1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
import typing as t
import unittest
import warnings
import sqlglot
from sqlglot.helper import PYTHON_VERSION
from tests.helpers import SKIP_INTEGRATION
if t.TYPE_CHECKING:
from pyspark.sql import DataFrame as SparkDataFrame
@unittest.skipIf(
SKIP_INTEGRATION or PYTHON_VERSION > (3, 10),
"Skipping Integration Tests since `SKIP_INTEGRATION` is set",
)
class DataFrameValidator(unittest.TestCase):
spark = None
sqlglot = None
df_employee = None
df_store = None
df_district = None
spark_employee_schema = None
sqlglot_employee_schema = None
spark_store_schema = None
sqlglot_store_schema = None
spark_district_schema = None
sqlglot_district_schema = None
@classmethod
def setUpClass(cls):
from pyspark import SparkConf
from pyspark.sql import SparkSession, types
from sqlglot.dataframe.sql import types as sqlglotSparkTypes
from sqlglot.dataframe.sql.session import SparkSession as SqlglotSparkSession
# This is for test `test_branching_root_dataframes`
config = SparkConf().setAll([("spark.sql.analyzer.failAmbiguousSelfJoin", "false")])
cls.spark = (
SparkSession.builder.master("local[*]")
.appName("Unit-tests")
.config(conf=config)
.getOrCreate()
)
cls.spark.sparkContext.setLogLevel("ERROR")
cls.sqlglot = SqlglotSparkSession()
cls.spark_employee_schema = types.StructType(
[
types.StructField("employee_id", types.IntegerType(), False),
types.StructField("fname", types.StringType(), False),
types.StructField("lname", types.StringType(), False),
types.StructField("age", types.IntegerType(), False),
types.StructField("store_id", types.IntegerType(), False),
]
)
cls.sqlglot_employee_schema = sqlglotSparkTypes.StructType(
[
sqlglotSparkTypes.StructField(
"employee_id", sqlglotSparkTypes.IntegerType(), False
),
sqlglotSparkTypes.StructField("fname", sqlglotSparkTypes.StringType(), False),
sqlglotSparkTypes.StructField("lname", sqlglotSparkTypes.StringType(), False),
sqlglotSparkTypes.StructField("age", sqlglotSparkTypes.IntegerType(), False),
sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False),
]
)
employee_data = [
(1, "Jack", "Shephard", 37, 1),
(2, "John", "Locke", 65, 1),
(3, "Kate", "Austen", 37, 2),
(4, "Claire", "Littleton", 27, 2),
(5, "Hugo", "Reyes", 29, 100),
]
cls.df_employee = cls.spark.createDataFrame(
data=employee_data, schema=cls.spark_employee_schema
)
cls.dfs_employee = cls.sqlglot.createDataFrame(
data=employee_data, schema=cls.sqlglot_employee_schema
)
cls.df_employee.createOrReplaceTempView("employee")
cls.spark_store_schema = types.StructType(
[
types.StructField("store_id", types.IntegerType(), False),
types.StructField("store_name", types.StringType(), False),
types.StructField("district_id", types.IntegerType(), False),
types.StructField("num_sales", types.IntegerType(), False),
]
)
cls.sqlglot_store_schema = sqlglotSparkTypes.StructType(
[
sqlglotSparkTypes.StructField("store_id", sqlglotSparkTypes.IntegerType(), False),
sqlglotSparkTypes.StructField("store_name", sqlglotSparkTypes.StringType(), False),
sqlglotSparkTypes.StructField(
"district_id", sqlglotSparkTypes.IntegerType(), False
),
sqlglotSparkTypes.StructField("num_sales", sqlglotSparkTypes.IntegerType(), False),
]
)
store_data = [
(1, "Hydra", 1, 37),
(2, "Arrow", 2, 2000),
]
cls.df_store = cls.spark.createDataFrame(data=store_data, schema=cls.spark_store_schema)
cls.dfs_store = cls.sqlglot.createDataFrame(
data=store_data, schema=cls.sqlglot_store_schema
)
cls.df_store.createOrReplaceTempView("store")
cls.spark_district_schema = types.StructType(
[
types.StructField("district_id", types.IntegerType(), False),
types.StructField("district_name", types.StringType(), False),
types.StructField("manager_name", types.StringType(), False),
]
)
cls.sqlglot_district_schema = sqlglotSparkTypes.StructType(
[
sqlglotSparkTypes.StructField(
"district_id", sqlglotSparkTypes.IntegerType(), False
),
sqlglotSparkTypes.StructField(
"district_name", sqlglotSparkTypes.StringType(), False
),
sqlglotSparkTypes.StructField(
"manager_name", sqlglotSparkTypes.StringType(), False
),
]
)
district_data = [
(1, "Temple", "Dogen"),
(2, "Lighthouse", "Jacob"),
]
cls.df_district = cls.spark.createDataFrame(
data=district_data, schema=cls.spark_district_schema
)
cls.dfs_district = cls.sqlglot.createDataFrame(
data=district_data, schema=cls.sqlglot_district_schema
)
cls.df_district.createOrReplaceTempView("district")
sqlglot.schema.add_table("employee", cls.sqlglot_employee_schema)
sqlglot.schema.add_table("store", cls.sqlglot_store_schema)
sqlglot.schema.add_table("district", cls.sqlglot_district_schema)
def setUp(self) -> None:
warnings.filterwarnings("ignore", category=ResourceWarning)
self.df_spark_store = self.df_store.alias("df_store") # type: ignore
self.df_spark_employee = self.df_employee.alias("df_employee") # type: ignore
self.df_spark_district = self.df_district.alias("df_district") # type: ignore
self.df_sqlglot_store = self.dfs_store.alias("store") # type: ignore
self.df_sqlglot_employee = self.dfs_employee.alias("employee") # type: ignore
self.df_sqlglot_district = self.dfs_district.alias("district") # type: ignore
def compare_spark_with_sqlglot(
self, df_spark, df_sqlglot, no_empty=True, skip_schema_compare=False
) -> t.Tuple["SparkDataFrame", "SparkDataFrame"]:
def compare_schemas(schema_1, schema_2):
for schema in [schema_1, schema_2]:
for struct_field in schema.fields:
struct_field.metadata = {}
self.assertEqual(schema_1, schema_2)
for statement in df_sqlglot.sql():
actual_df_sqlglot = self.spark.sql(statement) # type: ignore
df_sqlglot_results = actual_df_sqlglot.collect()
df_spark_results = df_spark.collect()
if not skip_schema_compare:
compare_schemas(df_spark.schema, actual_df_sqlglot.schema)
self.assertEqual(df_spark_results, df_sqlglot_results)
if no_empty:
self.assertNotEqual(len(df_spark_results), 0)
self.assertNotEqual(len(df_sqlglot_results), 0)
return df_spark, actual_df_sqlglot
@classmethod
def get_explain_plan(cls, df: "SparkDataFrame", mode: str = "extended") -> str:
return df._sc._jvm.PythonSQLUtils.explainString(df._jdf.queryExecution(), mode) # type: ignore
|