("store_name").alias("lname"),
+ F.col("store_id").alias("employee_id"),
+ F.col("store_name").alias("fname"),
+ )
+ )
+
+ dfs = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("fname"), SF.col("lname")).unionByName(
+ self.df_sqlglot_store.select(
+ SF.col("store_name").alias("lname"),
+ SF.col("store_id").alias("employee_id"),
+ SF.col("store_name").alias("fname"),
+ )
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_union_by_name_allow_missing(self):
+ df = self.df_spark_employee.select(
+ F.col("age"), F.col("employee_id"), F.col("fname"), F.col("lname")
+ ).unionByName(
+ self.df_spark_store.select(
+ F.col("store_name").alias("lname"),
+ F.col("store_id").alias("employee_id"),
+ F.col("store_name").alias("fname"),
+ F.col("num_sales"),
+ ),
+ allowMissingColumns=True,
+ )
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.col("age"), SF.col("employee_id"), SF.col("fname"), SF.col("lname")
+ ).unionByName(
+ self.df_sqlglot_store.select(
+ SF.col("store_name").alias("lname"),
+ SF.col("store_id").alias("employee_id"),
+ SF.col("store_name").alias("fname"),
+ SF.col("num_sales"),
+ ),
+ allowMissingColumns=True,
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_order_by_default(self):
+ df = self.df_spark_store.groupBy(F.col("district_id")).agg(F.min("num_sales")).orderBy(F.col("district_id"))
+
+ dfs = (
+ self.df_sqlglot_store.groupBy(SF.col("district_id")).agg(SF.min("num_sales")).orderBy(SF.col("district_id"))
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_order_by_array_bool(self):
+ df = (
+ self.df_spark_store.groupBy(F.col("district_id"))
+ .agg(F.min("num_sales").alias("total_sales"))
+ .orderBy(F.col("total_sales"), F.col("district_id"), ascending=[1, 0])
+ )
+
+ dfs = (
+ self.df_sqlglot_store.groupBy(SF.col("district_id"))
+ .agg(SF.min("num_sales").alias("total_sales"))
+ .orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=[1, 0])
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_order_by_single_bool(self):
+ df = (
+ self.df_spark_store.groupBy(F.col("district_id"))
+ .agg(F.min("num_sales").alias("total_sales"))
+ .orderBy(F.col("total_sales"), F.col("district_id"), ascending=False)
+ )
+
+ dfs = (
+ self.df_sqlglot_store.groupBy(SF.col("district_id"))
+ .agg(SF.min("num_sales").alias("total_sales"))
+ .orderBy(SF.col("total_sales"), SF.col("district_id"), ascending=False)
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_order_by_column_sort_method(self):
+ df = (
+ self.df_spark_store.groupBy(F.col("district_id"))
+ .agg(F.min("num_sales").alias("total_sales"))
+ .orderBy(F.col("total_sales").asc(), F.col("district_id").desc())
+ )
+
+ dfs = (
+ self.df_sqlglot_store.groupBy(SF.col("district_id"))
+ .agg(SF.min("num_sales").alias("total_sales"))
+ .orderBy(SF.col("total_sales").asc(), SF.col("district_id").desc())
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_order_by_column_sort_method_nulls_last(self):
+ df = (
+ self.df_spark_store.groupBy(F.col("district_id"))
+ .agg(F.min("num_sales").alias("total_sales"))
+ .orderBy(F.when(F.col("district_id") == F.lit(2), F.col("district_id")).asc_nulls_last())
+ )
+
+ dfs = (
+ self.df_sqlglot_store.groupBy(SF.col("district_id"))
+ .agg(SF.min("num_sales").alias("total_sales"))
+ .orderBy(SF.when(SF.col("district_id") == SF.lit(2), SF.col("district_id")).asc_nulls_last())
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_order_by_column_sort_method_nulls_first(self):
+ df = (
+ self.df_spark_store.groupBy(F.col("district_id"))
+ .agg(F.min("num_sales").alias("total_sales"))
+ .orderBy(F.when(F.col("district_id") == F.lit(1), F.col("district_id")).desc_nulls_first())
+ )
+
+ dfs = (
+ self.df_sqlglot_store.groupBy(SF.col("district_id"))
+ .agg(SF.min("num_sales").alias("total_sales"))
+ .orderBy(SF.when(SF.col("district_id") == SF.lit(1), SF.col("district_id")).desc_nulls_first())
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_intersect(self):
+ df_employee_duplicate = self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")).union(
+ self.df_spark_employee.select(F.col("employee_id"), F.col("store_id"))
+ )
+
+ df_store_duplicate = self.df_spark_store.select(F.col("store_id"), F.col("district_id")).union(
+ self.df_spark_store.select(F.col("store_id"), F.col("district_id"))
+ )
+
+ df = df_employee_duplicate.intersect(df_store_duplicate)
+
+ dfs_employee_duplicate = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")).union(
+ self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id"))
+ )
+
+ dfs_store_duplicate = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")).union(
+ self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id"))
+ )
+
+ dfs = dfs_employee_duplicate.intersect(dfs_store_duplicate)
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_intersect_all(self):
+ df_employee_duplicate = self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")).union(
+ self.df_spark_employee.select(F.col("employee_id"), F.col("store_id"))
+ )
+
+ df_store_duplicate = self.df_spark_store.select(F.col("store_id"), F.col("district_id")).union(
+ self.df_spark_store.select(F.col("store_id"), F.col("district_id"))
+ )
+
+ df = df_employee_duplicate.intersectAll(df_store_duplicate)
+
+ dfs_employee_duplicate = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")).union(
+ self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id"))
+ )
+
+ dfs_store_duplicate = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")).union(
+ self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id"))
+ )
+
+ dfs = dfs_employee_duplicate.intersectAll(dfs_store_duplicate)
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_except_all(self):
+ df_employee_duplicate = self.df_spark_employee.select(F.col("employee_id"), F.col("store_id")).union(
+ self.df_spark_employee.select(F.col("employee_id"), F.col("store_id"))
+ )
+
+ df_store_duplicate = self.df_spark_store.select(F.col("store_id"), F.col("district_id")).union(
+ self.df_spark_store.select(F.col("store_id"), F.col("district_id"))
+ )
+
+ df = df_employee_duplicate.exceptAll(df_store_duplicate)
+
+ dfs_employee_duplicate = self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id")).union(
+ self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("store_id"))
+ )
+
+ dfs_store_duplicate = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id")).union(
+ self.df_sqlglot_store.select(SF.col("store_id"), SF.col("district_id"))
+ )
+
+ dfs = dfs_employee_duplicate.exceptAll(dfs_store_duplicate)
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_distinct(self):
+ df = self.df_spark_employee.select(F.col("age")).distinct()
+
+ dfs = self.df_sqlglot_employee.select(SF.col("age")).distinct()
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_union_distinct(self):
+ df_unioned = (
+ self.df_spark_employee.select(F.col("employee_id"), F.col("age"))
+ .union(self.df_spark_employee.select(F.col("employee_id"), F.col("age")))
+ .distinct()
+ )
+
+ dfs_unioned = (
+ self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age"))
+ .union(self.df_sqlglot_employee.select(SF.col("employee_id"), SF.col("age")))
+ .distinct()
+ )
+ self.compare_spark_with_sqlglot(df_unioned, dfs_unioned)
+
+ def test_drop_duplicates_no_subset(self):
+ df = self.df_spark_employee.select("age").dropDuplicates()
+ dfs = self.df_sqlglot_employee.select("age").dropDuplicates()
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_drop_duplicates_subset(self):
+ df = self.df_spark_employee.dropDuplicates(["age"])
+ dfs = self.df_sqlglot_employee.dropDuplicates(["age"])
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_drop_na_default(self):
+ df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).dropna()
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).dropna()
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_dropna_how(self):
+ df = self.df_spark_employee.select(
+ F.lit(None), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
+ ).dropna(how="all")
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.lit(None), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).dropna(how="all")
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_dropna_thresh(self):
+ df = self.df_spark_employee.select(
+ F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
+ ).dropna(how="any", thresh=2)
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.lit(None), SF.lit(1), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).dropna(how="any", thresh=2)
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_dropna_subset(self):
+ df = self.df_spark_employee.select(
+ F.lit(None), F.lit(1), F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")
+ ).dropna(thresh=1, subset="the_age")
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.lit(None), SF.lit(1), SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).dropna(thresh=1, subset="the_age")
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_dropna_na_function(self):
+ df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).na.drop()
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).na.drop()
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_fillna_default(self):
+ df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).fillna(100)
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).fillna(100)
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_fillna_dict_replacement(self):
+ df = self.df_spark_employee.select(
+ F.col("fname"),
+ F.when(F.col("lname").startswith("L"), F.col("lname")).alias("l_lname"),
+ F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age"),
+ ).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"})
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.col("fname"),
+ SF.when(SF.col("lname").startswith("L"), SF.col("lname")).alias("l_lname"),
+ SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age"),
+ ).fillna({"fname": "Jacob", "l_lname": "NOT_LNAME"})
+
+ # For some reason the sqlglot results sets a column as nullable when it doesn't need to
+ # This seems to be a nuance in how spark dataframe from sql works so we can ignore
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_fillna_na_func(self):
+ df = self.df_spark_employee.select(F.when(F.col("age") < F.lit(50), F.col("age")).alias("the_age")).na.fill(100)
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.when(SF.col("age") < SF.lit(50), SF.col("age")).alias("the_age")
+ ).na.fill(100)
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_replace_basic(self):
+ df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(to_replace=37, value=100)
+
+ dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
+ to_replace=37, value=100
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_replace_basic_subset(self):
+ df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace(
+ to_replace=37, value=100, subset="age"
+ )
+
+ dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace(
+ to_replace=37, value=100, subset="age"
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_replace_mapping(self):
+ df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).replace({37: 100})
+
+ dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).replace({37: 100})
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_replace_mapping_subset(self):
+ df = self.df_spark_employee.select(
+ F.col("age"), F.lit(37).alias("test_col"), F.lit(50).alias("test_col_2")
+ ).replace({37: 100, 50: 1}, subset=["age", "test_col_2"])
+
+ dfs = self.df_sqlglot_employee.select(
+ SF.col("age"), SF.lit(37).alias("test_col"), SF.lit(50).alias("test_col_2")
+ ).replace({37: 100, 50: 1}, subset=["age", "test_col_2"])
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_replace_na_func_basic(self):
+ df = self.df_spark_employee.select(F.col("age"), F.lit(37).alias("test_col")).na.replace(
+ to_replace=37, value=100
+ )
+
+ dfs = self.df_sqlglot_employee.select(SF.col("age"), SF.lit(37).alias("test_col")).na.replace(
+ to_replace=37, value=100
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_with_column(self):
+ df = self.df_spark_employee.withColumn("test", F.col("age"))
+
+ dfs = self.df_sqlglot_employee.withColumn("test", SF.col("age"))
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_with_column_existing_name(self):
+ df = self.df_spark_employee.withColumn("fname", F.lit("blah"))
+
+ dfs = self.df_sqlglot_employee.withColumn("fname", SF.lit("blah"))
+
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)
+
+ def test_with_column_renamed(self):
+ df = self.df_spark_employee.withColumnRenamed("fname", "first_name")
+
+ dfs = self.df_sqlglot_employee.withColumnRenamed("fname", "first_name")
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_with_column_renamed_double(self):
+ df = self.df_spark_employee.select(F.col("fname").alias("first_name")).withColumnRenamed(
+ "first_name", "first_name_again"
+ )
+
+ dfs = self.df_sqlglot_employee.select(SF.col("fname").alias("first_name")).withColumnRenamed(
+ "first_name", "first_name_again"
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_drop_column_single(self):
+ df = self.df_spark_employee.select(F.col("fname"), F.col("lname"), F.col("age")).drop("age")
+
+ dfs = self.df_sqlglot_employee.select(SF.col("fname"), SF.col("lname"), SF.col("age")).drop("age")
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_drop_column_reference_join(self):
+ df_spark_employee_cols = self.df_spark_employee.select(
+ F.col("fname"), F.col("lname"), F.col("age"), F.col("store_id")
+ )
+ df_spark_store_cols = self.df_spark_store.select(F.col("store_id"), F.col("store_name"))
+ df = df_spark_employee_cols.join(df_spark_store_cols, on="store_id", how="inner").drop(
+ df_spark_employee_cols.age,
+ )
+
+ df_sqlglot_employee_cols = self.df_sqlglot_employee.select(
+ SF.col("fname"), SF.col("lname"), SF.col("age"), SF.col("store_id")
+ )
+ df_sqlglot_store_cols = self.df_sqlglot_store.select(SF.col("store_id"), SF.col("store_name"))
+ dfs = df_sqlglot_employee_cols.join(df_sqlglot_store_cols, on="store_id", how="inner").drop(
+ df_sqlglot_employee_cols.age,
+ )
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_limit(self):
+ df = self.df_spark_employee.limit(1)
+
+ dfs = self.df_sqlglot_employee.limit(1)
+
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_hint_broadcast_alias(self):
+ df_joined = self.df_spark_employee.join(
+ self.df_spark_store.alias("store").hint("broadcast", "store"),
+ on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
+ how="inner",
+ ).select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ self.df_spark_employee.store_id,
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(
+ self.df_sqlglot_store.alias("store").hint("broadcast", "store"),
+ on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
+ how="inner",
+ ).select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ self.df_sqlglot_employee.store_id,
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+ self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
+ self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
+
+ def test_hint_broadcast_no_alias(self):
+ df_joined = self.df_spark_employee.join(
+ self.df_spark_store.hint("broadcast"),
+ on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
+ how="inner",
+ ).select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ self.df_spark_employee.store_id,
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(
+ self.df_sqlglot_store.hint("broadcast"),
+ on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
+ how="inner",
+ ).select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ self.df_sqlglot_employee.store_id,
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+ self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
+ self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
+
+ # TODO: Add test to make sure with and without alias are the same once ids are deterministic
+
+ def test_broadcast_func(self):
+ df_joined = self.df_spark_employee.join(
+ F.broadcast(self.df_spark_store),
+ on=self.df_spark_employee.store_id == self.df_spark_store.store_id,
+ how="inner",
+ ).select(
+ self.df_spark_employee.employee_id,
+ self.df_spark_employee["fname"],
+ F.col("lname"),
+ F.col("age"),
+ self.df_spark_employee.store_id,
+ self.df_spark_store.store_name,
+ self.df_spark_store["num_sales"],
+ )
+ dfs_joined = self.df_sqlglot_employee.join(
+ SF.broadcast(self.df_sqlglot_store),
+ on=self.df_sqlglot_employee.store_id == self.df_sqlglot_store.store_id,
+ how="inner",
+ ).select(
+ self.df_sqlglot_employee.employee_id,
+ self.df_sqlglot_employee["fname"],
+ SF.col("lname"),
+ SF.col("age"),
+ self.df_sqlglot_employee.store_id,
+ self.df_sqlglot_store.store_name,
+ self.df_sqlglot_store["num_sales"],
+ )
+ df, dfs = self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+ self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(df))
+ self.assertIn("ResolvedHint (strategy=broadcast)", self.get_explain_plan(dfs))
+
+ def test_repartition_by_num(self):
+ """
+ The results are different when doing the repartition on a table created using VALUES in SQL.
+ So I just use the views instead for these tests
+ """
+ df = self.df_spark_employee.repartition(63)
+
+ dfs = self.sqlglot.read.table("employee").repartition(63)
+ df, dfs = self.compare_spark_with_sqlglot(df, dfs)
+ spark_num_partitions = df.rdd.getNumPartitions()
+ sqlglot_num_partitions = dfs.rdd.getNumPartitions()
+ self.assertEqual(spark_num_partitions, 63)
+ self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
+
+ def test_repartition_name_only(self):
+ """
+ We use the view here to help ensure the explain plans are similar enough to compare
+ """
+ df = self.df_spark_employee.repartition("age")
+
+ dfs = self.sqlglot.read.table("employee").repartition("age")
+ df, dfs = self.compare_spark_with_sqlglot(df, dfs)
+ self.assertIn("RepartitionByExpression [age", self.get_explain_plan(df))
+ self.assertIn("RepartitionByExpression [age", self.get_explain_plan(dfs))
+
+ def test_repartition_num_and_multiple_names(self):
+ """
+ We use the view here to help ensure the explain plans are similar enough to compare
+ """
+ df = self.df_spark_employee.repartition(53, "age", "fname")
+
+ dfs = self.sqlglot.read.table("employee").repartition(53, "age", "fname")
+ df, dfs = self.compare_spark_with_sqlglot(df, dfs)
+ spark_num_partitions = df.rdd.getNumPartitions()
+ sqlglot_num_partitions = dfs.rdd.getNumPartitions()
+ self.assertEqual(spark_num_partitions, 53)
+ self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
+ self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(df))
+ self.assertIn("RepartitionByExpression [age#3, fname#1], 53", self.get_explain_plan(dfs))
+
+ def test_coalesce(self):
+ df = self.df_spark_employee.coalesce(1)
+ dfs = self.df_sqlglot_employee.coalesce(1)
+ df, dfs = self.compare_spark_with_sqlglot(df, dfs)
+ spark_num_partitions = df.rdd.getNumPartitions()
+ sqlglot_num_partitions = dfs.rdd.getNumPartitions()
+ self.assertEqual(spark_num_partitions, 1)
+ self.assertEqual(spark_num_partitions, sqlglot_num_partitions)
+
+ def test_cache_select(self):
+ df_employee = (
+ self.df_spark_employee.groupBy("store_id")
+ .agg(F.countDistinct("employee_id").alias("num_employees"))
+ .cache()
+ )
+ df_joined = df_employee.join(self.df_spark_store, on="store_id").select(
+ self.df_spark_store.store_id, df_employee.num_employees
+ )
+ dfs_employee = (
+ self.df_sqlglot_employee.groupBy("store_id")
+ .agg(SF.countDistinct("employee_id").alias("num_employees"))
+ .cache()
+ )
+ dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select(
+ self.df_sqlglot_store.store_id, dfs_employee.num_employees
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
+
+ def test_persist_select(self):
+ df_employee = (
+ self.df_spark_employee.groupBy("store_id")
+ .agg(F.countDistinct("employee_id").alias("num_employees"))
+ .persist()
+ )
+ df_joined = df_employee.join(self.df_spark_store, on="store_id").select(
+ self.df_spark_store.store_id, df_employee.num_employees
+ )
+ dfs_employee = (
+ self.df_sqlglot_employee.groupBy("store_id")
+ .agg(SF.countDistinct("employee_id").alias("num_employees"))
+ .persist()
+ )
+ dfs_joined = dfs_employee.join(self.df_sqlglot_store, on="store_id").select(
+ self.df_sqlglot_store.store_id, dfs_employee.num_employees
+ )
+ self.compare_spark_with_sqlglot(df_joined, dfs_joined)
diff --git a/tests/dataframe/integration/test_grouped_data.py b/tests/dataframe/integration/test_grouped_data.py
new file mode 100644
index 0000000..2768dda
--- /dev/null
+++ b/tests/dataframe/integration/test_grouped_data.py
@@ -0,0 +1,71 @@
+from pyspark.sql import functions as F
+
+from sqlglot.dataframe.sql import functions as SF
+from tests.dataframe.integration.dataframe_validator import DataFrameValidator
+
+
+class TestDataframeFunc(DataFrameValidator):
+ def test_group_by(self):
+ df_employee = self.df_spark_employee.groupBy(self.df_spark_employee.age).agg(
+ F.min(self.df_spark_employee.employee_id)
+ )
+ dfs_employee = self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age).agg(
+ SF.min(self.df_sqlglot_employee.employee_id)
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee, skip_schema_compare=True)
+
+ def test_group_by_where_non_aggregate(self):
+ df_employee = (
+ self.df_spark_employee.groupBy(self.df_spark_employee.age)
+ .agg(F.min(self.df_spark_employee.employee_id).alias("min_employee_id"))
+ .where(F.col("age") > F.lit(50))
+ )
+ dfs_employee = (
+ self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age)
+ .agg(SF.min(self.df_sqlglot_employee.employee_id).alias("min_employee_id"))
+ .where(SF.col("age") > SF.lit(50))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_group_by_where_aggregate_like_having(self):
+ df_employee = (
+ self.df_spark_employee.groupBy(self.df_spark_employee.age)
+ .agg(F.min(self.df_spark_employee.employee_id).alias("min_employee_id"))
+ .where(F.col("min_employee_id") > F.lit(1))
+ )
+ dfs_employee = (
+ self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age)
+ .agg(SF.min(self.df_sqlglot_employee.employee_id).alias("min_employee_id"))
+ .where(SF.col("min_employee_id") > SF.lit(1))
+ )
+ self.compare_spark_with_sqlglot(df_employee, dfs_employee)
+
+ def test_count(self):
+ df = self.df_spark_employee.groupBy(self.df_spark_employee.age).count()
+ dfs = self.df_sqlglot_employee.groupBy(self.df_sqlglot_employee.age).count()
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_mean(self):
+ df = self.df_spark_employee.groupBy().mean("age", "store_id")
+ dfs = self.df_sqlglot_employee.groupBy().mean("age", "store_id")
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_avg(self):
+ df = self.df_spark_employee.groupBy("age").avg("store_id")
+ dfs = self.df_sqlglot_employee.groupBy("age").avg("store_id")
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_max(self):
+ df = self.df_spark_employee.groupBy("age").max("store_id")
+ dfs = self.df_sqlglot_employee.groupBy("age").max("store_id")
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_min(self):
+ df = self.df_spark_employee.groupBy("age").min("store_id")
+ dfs = self.df_sqlglot_employee.groupBy("age").min("store_id")
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_sum(self):
+ df = self.df_spark_employee.groupBy("age").sum("store_id")
+ dfs = self.df_sqlglot_employee.groupBy("age").sum("store_id")
+ self.compare_spark_with_sqlglot(df, dfs)
diff --git a/tests/dataframe/integration/test_session.py b/tests/dataframe/integration/test_session.py
new file mode 100644
index 0000000..ff1477b
--- /dev/null
+++ b/tests/dataframe/integration/test_session.py
@@ -0,0 +1,28 @@
+from pyspark.sql import functions as F
+
+from sqlglot.dataframe.sql import functions as SF
+from tests.dataframe.integration.dataframe_validator import DataFrameValidator
+
+
+class TestSessionFunc(DataFrameValidator):
+ def test_sql_simple_select(self):
+ query = "SELECT fname, lname FROM employee"
+ df = self.spark.sql(query)
+ dfs = self.sqlglot.sql(query)
+ self.compare_spark_with_sqlglot(df, dfs)
+
+ def test_sql_with_join(self):
+ query = """
+ SELECT
+ e.employee_id
+ , s.store_id
+ FROM
+ employee e
+ INNER JOIN
+ store s
+ ON
+ e.store_id = s.store_id
+ """
+ df = self.spark.sql(query).groupBy(F.col("store_id")).agg(F.countDistinct(F.col("employee_id")))
+ dfs = self.sqlglot.sql(query).groupBy(SF.col("store_id")).agg(SF.countDistinct(SF.col("employee_id")))
+ self.compare_spark_with_sqlglot(df, dfs, skip_schema_compare=True)