Edit on GitHub

sqlglot.helper

  1from __future__ import annotations
  2
  3import inspect
  4import logging
  5import re
  6import sys
  7import typing as t
  8from collections.abc import Collection
  9from contextlib import contextmanager
 10from copy import copy
 11from enum import Enum
 12from itertools import count
 13
 14if t.TYPE_CHECKING:
 15    from sqlglot import exp
 16    from sqlglot._typing import A, E, T
 17    from sqlglot.expressions import Expression
 18
 19
 20CAMEL_CASE_PATTERN = re.compile("(?<!^)(?=[A-Z])")
 21PYTHON_VERSION = sys.version_info[:2]
 22logger = logging.getLogger("sqlglot")
 23
 24
 25class AutoName(Enum):
 26    """
 27    This is used for creating Enum classes where `auto()` is the string form
 28    of the corresponding enum's identifier (e.g. FOO.value results in "FOO").
 29
 30    Reference: https://docs.python.org/3/howto/enum.html#using-automatic-values
 31    """
 32
 33    def _generate_next_value_(name, _start, _count, _last_values):
 34        return name
 35
 36
 37class classproperty(property):
 38    """
 39    Similar to a normal property but works for class methods
 40    """
 41
 42    def __get__(self, obj: t.Any, owner: t.Any = None) -> t.Any:
 43        return classmethod(self.fget).__get__(None, owner)()  # type: ignore
 44
 45
 46def seq_get(seq: t.Sequence[T], index: int) -> t.Optional[T]:
 47    """Returns the value in `seq` at position `index`, or `None` if `index` is out of bounds."""
 48    try:
 49        return seq[index]
 50    except IndexError:
 51        return None
 52
 53
 54@t.overload
 55def ensure_list(value: t.Collection[T]) -> t.List[T]:
 56    ...
 57
 58
 59@t.overload
 60def ensure_list(value: T) -> t.List[T]:
 61    ...
 62
 63
 64def ensure_list(value):
 65    """
 66    Ensures that a value is a list, otherwise casts or wraps it into one.
 67
 68    Args:
 69        value: The value of interest.
 70
 71    Returns:
 72        The value cast as a list if it's a list or a tuple, or else the value wrapped in a list.
 73    """
 74    if value is None:
 75        return []
 76    if isinstance(value, (list, tuple)):
 77        return list(value)
 78
 79    return [value]
 80
 81
 82@t.overload
 83def ensure_collection(value: t.Collection[T]) -> t.Collection[T]:
 84    ...
 85
 86
 87@t.overload
 88def ensure_collection(value: T) -> t.Collection[T]:
 89    ...
 90
 91
 92def ensure_collection(value):
 93    """
 94    Ensures that a value is a collection (excluding `str` and `bytes`), otherwise wraps it into a list.
 95
 96    Args:
 97        value: The value of interest.
 98
 99    Returns:
100        The value if it's a collection, or else the value wrapped in a list.
101    """
102    if value is None:
103        return []
104    return (
105        value if isinstance(value, Collection) and not isinstance(value, (str, bytes)) else [value]
106    )
107
108
109def csv(*args: str, sep: str = ", ") -> str:
110    """
111    Formats any number of string arguments as CSV.
112
113    Args:
114        args: The string arguments to format.
115        sep: The argument separator.
116
117    Returns:
118        The arguments formatted as a CSV string.
119    """
120    return sep.join(arg for arg in args if arg)
121
122
123def subclasses(
124    module_name: str,
125    classes: t.Type | t.Tuple[t.Type, ...],
126    exclude: t.Type | t.Tuple[t.Type, ...] = (),
127) -> t.List[t.Type]:
128    """
129    Returns all subclasses for a collection of classes, possibly excluding some of them.
130
131    Args:
132        module_name: The name of the module to search for subclasses in.
133        classes: Class(es) we want to find the subclasses of.
134        exclude: Class(es) we want to exclude from the returned list.
135
136    Returns:
137        The target subclasses.
138    """
139    return [
140        obj
141        for _, obj in inspect.getmembers(
142            sys.modules[module_name],
143            lambda obj: inspect.isclass(obj) and issubclass(obj, classes) and obj not in exclude,
144        )
145    ]
146
147
148def apply_index_offset(
149    this: exp.Expression,
150    expressions: t.List[E],
151    offset: int,
152) -> t.List[E]:
153    """
154    Applies an offset to a given integer literal expression.
155
156    Args:
157        this: The target of the index.
158        expressions: The expression the offset will be applied to, wrapped in a list.
159        offset: The offset that will be applied.
160
161    Returns:
162        The original expression with the offset applied to it, wrapped in a list. If the provided
163        `expressions` argument contains more than one expression, it's returned unaffected.
164    """
165    if not offset or len(expressions) != 1:
166        return expressions
167
168    expression = expressions[0]
169
170    from sqlglot import exp
171    from sqlglot.optimizer.annotate_types import annotate_types
172    from sqlglot.optimizer.simplify import simplify
173
174    if not this.type:
175        annotate_types(this)
176
177    if t.cast(exp.DataType, this.type).this not in (
178        exp.DataType.Type.UNKNOWN,
179        exp.DataType.Type.ARRAY,
180    ):
181        return expressions
182
183    if not expression.type:
184        annotate_types(expression)
185    if t.cast(exp.DataType, expression.type).this in exp.DataType.INTEGER_TYPES:
186        logger.warning("Applying array index offset (%s)", offset)
187        expression = simplify(
188            exp.Add(this=expression.copy(), expression=exp.Literal.number(offset))
189        )
190        return [expression]
191
192    return expressions
193
194
195def camel_to_snake_case(name: str) -> str:
196    """Converts `name` from camelCase to snake_case and returns the result."""
197    return CAMEL_CASE_PATTERN.sub("_", name).upper()
198
199
200def while_changing(expression: Expression, func: t.Callable[[Expression], E]) -> E:
201    """
202    Applies a transformation to a given expression until a fix point is reached.
203
204    Args:
205        expression: The expression to be transformed.
206        func: The transformation to be applied.
207
208    Returns:
209        The transformed expression.
210    """
211    while True:
212        for n, *_ in reversed(tuple(expression.walk())):
213            n._hash = hash(n)
214
215        start = hash(expression)
216        expression = func(expression)
217
218        for n, *_ in expression.walk():
219            n._hash = None
220        if start == hash(expression):
221            break
222
223    return expression
224
225
226def tsort(dag: t.Dict[T, t.Set[T]]) -> t.List[T]:
227    """
228    Sorts a given directed acyclic graph in topological order.
229
230    Args:
231        dag: The graph to be sorted.
232
233    Returns:
234        A list that contains all of the graph's nodes in topological order.
235    """
236    result = []
237
238    for node, deps in tuple(dag.items()):
239        for dep in deps:
240            if not dep in dag:
241                dag[dep] = set()
242
243    while dag:
244        current = {node for node, deps in dag.items() if not deps}
245
246        if not current:
247            raise ValueError("Cycle error")
248
249        for node in current:
250            dag.pop(node)
251
252        for deps in dag.values():
253            deps -= current
254
255        result.extend(sorted(current))  # type: ignore
256
257    return result
258
259
260def open_file(file_name: str) -> t.TextIO:
261    """Open a file that may be compressed as gzip and return it in universal newline mode."""
262    with open(file_name, "rb") as f:
263        gzipped = f.read(2) == b"\x1f\x8b"
264
265    if gzipped:
266        import gzip
267
268        return gzip.open(file_name, "rt", newline="")
269
270    return open(file_name, encoding="utf-8", newline="")
271
272
273@contextmanager
274def csv_reader(read_csv: exp.ReadCSV) -> t.Any:
275    """
276    Returns a csv reader given the expression `READ_CSV(name, ['delimiter', '|', ...])`.
277
278    Args:
279        read_csv: A `ReadCSV` function call.
280
281    Yields:
282        A python csv reader.
283    """
284    args = read_csv.expressions
285    file = open_file(read_csv.name)
286
287    delimiter = ","
288    args = iter(arg.name for arg in args)
289    for k, v in zip(args, args):
290        if k == "delimiter":
291            delimiter = v
292
293    try:
294        import csv as csv_
295
296        yield csv_.reader(file, delimiter=delimiter)
297    finally:
298        file.close()
299
300
301def find_new_name(taken: t.Collection[str], base: str) -> str:
302    """
303    Searches for a new name.
304
305    Args:
306        taken: A collection of taken names.
307        base: Base name to alter.
308
309    Returns:
310        The new, available name.
311    """
312    if base not in taken:
313        return base
314
315    i = 2
316    new = f"{base}_{i}"
317    while new in taken:
318        i += 1
319        new = f"{base}_{i}"
320
321    return new
322
323
324def name_sequence(prefix: str) -> t.Callable[[], str]:
325    """Returns a name generator given a prefix (e.g. a0, a1, a2, ... if the prefix is "a")."""
326    sequence = count()
327    return lambda: f"{prefix}{next(sequence)}"
328
329
330def object_to_dict(obj: t.Any, **kwargs) -> t.Dict:
331    """Returns a dictionary created from an object's attributes."""
332    return {
333        **{k: v.copy() if hasattr(v, "copy") else copy(v) for k, v in vars(obj).items()},
334        **kwargs,
335    }
336
337
338def split_num_words(
339    value: str, sep: str, min_num_words: int, fill_from_start: bool = True
340) -> t.List[t.Optional[str]]:
341    """
342    Perform a split on a value and return N words as a result with `None` used for words that don't exist.
343
344    Args:
345        value: The value to be split.
346        sep: The value to use to split on.
347        min_num_words: The minimum number of words that are going to be in the result.
348        fill_from_start: Indicates that if `None` values should be inserted at the start or end of the list.
349
350    Examples:
351        >>> split_num_words("db.table", ".", 3)
352        [None, 'db', 'table']
353        >>> split_num_words("db.table", ".", 3, fill_from_start=False)
354        ['db', 'table', None]
355        >>> split_num_words("db.table", ".", 1)
356        ['db', 'table']
357
358    Returns:
359        The list of words returned by `split`, possibly augmented by a number of `None` values.
360    """
361    words = value.split(sep)
362    if fill_from_start:
363        return [None] * (min_num_words - len(words)) + words
364    return words + [None] * (min_num_words - len(words))
365
366
367def is_iterable(value: t.Any) -> bool:
368    """
369    Checks if the value is an iterable, excluding the types `str` and `bytes`.
370
371    Examples:
372        >>> is_iterable([1,2])
373        True
374        >>> is_iterable("test")
375        False
376
377    Args:
378        value: The value to check if it is an iterable.
379
380    Returns:
381        A `bool` value indicating if it is an iterable.
382    """
383    from sqlglot import Expression
384
385    return hasattr(value, "__iter__") and not isinstance(value, (str, bytes, Expression))
386
387
388def flatten(values: t.Iterable[t.Iterable[t.Any] | t.Any]) -> t.Iterator[t.Any]:
389    """
390    Flattens an iterable that can contain both iterable and non-iterable elements. Objects of
391    type `str` and `bytes` are not regarded as iterables.
392
393    Examples:
394        >>> list(flatten([[1, 2], 3, {4}, (5, "bla")]))
395        [1, 2, 3, 4, 5, 'bla']
396        >>> list(flatten([1, 2, 3]))
397        [1, 2, 3]
398
399    Args:
400        values: The value to be flattened.
401
402    Yields:
403        Non-iterable elements in `values`.
404    """
405    for value in values:
406        if is_iterable(value):
407            yield from flatten(value)
408        else:
409            yield value
410
411
412def dict_depth(d: t.Dict) -> int:
413    """
414    Get the nesting depth of a dictionary.
415
416    Example:
417        >>> dict_depth(None)
418        0
419        >>> dict_depth({})
420        1
421        >>> dict_depth({"a": "b"})
422        1
423        >>> dict_depth({"a": {}})
424        2
425        >>> dict_depth({"a": {"b": {}}})
426        3
427    """
428    try:
429        return 1 + dict_depth(next(iter(d.values())))
430    except AttributeError:
431        # d doesn't have attribute "values"
432        return 0
433    except StopIteration:
434        # d.values() returns an empty sequence
435        return 1
436
437
438def first(it: t.Iterable[T]) -> T:
439    """Returns the first element from an iterable (useful for sets)."""
440    return next(i for i in it)
441
442
443def merge_ranges(ranges: t.List[t.Tuple[A, A]]) -> t.List[t.Tuple[A, A]]:
444    if not ranges:
445        return []
446
447    ranges = sorted(ranges)
448
449    merged = [ranges[0]]
450
451    for start, end in ranges[1:]:
452        last_start, last_end = merged[-1]
453
454        if start <= last_end:
455            merged[-1] = (last_start, max(last_end, end))
456        else:
457            merged.append((start, end))
458
459    return merged
CAMEL_CASE_PATTERN = re.compile('(?<!^)(?=[A-Z])')
PYTHON_VERSION = (3, 10)
logger = <Logger sqlglot (WARNING)>
class AutoName(enum.Enum):
26class AutoName(Enum):
27    """
28    This is used for creating Enum classes where `auto()` is the string form
29    of the corresponding enum's identifier (e.g. FOO.value results in "FOO").
30
31    Reference: https://docs.python.org/3/howto/enum.html#using-automatic-values
32    """
33
34    def _generate_next_value_(name, _start, _count, _last_values):
35        return name

This is used for creating Enum classes where auto() is the string form of the corresponding enum's identifier (e.g. FOO.value results in "FOO").

Reference: https://docs.python.org/3/howto/enum.html#using-automatic-values

Inherited Members
enum.Enum
name
value
class classproperty(builtins.property):
38class classproperty(property):
39    """
40    Similar to a normal property but works for class methods
41    """
42
43    def __get__(self, obj: t.Any, owner: t.Any = None) -> t.Any:
44        return classmethod(self.fget).__get__(None, owner)()  # type: ignore

Similar to a normal property but works for class methods

Inherited Members
builtins.property
property
getter
setter
deleter
fget
fset
fdel
def seq_get(seq: Sequence[~T], index: int) -> Optional[~T]:
47def seq_get(seq: t.Sequence[T], index: int) -> t.Optional[T]:
48    """Returns the value in `seq` at position `index`, or `None` if `index` is out of bounds."""
49    try:
50        return seq[index]
51    except IndexError:
52        return None

Returns the value in seq at position index, or None if index is out of bounds.

def ensure_list(value):
65def ensure_list(value):
66    """
67    Ensures that a value is a list, otherwise casts or wraps it into one.
68
69    Args:
70        value: The value of interest.
71
72    Returns:
73        The value cast as a list if it's a list or a tuple, or else the value wrapped in a list.
74    """
75    if value is None:
76        return []
77    if isinstance(value, (list, tuple)):
78        return list(value)
79
80    return [value]

Ensures that a value is a list, otherwise casts or wraps it into one.

Arguments:
  • value: The value of interest.
Returns:

The value cast as a list if it's a list or a tuple, or else the value wrapped in a list.

def ensure_collection(value):
 93def ensure_collection(value):
 94    """
 95    Ensures that a value is a collection (excluding `str` and `bytes`), otherwise wraps it into a list.
 96
 97    Args:
 98        value: The value of interest.
 99
100    Returns:
101        The value if it's a collection, or else the value wrapped in a list.
102    """
103    if value is None:
104        return []
105    return (
106        value if isinstance(value, Collection) and not isinstance(value, (str, bytes)) else [value]
107    )

Ensures that a value is a collection (excluding str and bytes), otherwise wraps it into a list.

Arguments:
  • value: The value of interest.
Returns:

The value if it's a collection, or else the value wrapped in a list.

def csv(*args: str, sep: str = ', ') -> str:
110def csv(*args: str, sep: str = ", ") -> str:
111    """
112    Formats any number of string arguments as CSV.
113
114    Args:
115        args: The string arguments to format.
116        sep: The argument separator.
117
118    Returns:
119        The arguments formatted as a CSV string.
120    """
121    return sep.join(arg for arg in args if arg)

Formats any number of string arguments as CSV.

Arguments:
  • args: The string arguments to format.
  • sep: The argument separator.
Returns:

The arguments formatted as a CSV string.

def subclasses( module_name: str, classes: Union[Type, Tuple[Type, ...]], exclude: Union[Type, Tuple[Type, ...]] = ()) -> List[Type]:
124def subclasses(
125    module_name: str,
126    classes: t.Type | t.Tuple[t.Type, ...],
127    exclude: t.Type | t.Tuple[t.Type, ...] = (),
128) -> t.List[t.Type]:
129    """
130    Returns all subclasses for a collection of classes, possibly excluding some of them.
131
132    Args:
133        module_name: The name of the module to search for subclasses in.
134        classes: Class(es) we want to find the subclasses of.
135        exclude: Class(es) we want to exclude from the returned list.
136
137    Returns:
138        The target subclasses.
139    """
140    return [
141        obj
142        for _, obj in inspect.getmembers(
143            sys.modules[module_name],
144            lambda obj: inspect.isclass(obj) and issubclass(obj, classes) and obj not in exclude,
145        )
146    ]

Returns all subclasses for a collection of classes, possibly excluding some of them.

Arguments:
  • module_name: The name of the module to search for subclasses in.
  • classes: Class(es) we want to find the subclasses of.
  • exclude: Class(es) we want to exclude from the returned list.
Returns:

The target subclasses.

def apply_index_offset( this: sqlglot.expressions.Expression, expressions: List[~E], offset: int) -> List[~E]:
149def apply_index_offset(
150    this: exp.Expression,
151    expressions: t.List[E],
152    offset: int,
153) -> t.List[E]:
154    """
155    Applies an offset to a given integer literal expression.
156
157    Args:
158        this: The target of the index.
159        expressions: The expression the offset will be applied to, wrapped in a list.
160        offset: The offset that will be applied.
161
162    Returns:
163        The original expression with the offset applied to it, wrapped in a list. If the provided
164        `expressions` argument contains more than one expression, it's returned unaffected.
165    """
166    if not offset or len(expressions) != 1:
167        return expressions
168
169    expression = expressions[0]
170
171    from sqlglot import exp
172    from sqlglot.optimizer.annotate_types import annotate_types
173    from sqlglot.optimizer.simplify import simplify
174
175    if not this.type:
176        annotate_types(this)
177
178    if t.cast(exp.DataType, this.type).this not in (
179        exp.DataType.Type.UNKNOWN,
180        exp.DataType.Type.ARRAY,
181    ):
182        return expressions
183
184    if not expression.type:
185        annotate_types(expression)
186    if t.cast(exp.DataType, expression.type).this in exp.DataType.INTEGER_TYPES:
187        logger.warning("Applying array index offset (%s)", offset)
188        expression = simplify(
189            exp.Add(this=expression.copy(), expression=exp.Literal.number(offset))
190        )
191        return [expression]
192
193    return expressions

Applies an offset to a given integer literal expression.

Arguments:
  • this: The target of the index.
  • expressions: The expression the offset will be applied to, wrapped in a list.
  • offset: The offset that will be applied.
Returns:

The original expression with the offset applied to it, wrapped in a list. If the provided expressions argument contains more than one expression, it's returned unaffected.

def camel_to_snake_case(name: str) -> str:
196def camel_to_snake_case(name: str) -> str:
197    """Converts `name` from camelCase to snake_case and returns the result."""
198    return CAMEL_CASE_PATTERN.sub("_", name).upper()

Converts name from camelCase to snake_case and returns the result.

def while_changing( expression: sqlglot.expressions.Expression, func: Callable[[sqlglot.expressions.Expression], ~E]) -> ~E:
201def while_changing(expression: Expression, func: t.Callable[[Expression], E]) -> E:
202    """
203    Applies a transformation to a given expression until a fix point is reached.
204
205    Args:
206        expression: The expression to be transformed.
207        func: The transformation to be applied.
208
209    Returns:
210        The transformed expression.
211    """
212    while True:
213        for n, *_ in reversed(tuple(expression.walk())):
214            n._hash = hash(n)
215
216        start = hash(expression)
217        expression = func(expression)
218
219        for n, *_ in expression.walk():
220            n._hash = None
221        if start == hash(expression):
222            break
223
224    return expression

Applies a transformation to a given expression until a fix point is reached.

Arguments:
  • expression: The expression to be transformed.
  • func: The transformation to be applied.
Returns:

The transformed expression.

def tsort(dag: Dict[~T, Set[~T]]) -> List[~T]:
227def tsort(dag: t.Dict[T, t.Set[T]]) -> t.List[T]:
228    """
229    Sorts a given directed acyclic graph in topological order.
230
231    Args:
232        dag: The graph to be sorted.
233
234    Returns:
235        A list that contains all of the graph's nodes in topological order.
236    """
237    result = []
238
239    for node, deps in tuple(dag.items()):
240        for dep in deps:
241            if not dep in dag:
242                dag[dep] = set()
243
244    while dag:
245        current = {node for node, deps in dag.items() if not deps}
246
247        if not current:
248            raise ValueError("Cycle error")
249
250        for node in current:
251            dag.pop(node)
252
253        for deps in dag.values():
254            deps -= current
255
256        result.extend(sorted(current))  # type: ignore
257
258    return result

Sorts a given directed acyclic graph in topological order.

Arguments:
  • dag: The graph to be sorted.
Returns:

A list that contains all of the graph's nodes in topological order.

def open_file(file_name: str) -> <class 'TextIO'>:
261def open_file(file_name: str) -> t.TextIO:
262    """Open a file that may be compressed as gzip and return it in universal newline mode."""
263    with open(file_name, "rb") as f:
264        gzipped = f.read(2) == b"\x1f\x8b"
265
266    if gzipped:
267        import gzip
268
269        return gzip.open(file_name, "rt", newline="")
270
271    return open(file_name, encoding="utf-8", newline="")

Open a file that may be compressed as gzip and return it in universal newline mode.

@contextmanager
def csv_reader(read_csv: sqlglot.expressions.ReadCSV) -> Any:
274@contextmanager
275def csv_reader(read_csv: exp.ReadCSV) -> t.Any:
276    """
277    Returns a csv reader given the expression `READ_CSV(name, ['delimiter', '|', ...])`.
278
279    Args:
280        read_csv: A `ReadCSV` function call.
281
282    Yields:
283        A python csv reader.
284    """
285    args = read_csv.expressions
286    file = open_file(read_csv.name)
287
288    delimiter = ","
289    args = iter(arg.name for arg in args)
290    for k, v in zip(args, args):
291        if k == "delimiter":
292            delimiter = v
293
294    try:
295        import csv as csv_
296
297        yield csv_.reader(file, delimiter=delimiter)
298    finally:
299        file.close()

Returns a csv reader given the expression READ_CSV(name, ['delimiter', '|', ...]).

Arguments:
  • read_csv: A ReadCSV function call.
Yields:

A python csv reader.

def find_new_name(taken: Collection[str], base: str) -> str:
302def find_new_name(taken: t.Collection[str], base: str) -> str:
303    """
304    Searches for a new name.
305
306    Args:
307        taken: A collection of taken names.
308        base: Base name to alter.
309
310    Returns:
311        The new, available name.
312    """
313    if base not in taken:
314        return base
315
316    i = 2
317    new = f"{base}_{i}"
318    while new in taken:
319        i += 1
320        new = f"{base}_{i}"
321
322    return new

Searches for a new name.

Arguments:
  • taken: A collection of taken names.
  • base: Base name to alter.
Returns:

The new, available name.

def name_sequence(prefix: str) -> Callable[[], str]:
325def name_sequence(prefix: str) -> t.Callable[[], str]:
326    """Returns a name generator given a prefix (e.g. a0, a1, a2, ... if the prefix is "a")."""
327    sequence = count()
328    return lambda: f"{prefix}{next(sequence)}"

Returns a name generator given a prefix (e.g. a0, a1, a2, ... if the prefix is "a").

def object_to_dict(obj: Any, **kwargs) -> Dict:
331def object_to_dict(obj: t.Any, **kwargs) -> t.Dict:
332    """Returns a dictionary created from an object's attributes."""
333    return {
334        **{k: v.copy() if hasattr(v, "copy") else copy(v) for k, v in vars(obj).items()},
335        **kwargs,
336    }

Returns a dictionary created from an object's attributes.

def split_num_words( value: str, sep: str, min_num_words: int, fill_from_start: bool = True) -> List[Optional[str]]:
339def split_num_words(
340    value: str, sep: str, min_num_words: int, fill_from_start: bool = True
341) -> t.List[t.Optional[str]]:
342    """
343    Perform a split on a value and return N words as a result with `None` used for words that don't exist.
344
345    Args:
346        value: The value to be split.
347        sep: The value to use to split on.
348        min_num_words: The minimum number of words that are going to be in the result.
349        fill_from_start: Indicates that if `None` values should be inserted at the start or end of the list.
350
351    Examples:
352        >>> split_num_words("db.table", ".", 3)
353        [None, 'db', 'table']
354        >>> split_num_words("db.table", ".", 3, fill_from_start=False)
355        ['db', 'table', None]
356        >>> split_num_words("db.table", ".", 1)
357        ['db', 'table']
358
359    Returns:
360        The list of words returned by `split`, possibly augmented by a number of `None` values.
361    """
362    words = value.split(sep)
363    if fill_from_start:
364        return [None] * (min_num_words - len(words)) + words
365    return words + [None] * (min_num_words - len(words))

Perform a split on a value and return N words as a result with None used for words that don't exist.

Arguments:
  • value: The value to be split.
  • sep: The value to use to split on.
  • min_num_words: The minimum number of words that are going to be in the result.
  • fill_from_start: Indicates that if None values should be inserted at the start or end of the list.
Examples:
>>> split_num_words("db.table", ".", 3)
[None, 'db', 'table']
>>> split_num_words("db.table", ".", 3, fill_from_start=False)
['db', 'table', None]
>>> split_num_words("db.table", ".", 1)
['db', 'table']
Returns:

The list of words returned by split, possibly augmented by a number of None values.

def is_iterable(value: Any) -> bool:
368def is_iterable(value: t.Any) -> bool:
369    """
370    Checks if the value is an iterable, excluding the types `str` and `bytes`.
371
372    Examples:
373        >>> is_iterable([1,2])
374        True
375        >>> is_iterable("test")
376        False
377
378    Args:
379        value: The value to check if it is an iterable.
380
381    Returns:
382        A `bool` value indicating if it is an iterable.
383    """
384    from sqlglot import Expression
385
386    return hasattr(value, "__iter__") and not isinstance(value, (str, bytes, Expression))

Checks if the value is an iterable, excluding the types str and bytes.

Examples:
>>> is_iterable([1,2])
True
>>> is_iterable("test")
False
Arguments:
  • value: The value to check if it is an iterable.
Returns:

A bool value indicating if it is an iterable.

def flatten(values: Iterable[Union[Iterable[Any], Any]]) -> Iterator[Any]:
389def flatten(values: t.Iterable[t.Iterable[t.Any] | t.Any]) -> t.Iterator[t.Any]:
390    """
391    Flattens an iterable that can contain both iterable and non-iterable elements. Objects of
392    type `str` and `bytes` are not regarded as iterables.
393
394    Examples:
395        >>> list(flatten([[1, 2], 3, {4}, (5, "bla")]))
396        [1, 2, 3, 4, 5, 'bla']
397        >>> list(flatten([1, 2, 3]))
398        [1, 2, 3]
399
400    Args:
401        values: The value to be flattened.
402
403    Yields:
404        Non-iterable elements in `values`.
405    """
406    for value in values:
407        if is_iterable(value):
408            yield from flatten(value)
409        else:
410            yield value

Flattens an iterable that can contain both iterable and non-iterable elements. Objects of type str and bytes are not regarded as iterables.

Examples:
>>> list(flatten([[1, 2], 3, {4}, (5, "bla")]))
[1, 2, 3, 4, 5, 'bla']
>>> list(flatten([1, 2, 3]))
[1, 2, 3]
Arguments:
  • values: The value to be flattened.
Yields:

Non-iterable elements in values.

def dict_depth(d: Dict) -> int:
413def dict_depth(d: t.Dict) -> int:
414    """
415    Get the nesting depth of a dictionary.
416
417    Example:
418        >>> dict_depth(None)
419        0
420        >>> dict_depth({})
421        1
422        >>> dict_depth({"a": "b"})
423        1
424        >>> dict_depth({"a": {}})
425        2
426        >>> dict_depth({"a": {"b": {}}})
427        3
428    """
429    try:
430        return 1 + dict_depth(next(iter(d.values())))
431    except AttributeError:
432        # d doesn't have attribute "values"
433        return 0
434    except StopIteration:
435        # d.values() returns an empty sequence
436        return 1

Get the nesting depth of a dictionary.

Example:
>>> dict_depth(None)
0
>>> dict_depth({})
1
>>> dict_depth({"a": "b"})
1
>>> dict_depth({"a": {}})
2
>>> dict_depth({"a": {"b": {}}})
3
def first(it: Iterable[~T]) -> ~T:
439def first(it: t.Iterable[T]) -> T:
440    """Returns the first element from an iterable (useful for sets)."""
441    return next(i for i in it)

Returns the first element from an iterable (useful for sets).

def merge_ranges(ranges: List[Tuple[~A, ~A]]) -> List[Tuple[~A, ~A]]:
444def merge_ranges(ranges: t.List[t.Tuple[A, A]]) -> t.List[t.Tuple[A, A]]:
445    if not ranges:
446        return []
447
448    ranges = sorted(ranges)
449
450    merged = [ranges[0]]
451
452    for start, end in ranges[1:]:
453        last_start, last_end = merged[-1]
454
455        if start <= last_end:
456            merged[-1] = (last_start, max(last_end, end))
457        else:
458            merged.append((start, end))
459
460    return merged