summaryrefslogtreecommitdiffstats
path: root/README.md
blob: 44b1e3d6c43f7f92b1890ac3bf31c6c9be21f2e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
![SQLGlot logo](sqlglot.png)

SQLGlot is a no-dependency SQL parser, transpiler, optimizer, and engine. It can be used to format SQL or translate between [21 different dialects](https://github.com/tobymao/sqlglot/blob/main/sqlglot/dialects/__init__.py) like [DuckDB](https://duckdb.org/), [Presto](https://prestodb.io/) / [Trino](https://trino.io/), [Spark](https://spark.apache.org/) / [Databricks](https://www.databricks.com/), [Snowflake](https://www.snowflake.com/en/), and [BigQuery](https://cloud.google.com/bigquery/). It aims to read a wide variety of SQL inputs and output syntactically and semantically correct SQL in the targeted dialects.

It is a very comprehensive generic SQL parser with a robust [test suite](https://github.com/tobymao/sqlglot/blob/main/tests/). It is also quite [performant](#benchmarks), while being written purely in Python.

You can easily [customize](#custom-dialects) the parser, [analyze](#metadata) queries, traverse expression trees, and programmatically [build](#build-and-modify-sql) SQL.

Syntax [errors](#parser-errors) are highlighted and dialect incompatibilities can warn or raise depending on configurations. However, SQLGlot does not aim to be a SQL validator, so it may fail to detect certain syntax errors.

Learn more about SQLGlot in the API [documentation](https://sqlglot.com/) and the expression tree [primer](https://github.com/tobymao/sqlglot/blob/main/posts/ast_primer.md).

Contributions are very welcome in SQLGlot; read the [contribution guide](https://github.com/tobymao/sqlglot/blob/main/CONTRIBUTING.md) to get started!

## Table of Contents

* [Install](#install)
* [Versioning](#versioning)
* [Get in Touch](#get-in-touch)
* [FAQ](#faq)
* [Examples](#examples)
   * [Formatting and Transpiling](#formatting-and-transpiling)
   * [Metadata](#metadata)
   * [Parser Errors](#parser-errors)
   * [Unsupported Errors](#unsupported-errors)
   * [Build and Modify SQL](#build-and-modify-sql)
   * [SQL Optimizer](#sql-optimizer)
   * [AST Introspection](#ast-introspection)
   * [AST Diff](#ast-diff)
   * [Custom Dialects](#custom-dialects)
   * [SQL Execution](#sql-execution)
* [Used By](#used-by)
* [Documentation](#documentation)
* [Run Tests and Lint](#run-tests-and-lint)
* [Benchmarks](#benchmarks)
* [Optional Dependencies](#optional-dependencies)

## Install

From PyPI:

```bash
pip3 install "sqlglot[rs]"

# Without Rust tokenizer (slower):
# pip3 install sqlglot
```

Or with a local checkout:

```
make install
```

Requirements for development (optional):

```
make install-dev
```

## Versioning

Given a version number `MAJOR`.`MINOR`.`PATCH`, SQLGlot uses the following versioning strategy:

- The `PATCH` version is incremented when there are backwards-compatible fixes or feature additions.
- The `MINOR` version is incremented when there are backwards-incompatible fixes or feature additions.
- The `MAJOR` version is incremented when there are significant backwards-incompatible fixes or feature additions.

## Get in Touch

We'd love to hear from you. Join our community [Slack channel](https://tobikodata.com/slack)!

## FAQ

I tried to parse SQL that should be valid but it failed, why did that happen?

* Most of the time, issues like this occur because the "source" dialect is omitted during parsing. For example, this is how to correctly parse a SQL query written in Spark SQL: `parse_one(sql, dialect="spark")` (alternatively: `read="spark"`). If no dialect is specified, `parse_one` will attempt to parse the query according to the "SQLGlot dialect", which is designed to be a superset of all supported dialects. If you tried specifying the dialect and it still doesn't work, please file an issue.

I tried to output SQL but it's not in the correct dialect!

* Like parsing, generating SQL also requires the target dialect to be specified, otherwise the SQLGlot dialect will be used by default. For example, to transpile a query from Spark SQL to DuckDB, do `parse_one(sql, dialect="spark").sql(dialect="duckdb")` (alternatively: `transpile(sql, read="spark", write="duckdb")`).

I tried to parse invalid SQL and it worked, even though it should raise an error! Why didn't it validate my SQL?

* SQLGlot does not aim to be a SQL validator - it is designed to be very forgiving. This makes the codebase more comprehensive and also gives more flexibility to its users, e.g. by allowing them to include trailing commas in their projection lists.

What happened to sqlglot.dataframe?

* The PySpark dataframe api was moved to a standalone library called [SQLFrame](https://github.com/eakmanrq/sqlframe) in v24. It now allows you to run queries as opposed to just generate SQL.

## Examples

### Formatting and Transpiling

Easily translate from one dialect to another. For example, date/time functions vary between dialects and can be hard to deal with:

```python
import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read="duckdb", write="hive")[0]
```

```sql
'SELECT FROM_UNIXTIME(1618088028295 / POW(10, 3))'
```

SQLGlot can even translate custom time formats:

```python
import sqlglot
sqlglot.transpile("SELECT STRFTIME(x, '%y-%-m-%S')", read="duckdb", write="hive")[0]
```

```sql
"SELECT DATE_FORMAT(x, 'yy-M-ss')"
```

Identifier delimiters and data types can be translated as well:

```python
import sqlglot

# Spark SQL requires backticks (`) for delimited identifiers and uses `FLOAT` over `REAL`
sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""

# Translates the query into Spark SQL, formats it, and delimits all of its identifiers
print(sqlglot.transpile(sql, write="spark", identify=True, pretty=True)[0])
```

```sql
WITH `baz` AS (
  SELECT
    `a`,
    `c`
  FROM `foo`
  WHERE
    `a` = 1
)
SELECT
  `f`.`a`,
  `b`.`b`,
  `baz`.`c`,
  CAST(`b`.`a` AS FLOAT) AS `d`
FROM `foo` AS `f`
JOIN `bar` AS `b`
  ON `f`.`a` = `b`.`a`
LEFT JOIN `baz`
  ON `f`.`a` = `baz`.`a`
```

Comments are also preserved on a best-effort basis:

```python
sql = """
/* multi
   line
   comment
*/
SELECT
  tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
  CAST(x AS SIGNED), # comment 3
  y               -- comment 4
FROM
  bar /* comment 5 */,
  tbl #          comment 6
"""

# Note: MySQL-specific comments (`#`) are converted into standard syntax
print(sqlglot.transpile(sql, read='mysql', pretty=True)[0])
```

```sql
/* multi
   line
   comment
*/
SELECT
  tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
  CAST(x AS INT), /* comment 3 */
  y /* comment 4 */
FROM bar /* comment 5 */, tbl /*          comment 6 */
```


### Metadata

You can explore SQL with expression helpers to do things like find columns and tables in a query:

```python
from sqlglot import parse_one, exp

# print all column references (a and b)
for column in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Column):
    print(column.alias_or_name)

# find all projections in select statements (a and c)
for select in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Select):
    for projection in select.expressions:
        print(projection.alias_or_name)

# find all tables (x, y, z)
for table in parse_one("SELECT * FROM x JOIN y JOIN z").find_all(exp.Table):
    print(table.name)
```

Read the [ast primer](https://github.com/tobymao/sqlglot/blob/main/posts/ast_primer.md) to learn more about SQLGlot's internals.

### Parser Errors

When the parser detects an error in the syntax, it raises a `ParseError`:

```python
import sqlglot
sqlglot.transpile("SELECT foo FROM (SELECT baz FROM t")
```

```
sqlglot.errors.ParseError: Expecting ). Line 1, Col: 34.
  SELECT foo FROM (SELECT baz FROM t
                                   ~
```

Structured syntax errors are accessible for programmatic use:

```python
import sqlglot
try:
    sqlglot.transpile("SELECT foo FROM (SELECT baz FROM t")
except sqlglot.errors.ParseError as e:
    print(e.errors)
```

```python
[{
  'description': 'Expecting )',
  'line': 1,
  'col': 34,
  'start_context': 'SELECT foo FROM (SELECT baz FROM ',
  'highlight': 't',
  'end_context': '',
  'into_expression': None
}]
```

### Unsupported Errors

It may not be possible to translate some queries between certain dialects. For these cases, SQLGlot may emit a warning and will proceed to do a best-effort translation by default:

```python
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive")
```

```sql
APPROX_COUNT_DISTINCT does not support accuracy
'SELECT APPROX_COUNT_DISTINCT(a) FROM foo'
```

This behavior can be changed by setting the [`unsupported_level`](https://github.com/tobymao/sqlglot/blob/b0e8dc96ba179edb1776647b5bde4e704238b44d/sqlglot/errors.py#L9) attribute. For example, we can set it to either `RAISE` or `IMMEDIATE` to ensure an exception is raised instead:

```python
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive", unsupported_level=sqlglot.ErrorLevel.RAISE)
```

```
sqlglot.errors.UnsupportedError: APPROX_COUNT_DISTINCT does not support accuracy
```

There are queries that require additional information to be accurately transpiled, such as the schemas of the tables referenced in them. This is because certain transformations are type-sensitive, meaning that type inference is needed in order to understand their semantics. Even though the `qualify` and `annotate_types` optimizer [rules](https://github.com/tobymao/sqlglot/tree/main/sqlglot/optimizer) can help with this, they are not used by default because they add significant overhead and complexity.

Transpilation is generally a hard problem, so SQLGlot employs an "incremental" approach to solving it. This means that there may be dialect pairs that currently lack support for some inputs, but this is expected to improve over time. We highly appreciate well-documented and tested issues or PRs, so feel free to [reach out](#get-in-touch) if you need guidance!

### Build and Modify SQL

SQLGlot supports incrementally building SQL expressions:

```python
from sqlglot import select, condition

where = condition("x=1").and_("y=1")
select("*").from_("y").where(where).sql()
```

```sql
'SELECT * FROM y WHERE x = 1 AND y = 1'
```

It's possible to modify a parsed tree:

```python
from sqlglot import parse_one
parse_one("SELECT x FROM y").from_("z").sql()
```

```sql
'SELECT x FROM z'
```

Parsed expressions can also be transformed recursively by applying a mapping function to each node in the tree:

```python
from sqlglot import exp, parse_one

expression_tree = parse_one("SELECT a FROM x")

def transformer(node):
    if isinstance(node, exp.Column) and node.name == "a":
        return parse_one("FUN(a)")
    return node

transformed_tree = expression_tree.transform(transformer)
transformed_tree.sql()
```

```sql
'SELECT FUN(a) FROM x'
```

### SQL Optimizer

SQLGlot can rewrite queries into an "optimized" form. It performs a variety of [techniques](https://github.com/tobymao/sqlglot/blob/main/sqlglot/optimizer/optimizer.py) to create a new canonical AST. This AST can be used to standardize queries or provide the foundations for implementing an actual engine. For example:

```python
import sqlglot
from sqlglot.optimizer import optimize

print(
    optimize(
        sqlglot.parse_one("""
            SELECT A OR (B OR (C AND D))
            FROM x
            WHERE Z = date '2021-01-01' + INTERVAL '1' month OR 1 = 0
        """),
        schema={"x": {"A": "INT", "B": "INT", "C": "INT", "D": "INT", "Z": "STRING"}}
    ).sql(pretty=True)
)
```

```sql
SELECT
  (
    "x"."a" <> 0 OR "x"."b" <> 0 OR "x"."c" <> 0
  )
  AND (
    "x"."a" <> 0 OR "x"."b" <> 0 OR "x"."d" <> 0
  ) AS "_col_0"
FROM "x" AS "x"
WHERE
  CAST("x"."z" AS DATE) = CAST('2021-02-01' AS DATE)
```

### AST Introspection

You can see the AST version of the parsed SQL by calling `repr`:

```python
from sqlglot import parse_one
print(repr(parse_one("SELECT a + 1 AS z")))
```

```python
Select(
  expressions=[
    Alias(
      this=Add(
        this=Column(
          this=Identifier(this=a, quoted=False)),
        expression=Literal(this=1, is_string=False)),
      alias=Identifier(this=z, quoted=False))])
```

### AST Diff

SQLGlot can calculate the semantic difference between two expressions and output changes in a form of a sequence of actions needed to transform a source expression into a target one:

```python
from sqlglot import diff, parse_one
diff(parse_one("SELECT a + b, c, d"), parse_one("SELECT c, a - b, d"))
```

```python
[
  Remove(expression=Add(
    this=Column(
      this=Identifier(this=a, quoted=False)),
    expression=Column(
      this=Identifier(this=b, quoted=False)))),
  Insert(expression=Sub(
    this=Column(
      this=Identifier(this=a, quoted=False)),
    expression=Column(
      this=Identifier(this=b, quoted=False)))),
  Keep(
    source=Column(this=Identifier(this=a, quoted=False)),
    target=Column(this=Identifier(this=a, quoted=False))),
  ...
]
```

See also: [Semantic Diff for SQL](https://github.com/tobymao/sqlglot/blob/main/posts/sql_diff.md).

### Custom Dialects

[Dialects](https://github.com/tobymao/sqlglot/tree/main/sqlglot/dialects) can be added by subclassing `Dialect`:

```python
from sqlglot import exp
from sqlglot.dialects.dialect import Dialect
from sqlglot.generator import Generator
from sqlglot.tokens import Tokenizer, TokenType


class Custom(Dialect):
    class Tokenizer(Tokenizer):
        QUOTES = ["'", '"']
        IDENTIFIERS = ["`"]

        KEYWORDS = {
            **Tokenizer.KEYWORDS,
            "INT64": TokenType.BIGINT,
            "FLOAT64": TokenType.DOUBLE,
        }

    class Generator(Generator):
        TRANSFORMS = {exp.Array: lambda self, e: f"[{self.expressions(e)}]"}

        TYPE_MAPPING = {
            exp.DataType.Type.TINYINT: "INT64",
            exp.DataType.Type.SMALLINT: "INT64",
            exp.DataType.Type.INT: "INT64",
            exp.DataType.Type.BIGINT: "INT64",
            exp.DataType.Type.DECIMAL: "NUMERIC",
            exp.DataType.Type.FLOAT: "FLOAT64",
            exp.DataType.Type.DOUBLE: "FLOAT64",
            exp.DataType.Type.BOOLEAN: "BOOL",
            exp.DataType.Type.TEXT: "STRING",
        }

print(Dialect["custom"])
```

```
<class '__main__.Custom'>
```

### SQL Execution

SQLGlot is able to interpret SQL queries, where the tables are represented as Python dictionaries. The engine is not supposed to be fast, but it can be useful for unit testing and running SQL natively across Python objects. Additionally, the foundation can be easily integrated with fast compute kernels, such as [Arrow](https://arrow.apache.org/docs/index.html) and [Pandas](https://pandas.pydata.org/).

The example below showcases the execution of a query that involves aggregations and joins:

```python
from sqlglot.executor import execute

tables = {
    "sushi": [
        {"id": 1, "price": 1.0},
        {"id": 2, "price": 2.0},
        {"id": 3, "price": 3.0},
    ],
    "order_items": [
        {"sushi_id": 1, "order_id": 1},
        {"sushi_id": 1, "order_id": 1},
        {"sushi_id": 2, "order_id": 1},
        {"sushi_id": 3, "order_id": 2},
    ],
    "orders": [
        {"id": 1, "user_id": 1},
        {"id": 2, "user_id": 2},
    ],
}

execute(
    """
    SELECT
      o.user_id,
      SUM(s.price) AS price
    FROM orders o
    JOIN order_items i
      ON o.id = i.order_id
    JOIN sushi s
      ON i.sushi_id = s.id
    GROUP BY o.user_id
    """,
    tables=tables
)
```

```python
user_id price
      1   4.0
      2   3.0
```

See also: [Writing a Python SQL engine from scratch](https://github.com/tobymao/sqlglot/blob/main/posts/python_sql_engine.md).

## Used By

* [SQLMesh](https://github.com/TobikoData/sqlmesh)
* [Apache Superset](https://github.com/apache/superset)
* [Dagster](https://github.com/dagster-io/dagster)
* [Fugue](https://github.com/fugue-project/fugue)
* [ibis](https://github.com/ibis-project/ibis)
* [mysql-mimic](https://github.com/kelsin/mysql-mimic)
* [Querybook](https://github.com/pinterest/querybook)
* [Quokka](https://github.com/marsupialtail/quokka)
* [Splink](https://github.com/moj-analytical-services/splink)
* [SQLFrame](https://github.com/eakmanrq/sqlframe)

## Documentation

SQLGlot uses [pdoc](https://pdoc.dev/) to serve its API documentation.

A hosted version is on the [SQLGlot website](https://sqlglot.com/), or you can build locally with:

```
make docs-serve
```

## Run Tests and Lint

```
make style  # Only linter checks
make unit   # Only unit tests (or unit-rs, to use the Rust tokenizer)
make test   # Unit and integration tests (or test-rs, to use the Rust tokenizer)
make check  # Full test suite & linter checks
```

## Benchmarks

[Benchmarks](https://github.com/tobymao/sqlglot/blob/main/benchmarks/bench.py) run on Python 3.10.12 in seconds.

|           Query |         sqlglot |       sqlglotrs |        sqlfluff |         sqltree |        sqlparse |  moz_sql_parser |        sqloxide |
| --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- | --------------- |
|            tpch |   0.00944 (1.0) | 0.00590 (0.625) | 0.32116 (33.98) | 0.00693 (0.734) | 0.02858 (3.025) | 0.03337 (3.532) | 0.00073 (0.077) |
|           short |   0.00065 (1.0) | 0.00044 (0.687) | 0.03511 (53.82) | 0.00049 (0.759) | 0.00163 (2.506) | 0.00234 (3.601) | 0.00005 (0.073) |
|            long |   0.00889 (1.0) | 0.00572 (0.643) | 0.36982 (41.56) | 0.00614 (0.690) | 0.02530 (2.844) | 0.02931 (3.294) | 0.00059 (0.066) |
|           crazy |   0.02918 (1.0) | 0.01991 (0.682) | 1.88695 (64.66) | 0.02003 (0.686) | 7.46894 (255.9) | 0.64994 (22.27) | 0.00327 (0.112) |


## Optional Dependencies

SQLGlot uses [dateutil](https://github.com/dateutil/dateutil) to simplify literal timedelta expressions. The optimizer will not simplify expressions like the following if the module cannot be found:

```sql
x + interval '1' month
```