1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
![SQLGlot logo](sqlglot.svg)
SQLGlot is a no-dependency SQL parser, transpiler, optimizer, and engine. It can be used to format SQL or translate between [20 different dialects](https://github.com/tobymao/sqlglot/blob/main/sqlglot/dialects/__init__.py) like [DuckDB](https://duckdb.org/), [Presto](https://prestodb.io/) / [Trino](https://trino.io/), [Spark](https://spark.apache.org/) / [Databricks](https://www.databricks.com/), [Snowflake](https://www.snowflake.com/en/), and [BigQuery](https://cloud.google.com/bigquery/). It aims to read a wide variety of SQL inputs and output syntactically and semantically correct SQL in the targeted dialects.
It is a very comprehensive generic SQL parser with a robust [test suite](https://github.com/tobymao/sqlglot/blob/main/tests/). It is also quite [performant](#benchmarks), while being written purely in Python.
You can easily [customize](#custom-dialects) the parser, [analyze](#metadata) queries, traverse expression trees, and programmatically [build](#build-and-modify-sql) SQL.
Syntax [errors](#parser-errors) are highlighted and dialect incompatibilities can warn or raise depending on configurations. However, it should be noted that SQL validation is not SQLGlot’s goal, so some syntax errors may go unnoticed.
Learn more about the SQLGlot API in the [documentation](https://sqlglot.com/).
Contributions are very welcome in SQLGlot; read the [contribution guide](https://github.com/tobymao/sqlglot/blob/main/CONTRIBUTING.md) to get started!
## Table of Contents
* [Install](#install)
* [Versioning](#versioning)
* [Get in Touch](#get-in-touch)
* [Examples](#examples)
* [Formatting and Transpiling](#formatting-and-transpiling)
* [Metadata](#metadata)
* [Parser Errors](#parser-errors)
* [Unsupported Errors](#unsupported-errors)
* [Build and Modify SQL](#build-and-modify-sql)
* [SQL Optimizer](#sql-optimizer)
* [AST Introspection](#ast-introspection)
* [AST Diff](#ast-diff)
* [Custom Dialects](#custom-dialects)
* [SQL Execution](#sql-execution)
* [Used By](#used-by)
* [Documentation](#documentation)
* [Run Tests and Lint](#run-tests-and-lint)
* [Benchmarks](#benchmarks)
* [Optional Dependencies](#optional-dependencies)
## Install
From PyPI:
```
pip3 install sqlglot
```
Or with a local checkout:
```
make install
```
Requirements for development (optional):
```
make install-dev
```
## Versioning
Given a version number `MAJOR`.`MINOR`.`PATCH`, SQLGlot uses the following versioning strategy:
- The `PATCH` version is incremented when there are backwards-compatible fixes or feature additions.
- The `MINOR` version is incremented when there are backwards-incompatible fixes or feature additions.
- The `MAJOR` version is incremented when there are significant backwards-incompatible fixes or feature additions.
## Get in Touch
We'd love to hear from you. Join our community [Slack channel](https://tobikodata.com/slack)!
## Examples
### Formatting and Transpiling
Easily translate from one dialect to another. For example, date/time functions vary between dialects and can be hard to deal with:
```python
import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read="duckdb", write="hive")[0]
```
```sql
'SELECT FROM_UNIXTIME(1618088028295 / 1000)'
```
SQLGlot can even translate custom time formats:
```python
import sqlglot
sqlglot.transpile("SELECT STRFTIME(x, '%y-%-m-%S')", read="duckdb", write="hive")[0]
```
```sql
"SELECT DATE_FORMAT(x, 'yy-M-ss')"
```
As another example, let's suppose that we want to read in a SQL query that contains a CTE and a cast to `REAL`, and then transpile it to Spark, which uses backticks for identifiers and `FLOAT` instead of `REAL`:
```python
import sqlglot
sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
print(sqlglot.transpile(sql, write="spark", identify=True, pretty=True)[0])
```
```sql
WITH `baz` AS (
SELECT
`a`,
`c`
FROM `foo`
WHERE
`a` = 1
)
SELECT
`f`.`a`,
`b`.`b`,
`baz`.`c`,
CAST(`b`.`a` AS FLOAT) AS `d`
FROM `foo` AS `f`
JOIN `bar` AS `b`
ON `f`.`a` = `b`.`a`
LEFT JOIN `baz`
ON `f`.`a` = `baz`.`a`
```
Comments are also preserved on a best-effort basis when transpiling SQL code:
```python
sql = """
/* multi
line
comment
*/
SELECT
tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
CAST(x AS INT), # comment 3
y -- comment 4
FROM
bar /* comment 5 */,
tbl # comment 6
"""
print(sqlglot.transpile(sql, read='mysql', pretty=True)[0])
```
```sql
/* multi
line
comment
*/
SELECT
tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
CAST(x AS INT), /* comment 3 */
y /* comment 4 */
FROM bar /* comment 5 */, tbl /* comment 6 */
```
### Metadata
You can explore SQL with expression helpers to do things like find columns and tables:
```python
from sqlglot import parse_one, exp
# print all column references (a and b)
for column in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Column):
print(column.alias_or_name)
# find all projections in select statements (a and c)
for select in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Select):
for projection in select.expressions:
print(projection.alias_or_name)
# find all tables (x, y, z)
for table in parse_one("SELECT * FROM x JOIN y JOIN z").find_all(exp.Table):
print(table.name)
```
### Parser Errors
When the parser detects an error in the syntax, it raises a ParseError:
```python
import sqlglot
sqlglot.transpile("SELECT foo( FROM bar")
```
```
sqlglot.errors.ParseError: Expecting ). Line 1, Col: 13.
select foo( FROM bar
~~~~
```
Structured syntax errors are accessible for programmatic use:
```python
import sqlglot
try:
sqlglot.transpile("SELECT foo( FROM bar")
except sqlglot.errors.ParseError as e:
print(e.errors)
```
```python
[{
'description': 'Expecting )',
'line': 1,
'col': 16,
'start_context': 'SELECT foo( ',
'highlight': 'FROM',
'end_context': ' bar',
'into_expression': None,
}]
```
### Unsupported Errors
Presto `APPROX_DISTINCT` supports the accuracy argument which is not supported in Hive:
```python
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive")
```
```sql
APPROX_COUNT_DISTINCT does not support accuracy
'SELECT APPROX_COUNT_DISTINCT(a) FROM foo'
```
### Build and Modify SQL
SQLGlot supports incrementally building sql expressions:
```python
from sqlglot import select, condition
where = condition("x=1").and_("y=1")
select("*").from_("y").where(where).sql()
```
```sql
'SELECT * FROM y WHERE x = 1 AND y = 1'
```
You can also modify a parsed tree:
```python
from sqlglot import parse_one
parse_one("SELECT x FROM y").from_("z").sql()
```
```sql
'SELECT x FROM z'
```
There is also a way to recursively transform the parsed tree by applying a mapping function to each tree node:
```python
from sqlglot import exp, parse_one
expression_tree = parse_one("SELECT a FROM x")
def transformer(node):
if isinstance(node, exp.Column) and node.name == "a":
return parse_one("FUN(a)")
return node
transformed_tree = expression_tree.transform(transformer)
transformed_tree.sql()
```
```sql
'SELECT FUN(a) FROM x'
```
### SQL Optimizer
SQLGlot can rewrite queries into an "optimized" form. It performs a variety of [techniques](https://github.com/tobymao/sqlglot/blob/main/sqlglot/optimizer/optimizer.py) to create a new canonical AST. This AST can be used to standardize queries or provide the foundations for implementing an actual engine. For example:
```python
import sqlglot
from sqlglot.optimizer import optimize
print(
optimize(
sqlglot.parse_one("""
SELECT A OR (B OR (C AND D))
FROM x
WHERE Z = date '2021-01-01' + INTERVAL '1' month OR 1 = 0
"""),
schema={"x": {"A": "INT", "B": "INT", "C": "INT", "D": "INT", "Z": "STRING"}}
).sql(pretty=True)
)
```
```sql
SELECT
(
"x"."a" <> 0 OR "x"."b" <> 0 OR "x"."c" <> 0
)
AND (
"x"."a" <> 0 OR "x"."b" <> 0 OR "x"."d" <> 0
) AS "_col_0"
FROM "x" AS "x"
WHERE
CAST("x"."z" AS DATE) = CAST('2021-02-01' AS DATE)
```
### AST Introspection
You can see the AST version of the sql by calling `repr`:
```python
from sqlglot import parse_one
print(repr(parse_one("SELECT a + 1 AS z")))
```
```python
(SELECT expressions:
(ALIAS this:
(ADD this:
(COLUMN this:
(IDENTIFIER this: a, quoted: False)), expression:
(LITERAL this: 1, is_string: False)), alias:
(IDENTIFIER this: z, quoted: False)))
```
### AST Diff
SQLGlot can calculate the difference between two expressions and output changes in a form of a sequence of actions needed to transform a source expression into a target one:
```python
from sqlglot import diff, parse_one
diff(parse_one("SELECT a + b, c, d"), parse_one("SELECT c, a - b, d"))
```
```python
[
Remove(expression=(ADD this:
(COLUMN this:
(IDENTIFIER this: a, quoted: False)), expression:
(COLUMN this:
(IDENTIFIER this: b, quoted: False)))),
Insert(expression=(SUB this:
(COLUMN this:
(IDENTIFIER this: a, quoted: False)), expression:
(COLUMN this:
(IDENTIFIER this: b, quoted: False)))),
Move(expression=(COLUMN this:
(IDENTIFIER this: c, quoted: False))),
Keep(source=(IDENTIFIER this: b, quoted: False), target=(IDENTIFIER this: b, quoted: False)),
...
]
```
See also: [Semantic Diff for SQL](https://github.com/tobymao/sqlglot/blob/main/posts/sql_diff.md).
### Custom Dialects
[Dialects](https://github.com/tobymao/sqlglot/tree/main/sqlglot/dialects) can be added by subclassing `Dialect`:
```python
from sqlglot import exp
from sqlglot.dialects.dialect import Dialect
from sqlglot.generator import Generator
from sqlglot.tokens import Tokenizer, TokenType
class Custom(Dialect):
class Tokenizer(Tokenizer):
QUOTES = ["'", '"']
IDENTIFIERS = ["`"]
KEYWORDS = {
**Tokenizer.KEYWORDS,
"INT64": TokenType.BIGINT,
"FLOAT64": TokenType.DOUBLE,
}
class Generator(Generator):
TRANSFORMS = {exp.Array: lambda self, e: f"[{self.expressions(e)}]"}
TYPE_MAPPING = {
exp.DataType.Type.TINYINT: "INT64",
exp.DataType.Type.SMALLINT: "INT64",
exp.DataType.Type.INT: "INT64",
exp.DataType.Type.BIGINT: "INT64",
exp.DataType.Type.DECIMAL: "NUMERIC",
exp.DataType.Type.FLOAT: "FLOAT64",
exp.DataType.Type.DOUBLE: "FLOAT64",
exp.DataType.Type.BOOLEAN: "BOOL",
exp.DataType.Type.TEXT: "STRING",
}
print(Dialect["custom"])
```
```
<class '__main__.Custom'>
```
### SQL Execution
One can even interpret SQL queries using SQLGlot, where the tables are represented as Python dictionaries. Although the engine is not very fast (it's not supposed to be) and is in a relatively early stage of development, it can be useful for unit testing and running SQL natively across Python objects. Additionally, the foundation can be easily integrated with fast compute kernels (arrow, pandas). Below is an example showcasing the execution of a SELECT expression that involves aggregations and JOINs:
```python
from sqlglot.executor import execute
tables = {
"sushi": [
{"id": 1, "price": 1.0},
{"id": 2, "price": 2.0},
{"id": 3, "price": 3.0},
],
"order_items": [
{"sushi_id": 1, "order_id": 1},
{"sushi_id": 1, "order_id": 1},
{"sushi_id": 2, "order_id": 1},
{"sushi_id": 3, "order_id": 2},
],
"orders": [
{"id": 1, "user_id": 1},
{"id": 2, "user_id": 2},
],
}
execute(
"""
SELECT
o.user_id,
SUM(s.price) AS price
FROM orders o
JOIN order_items i
ON o.id = i.order_id
JOIN sushi s
ON i.sushi_id = s.id
GROUP BY o.user_id
""",
tables=tables
)
```
```python
user_id price
1 4.0
2 3.0
```
See also: [Writing a Python SQL engine from scratch](https://github.com/tobymao/sqlglot/blob/main/posts/python_sql_engine.md).
## Used By
* [SQLMesh](https://github.com/TobikoData/sqlmesh)
* [Fugue](https://github.com/fugue-project/fugue)
* [ibis](https://github.com/ibis-project/ibis)
* [mysql-mimic](https://github.com/kelsin/mysql-mimic)
* [Querybook](https://github.com/pinterest/querybook)
* [Quokka](https://github.com/marsupialtail/quokka)
* [Splink](https://github.com/moj-analytical-services/splink)
## Documentation
SQLGlot uses [pdoc](https://pdoc.dev/) to serve its API documentation.
A hosted version is on the [SQLGlot website](https://sqlglot.com/), or you can build locally with:
```
make docs-serve
```
## Run Tests and Lint
```
make style # Only linter checks
make unit # Only unit tests
make check # Full test suite & linter checks
```
## Benchmarks
[Benchmarks](https://github.com/tobymao/sqlglot/blob/main/benchmarks/bench.py) run on Python 3.10.5 in seconds.
| Query | sqlglot | sqlfluff | sqltree | sqlparse | moz_sql_parser | sqloxide |
| --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- |
| tpch | 0.01308 (1.0) | 1.60626 (122.7) | 0.01168 (0.893) | 0.04958 (3.791) | 0.08543 (6.531) | 0.00136 (0.104) |
| short | 0.00109 (1.0) | 0.14134 (129.2) | 0.00099 (0.906) | 0.00342 (3.131) | 0.00652 (5.970) | 8.76E-5 (0.080) |
| long | 0.01399 (1.0) | 2.12632 (151.9) | 0.01126 (0.805) | 0.04410 (3.151) | 0.06671 (4.767) | 0.00107 (0.076) |
| crazy | 0.03969 (1.0) | 24.3777 (614.1) | 0.03917 (0.987) | 11.7043 (294.8) | 1.03280 (26.02) | 0.00625 (0.157) |
## Optional Dependencies
SQLGlot uses [dateutil](https://github.com/dateutil/dateutil) to simplify literal timedelta expressions. The optimizer will not simplify expressions like the following if the module cannot be found:
```sql
x + interval '1' month
```
|