1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
# SQLGlot
SQLGlot is a no dependency Python SQL parser, transpiler, and optimizer. It can be used to format SQL or translate between different dialects like [DuckDB](https://duckdb.org/), [Presto](https://prestodb.io/), [Spark](https://spark.apache.org/), [Snowflake](https://www.snowflake.com/en/), and [BigQuery](https://cloud.google.com/bigquery/). It aims to read a wide variety of SQL inputs and output syntactically correct SQL in the targeted dialects.
It is a very comprehensive generic SQL parser with a robust [test suite](tests). It is also quite [performant](#benchmarks) while being written purely in Python.
You can easily [customize](#custom-dialects) the parser, [analyze](#metadata) queries, traverse expression trees, and programmatically [build](#build-and-modify-sql) SQL.
Syntax [errors](#parser-errors) are highlighted and dialect incompatibilities can warn or raise depending on configurations.
## Install
From PyPI
```
pip3 install sqlglot
```
Or with a local checkout
```
pip3 install -e .
```
## Examples
Easily translate from one dialect to another. For example, date/time functions vary from dialects and can be hard to deal with.
```python
import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read='duckdb', write='hive')
```
```sql
SELECT FROM_UNIXTIME(1618088028295 / 1000)
```
SQLGlot can even translate custom time formats.
```python
import sqlglot
sqlglot.transpile("SELECT STRFTIME(x, '%y-%-m-%S')", read='duckdb', write='hive')
```
```sql
SELECT DATE_FORMAT(x, 'yy-M-ss')"
```
## Formatting and Transpiling
Read in a SQL statement with a CTE and CASTING to a REAL and then transpiling to Spark.
Spark uses backticks as identifiers and the REAL type is transpiled to FLOAT.
```python
import sqlglot
sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
sqlglot.transpile(sql, write='spark', identify=True, pretty=True)[0]
```
```sql
WITH `baz` AS (
SELECT
`a`,
`c`
FROM `foo`
WHERE
`a` = 1
)
SELECT
`f`.`a`,
`b`.`b`,
`baz`.`c`,
CAST(`b`.`a` AS FLOAT) AS `d`
FROM `foo` AS `f`
JOIN `bar` AS `b`
ON `f`.`a` = `b`.`a`
LEFT JOIN `baz`
ON `f`.`a` = `baz`.`a`
```
## Metadata
You can explore SQL with expression helpers to do things like find columns and tables.
```python
from sqlglot import parse_one, exp
# print all column references (a and b)
for column in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Column):
print(column.alias_or_name)
# find all projections in select statements (a and c)
for select in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Select):
for projection in select.expressions:
print(projection.alias_or_name)
# find all tables (x, y, z)
for table in parse_one("SELECT * FROM x JOIN y JOIN z").find_all(exp.Table):
print(table.name)
```
## Parser Errors
A syntax error will result in a parser error.
```python
transpile("SELECT foo( FROM bar")
```
sqlglot.errors.ParseError: Expecting ). Line 1, Col: 13.
select foo( __FROM__ bar
## Unsupported Errors
Presto APPROX_DISTINCT supports the accuracy argument which is not supported in Spark.
```python
transpile(
'SELECT APPROX_DISTINCT(a, 0.1) FROM foo',
read='presto',
write='spark',
)
```
```sql
WARNING:root:APPROX_COUNT_DISTINCT does not support accuracy
SELECT APPROX_COUNT_DISTINCT(a) FROM foo
```
## Build and Modify SQL
SQLGlot supports incrementally building sql expressions.
```python
from sqlglot import select, condition
where = condition("x=1").and_("y=1")
select("*").from_("y").where(where).sql()
```
Which outputs:
```sql
SELECT * FROM y WHERE x = 1 AND y = 1
```
You can also modify a parsed tree:
```python
from sqlglot import parse_one
parse_one("SELECT x FROM y").from_("z").sql()
```
Which outputs:
```sql
SELECT x FROM y, z
```
There is also a way to recursively transform the parsed tree by applying a mapping function to each tree node:
```python
from sqlglot import exp, parse_one
expression_tree = parse_one("SELECT a FROM x")
def transformer(node):
if isinstance(node, exp.Column) and node.name == "a":
return parse_one("FUN(a)")
return node
transformed_tree = expression_tree.transform(transformer)
transformed_tree.sql()
```
Which outputs:
```sql
SELECT FUN(a) FROM x
```
## SQL Optimizer
SQLGlot can rewrite queries into an "optimized" form. It performs a variety of [techniques](sqlglot/optimizer/optimizer.py) to create a new canonical AST. This AST can be used to standardize queries or provide the foundations for implementing an actual engine.
```python
import sqlglot
from sqlglot.optimizer import optimize
>>>
optimize(
sqlglot.parse_one("""
SELECT A OR (B OR (C AND D))
FROM x
WHERE Z = date '2021-01-01' + INTERVAL '1' month OR 1 = 0
"""),
schema={"x": {"A": "INT", "B": "INT", "C": "INT", "D": "INT", "Z": "STRING"}}
).sql(pretty=True)
"""
SELECT
(
"x"."A"
OR "x"."B"
OR "x"."C"
)
AND (
"x"."A"
OR "x"."B"
OR "x"."D"
) AS "_col_0"
FROM "x" AS "x"
WHERE
"x"."Z" = CAST('2021-02-01' AS DATE)
"""
```
## SQL Annotations
SQLGlot supports annotations in the sql expression. This is an experimental feature that is not part of any of the SQL standards but it can be useful when needing to annotate what a selected field is supposed to be. Below is an example:
```sql
SELECT
user #primary_key,
country
FROM users
```
SQL annotations are currently incompatible with MySQL, which uses the `#` character to introduce comments.
## AST Introspection
You can see the AST version of the sql by calling repr.
```python
from sqlglot import parse_one
repr(parse_one("SELECT a + 1 AS z"))
(SELECT expressions:
(ALIAS this:
(ADD this:
(COLUMN this:
(IDENTIFIER this: a, quoted: False)), expression:
(LITERAL this: 1, is_string: False)), alias:
(IDENTIFIER this: z, quoted: False)))
```
## AST Diff
SQLGlot can calculate the difference between two expressions and output changes in a form of a sequence of actions needed to transform a source expression into a target one.
```python
from sqlglot import diff, parse_one
diff(parse_one("SELECT a + b, c, d"), parse_one("SELECT c, a - b, d"))
[
Remove(expression=(ADD this:
(COLUMN this:
(IDENTIFIER this: a, quoted: False)), expression:
(COLUMN this:
(IDENTIFIER this: b, quoted: False)))),
Insert(expression=(SUB this:
(COLUMN this:
(IDENTIFIER this: a, quoted: False)), expression:
(COLUMN this:
(IDENTIFIER this: b, quoted: False)))),
Move(expression=(COLUMN this:
(IDENTIFIER this: c, quoted: False))),
Keep(source=(IDENTIFIER this: b, quoted: False), target=(IDENTIFIER this: b, quoted: False)),
...
]
```
## Custom Dialects
[Dialects](sqlglot/dialects) can be added by subclassing Dialect.
```python
from sqlglot import exp
from sqlglot.dialects.dialect import Dialect
from sqlglot.generator import Generator
from sqlglot.tokens import Tokenizer, TokenType
class Custom(Dialect):
class Tokenizer(Tokenizer):
QUOTES = ["'", '"']
IDENTIFIERS = ["`"]
KEYWORDS = {
**Tokenizer.KEYWORDS,
"INT64": TokenType.BIGINT,
"FLOAT64": TokenType.DOUBLE,
}
class Generator(Generator):
TRANSFORMS = {exp.Array: lambda self, e: f"[{self.expressions(e)}]"}
TYPE_MAPPING = {
exp.DataType.Type.TINYINT: "INT64",
exp.DataType.Type.SMALLINT: "INT64",
exp.DataType.Type.INT: "INT64",
exp.DataType.Type.BIGINT: "INT64",
exp.DataType.Type.DECIMAL: "NUMERIC",
exp.DataType.Type.FLOAT: "FLOAT64",
exp.DataType.Type.DOUBLE: "FLOAT64",
exp.DataType.Type.BOOLEAN: "BOOL",
exp.DataType.Type.TEXT: "STRING",
}
Dialect["custom"]
```
## Benchmarks
[Benchmarks](benchmarks) run on Python 3.10.5 in seconds.
| Query | sqlglot | sqltree | sqlparse | moz_sql_parser | sqloxide |
| --------------- | --------------- | --------------- | --------------- | --------------- | --------------- |
| tpch | 0.01178 (1.0) | 0.01173 (0.995) | 0.04676 (3.966) | 0.06800 (5.768) | 0.00094 (0.080) |
| short | 0.00084 (1.0) | 0.00079 (0.948) | 0.00296 (3.524) | 0.00443 (5.266) | 0.00006 (0.072) |
| long | 0.01102 (1.0) | 0.01044 (0.947) | 0.04349 (3.945) | 0.05998 (5.440) | 0.00084 (0.077) |
| crazy | 0.03751 (1.0) | 0.03471 (0.925) | 11.0796 (295.3) | 1.03355 (27.55) | 0.00529 (0.141) |
## Run Tests and Lint
```
pip install -r dev-requirements.txt
# set `SKIP_INTEGRATION=1` to skip integration tests
./run_checks.sh
```
## Optional Dependencies
SQLGlot uses [dateutil](https://github.com/dateutil/dateutil) to simplify literal timedelta expressions. The optimizer will not simplify expressions like
```sql
x + interval '1' month
```
if the module cannot be found.
|