/* Tarlz - Archiver with multimember lzip compression Copyright (C) 2013-2024 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _FILE_OFFSET_BITS 64 #include #include #include #include #include #include // for lzlib.h #include #include #include #include #include "tarlz.h" #include "arg_parser.h" #include "common_mutex.h" #include "create.h" namespace { const Cl_options * gcl_opts = 0; // local vars needed by add_member_lz enum { max_packet_size = 1 << 20 }; class Packet_courier; Packet_courier * courierp = 0; unsigned long long partial_data_size = 0; // size of current block class Slot_tally { const int num_slots; // total slots int num_free; // remaining free slots pthread_mutex_t mutex; pthread_cond_t slot_av; // slot available Slot_tally( const Slot_tally & ); // declared as private void operator=( const Slot_tally & ); // declared as private public: explicit Slot_tally( const int slots ) : num_slots( slots ), num_free( slots ) { xinit_mutex( &mutex ); xinit_cond( &slot_av ); } ~Slot_tally() { xdestroy_cond( &slot_av ); xdestroy_mutex( &mutex ); } bool all_free() { return ( num_free == num_slots ); } void get_slot() // wait for a free slot { xlock( &mutex ); while( num_free <= 0 ) xwait( &slot_av, &mutex ); --num_free; xunlock( &mutex ); } void leave_slot() // return a slot to the tally { xlock( &mutex ); if( ++num_free == 1 ) xsignal( &slot_av ); // num_free was 0 xunlock( &mutex ); } }; struct Ipacket // filename, file size and headers { const long long file_size; const std::string filename; // filename.empty() means end of lzip member const Extended * const extended; const uint8_t * const header; Ipacket() : file_size( 0 ), extended( 0 ), header( 0 ) {} Ipacket( const char * const name, const long long fs, const Extended * const ext, const uint8_t * const head ) : file_size( fs ), filename( name ), extended( ext ), header( head ) {} }; struct Opacket // compressed data to be written to the archive { const uint8_t * const data; // data == 0 means end of lzip member const int size; // number of bytes in data (if any) Opacket() : data( 0 ), size( 0 ) {} Opacket( uint8_t * const d, const int s ) : data( d ), size( s ) {} }; class Packet_courier // moves packets around { public: unsigned icheck_counter; unsigned iwait_counter; unsigned ocheck_counter; unsigned owait_counter; private: int receive_worker_id; // worker queue currently receiving packets int deliver_worker_id; // worker queue currently delivering packets Slot_tally slot_tally; // limits the number of input packets std::vector< std::queue< const Ipacket * > > ipacket_queues; std::vector< std::queue< const Opacket * > > opacket_queues; int num_working; // number of workers still running const int num_workers; // number of workers const unsigned out_slots; // max output packets per queue pthread_mutex_t imutex; pthread_cond_t iav_or_eof; // input packet available or grouper done pthread_mutex_t omutex; pthread_cond_t oav_or_exit; // output packet available or all workers exited std::vector< pthread_cond_t > slot_av; // output slot available bool eof; // grouper done Packet_courier( const Packet_courier & ); // declared as private void operator=( const Packet_courier & ); // declared as private public: Packet_courier( const int workers, const int in_slots, const int oslots ) : icheck_counter( 0 ), iwait_counter( 0 ), ocheck_counter( 0 ), owait_counter( 0 ), receive_worker_id( 0 ), deliver_worker_id( 0 ), slot_tally( in_slots ), ipacket_queues( workers ), opacket_queues( workers ), num_working( workers ), num_workers( workers ), out_slots( oslots ), slot_av( workers ), eof( false ) { xinit_mutex( &imutex ); xinit_cond( &iav_or_eof ); xinit_mutex( &omutex ); xinit_cond( &oav_or_exit ); for( unsigned i = 0; i < slot_av.size(); ++i ) xinit_cond( &slot_av[i] ); } ~Packet_courier() { for( unsigned i = 0; i < slot_av.size(); ++i ) xdestroy_cond( &slot_av[i] ); xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex ); xdestroy_cond( &iav_or_eof ); xdestroy_mutex( &imutex ); } /* Receive an ipacket from grouper. If filename.empty() (end of lzip member token), move to next queue. */ void receive_packet( const Ipacket * const ipacket ) { if( !ipacket->filename.empty() ) slot_tally.get_slot(); // wait for a free slot xlock( &imutex ); ipacket_queues[receive_worker_id].push( ipacket ); if( ipacket->filename.empty() && ++receive_worker_id >= num_workers ) receive_worker_id = 0; xbroadcast( &iav_or_eof ); xunlock( &imutex ); } // distribute an ipacket to a worker const Ipacket * distribute_packet( const int worker_id ) { const Ipacket * ipacket = 0; xlock( &imutex ); ++icheck_counter; while( ipacket_queues[worker_id].empty() && !eof ) { ++iwait_counter; xwait( &iav_or_eof, &imutex ); } if( !ipacket_queues[worker_id].empty() ) { ipacket = ipacket_queues[worker_id].front(); ipacket_queues[worker_id].pop(); } xunlock( &imutex ); if( ipacket ) { if( !ipacket->filename.empty() ) slot_tally.leave_slot(); } else { // notify muxer when last worker exits xlock( &omutex ); if( --num_working == 0 ) xsignal( &oav_or_exit ); xunlock( &omutex ); } return ipacket; } // collect an opacket from a worker void collect_packet( const Opacket * const opacket, const int worker_id ) { xlock( &omutex ); if( opacket->data ) { while( opacket_queues[worker_id].size() >= out_slots ) xwait( &slot_av[worker_id], &omutex ); } opacket_queues[worker_id].push( opacket ); if( worker_id == deliver_worker_id ) xsignal( &oav_or_exit ); xunlock( &omutex ); } /* Deliver an opacket to muxer. If opacket data == 0, move to next queue and wait again. */ const Opacket * deliver_packet() { const Opacket * opacket = 0; xlock( &omutex ); ++ocheck_counter; while( true ) { while( opacket_queues[deliver_worker_id].empty() && num_working > 0 ) { ++owait_counter; xwait( &oav_or_exit, &omutex ); } if( opacket_queues[deliver_worker_id].empty() ) break; opacket = opacket_queues[deliver_worker_id].front(); opacket_queues[deliver_worker_id].pop(); if( opacket_queues[deliver_worker_id].size() + 1 == out_slots ) xsignal( &slot_av[deliver_worker_id] ); if( opacket->data ) break; if( ++deliver_worker_id >= num_workers ) deliver_worker_id = 0; delete opacket; opacket = 0; } xunlock( &omutex ); return opacket; } void finish() // grouper has no more packets to send { xlock( &imutex ); eof = true; xbroadcast( &iav_or_eof ); xunlock( &imutex ); } bool finished() // all packets delivered to muxer { if( !slot_tally.all_free() || !eof || num_working != 0 ) return false; for( int i = 0; i < num_workers; ++i ) if( !ipacket_queues[i].empty() ) return false; for( int i = 0; i < num_workers; ++i ) if( !opacket_queues[i].empty() ) return false; return true; } }; // send one ipacket with tar member metadata to courier int add_member_lz( const char * const filename, const struct stat *, const int flag, struct FTW * ) { if( Exclude::excluded( filename ) ) return 0; // skip excluded files long long file_size; // metadata for extended records Extended * const extended = new( std::nothrow ) Extended; uint8_t * const header = extended ? new( std::nothrow ) Tar_header : 0; if( !header ) { show_error( mem_msg ); if( extended ) delete extended; return 1; } if( !fill_headers( filename, *extended, header, file_size, flag ) ) { delete[] header; delete extended; return 0; } print_removed_prefix( extended->removed_prefix ); if( gcl_opts->solidity == bsolid ) { const int ebsize = extended->full_size(); if( ebsize < 0 ) { show_error( extended->full_size_error() ); return 1; } if( block_is_full( ebsize, file_size, gcl_opts->data_size, partial_data_size ) ) courierp->receive_packet( new Ipacket ); // end of group } courierp->receive_packet( new Ipacket( filename, file_size, extended, header ) ); if( gcl_opts->solidity == no_solid ) // one tar member per group courierp->receive_packet( new Ipacket ); if( verbosity >= 1 ) std::fprintf( stderr, "%s\n", filename ); return 0; } struct Grouper_arg { const Cl_options * cl_opts; Packet_courier * courier; }; /* Package metadata of the files to be archived and pass them to the courier for distribution to workers. */ extern "C" void * grouper( void * arg ) { const Grouper_arg & tmp = *(const Grouper_arg *)arg; const Cl_options & cl_opts = *tmp.cl_opts; Packet_courier & courier = *tmp.courier; for( int i = 0; i < cl_opts.parser.arguments(); ++i ) // parse command line { const int code = cl_opts.parser.code( i ); const std::string & arg = cl_opts.parser.argument( i ); const char * filename = arg.c_str(); if( code == 'C' && chdir( filename ) != 0 ) { show_file_error( filename, chdir_msg, errno ); exit_fail_mt(); } if( code ) continue; // skip options if( cl_opts.parser.argument( i ).empty() ) continue; // skip empty names std::string deslashed; // arg without trailing slashes unsigned len = arg.size(); while( len > 1 && arg[len-1] == '/' ) --len; if( len < arg.size() ) { deslashed.assign( arg, 0, len ); filename = deslashed.c_str(); } if( Exclude::excluded( filename ) ) continue; // skip excluded files struct stat st; if( lstat( filename, &st ) != 0 ) // filename from command line { show_file_error( filename, cant_stat, errno ); set_error_status( 1 ); } else if( nftw( filename, add_member_lz, 16, cl_opts.dereference ? 0 : FTW_PHYS ) != 0 ) exit_fail_mt(); // write error or OOM else if( cl_opts.solidity == dsolid ) // end of group courier.receive_packet( new Ipacket ); } if( cl_opts.solidity == bsolid && partial_data_size ) // finish last block { partial_data_size = 0; courierp->receive_packet( new Ipacket ); } courier.finish(); // no more packets to send return 0; } /* Write ibuf to encoder. To minimize dictionary size, do not read from encoder until encoder's input buffer is full or finish is true. Send opacket to courier and allocate new obuf each time obuf is full. */ void loop_encode( const uint8_t * const ibuf, const int isize, uint8_t * & obuf, int & opos, Packet_courier & courier, LZ_Encoder * const encoder, const int worker_id, const bool finish = false ) { int ipos = 0; if( opos < 0 || opos > max_packet_size ) internal_error( "bad buffer index in loop_encode." ); while( true ) { if( ipos < isize ) { const int wr = LZ_compress_write( encoder, ibuf + ipos, isize - ipos ); if( wr < 0 ) internal_error( "library error (LZ_compress_write)." ); ipos += wr; } if( ipos >= isize ) // ibuf is empty { if( finish ) LZ_compress_finish( encoder ); else break; } const int rd = LZ_compress_read( encoder, obuf + opos, max_packet_size - opos ); if( rd < 0 ) { if( verbosity >= 0 ) std::fprintf( stderr, "LZ_compress_read error: %s\n", LZ_strerror( LZ_compress_errno( encoder ) ) ); exit_fail_mt(); } opos += rd; // obuf is full or last opacket in lzip member if( opos >= max_packet_size || LZ_compress_finished( encoder ) == 1 ) { if( opos > max_packet_size ) internal_error( "opacket size exceeded in worker." ); courier.collect_packet( new Opacket( obuf, opos ), worker_id ); opos = 0; obuf = new( std::nothrow ) uint8_t[max_packet_size]; if( !obuf ) { show_error( mem_msg2 ); exit_fail_mt(); } if( LZ_compress_finished( encoder ) == 1 ) { if( LZ_compress_restart_member( encoder, LLONG_MAX ) >= 0 ) break; show_error( "LZ_compress_restart_member failed." ); exit_fail_mt(); } } } if( ipos > isize ) internal_error( "ipacket size exceeded in worker." ); if( ipos < isize ) internal_error( "input not fully consumed in worker." ); } struct Worker_arg { Packet_courier * courier; int dictionary_size; int match_len_limit; int worker_id; }; /* Get ipackets from courier, compress headers and file data, and give the opackets produced to courier. */ extern "C" void * cworker( void * arg ) { const Worker_arg & tmp = *(const Worker_arg *)arg; Packet_courier & courier = *tmp.courier; const int dictionary_size = tmp.dictionary_size; const int match_len_limit = tmp.match_len_limit; const int worker_id = tmp.worker_id; LZ_Encoder * encoder = 0; uint8_t * data = 0; Resizable_buffer rbuf; // extended header + data if( !rbuf.size() ) { show_error( mem_msg2 ); exit_fail_mt(); } int opos = 0; bool flushed = true; // avoid producing empty lzip members while( true ) { const Ipacket * const ipacket = courier.distribute_packet( worker_id ); if( !ipacket ) break; // no more packets to process if( ipacket->filename.empty() ) // end of group { if( !flushed ) // this lzip member is not empty loop_encode( 0, 0, data, opos, courier, encoder, worker_id, true ); courier.collect_packet( new Opacket, worker_id ); // end of member token flushed = true; delete ipacket; continue; } const char * const filename = ipacket->filename.c_str(); const int infd = ipacket->file_size ? open_instream( filename ) : -1; if( ipacket->file_size && infd < 0 ) // can't read file data { delete[] ipacket->header; delete ipacket->extended; delete ipacket; set_error_status( 1 ); continue; } // skip file flushed = false; if( !encoder ) // init encoder just before using it { data = new( std::nothrow ) uint8_t[max_packet_size]; encoder = LZ_compress_open( dictionary_size, match_len_limit, LLONG_MAX ); if( !data || !encoder || LZ_compress_errno( encoder ) != LZ_ok ) { if( !data || !encoder || LZ_compress_errno( encoder ) == LZ_mem_error ) show_error( mem_msg2 ); else internal_error( "invalid argument to encoder." ); exit_fail_mt(); } } const int ebsize = ipacket->extended->format_block( rbuf ); // may be 0 if( ebsize < 0 ) { show_error( ipacket->extended->full_size_error() ); exit_fail_mt(); } if( ebsize > 0 ) // compress extended block loop_encode( rbuf.u8(), ebsize, data, opos, courier, encoder, worker_id ); // compress ustar header loop_encode( ipacket->header, header_size, data, opos, courier, encoder, worker_id ); delete[] ipacket->header; delete ipacket->extended; if( ipacket->file_size ) { const long long bufsize = 32 * header_size; uint8_t buf[bufsize]; long long rest = ipacket->file_size; while( rest > 0 ) { int size = std::min( rest, bufsize ); const int rd = readblock( infd, buf, size ); rest -= rd; if( rd != size ) { show_atpos_error( filename, ipacket->file_size - rest, false ); close( infd ); exit_fail_mt(); } if( rest == 0 ) // last read { const int rem = ipacket->file_size % header_size; if( rem > 0 ) { const int padding = header_size - rem; std::memset( buf + size, 0, padding ); size += padding; } } // compress size bytes of file loop_encode( buf, size, data, opos, courier, encoder, worker_id ); } if( close( infd ) != 0 ) { show_file_error( filename, eclosf_msg, errno ); exit_fail_mt(); } } if( gcl_opts->warn_newer && archive_attrs.is_newer( filename ) ) { show_file_error( filename, "File is newer than the archive." ); set_error_status( 1 ); } delete ipacket; } if( data ) delete[] data; if( encoder && LZ_compress_close( encoder ) < 0 ) { show_error( "LZ_compress_close failed." ); exit_fail_mt(); } return 0; } /* Get from courier the processed and sorted packets, and write their contents to the output archive. */ void muxer( Packet_courier & courier, const int outfd ) { while( true ) { const Opacket * const opacket = courier.deliver_packet(); if( !opacket ) break; // queue is empty. all workers exited if( !writeblock_wrapper( outfd, opacket->data, opacket->size ) ) exit_fail_mt(); delete[] opacket->data; delete opacket; } } } // end namespace // init the courier, then start the grouper and the workers and call the muxer int encode_lz( const Cl_options & cl_opts, const char * const archive_namep, const int outfd ) { const int in_slots = 65536; // max small files (<=512B) in 64 MiB const int num_workers = cl_opts.num_workers; const int total_in_slots = ( INT_MAX / num_workers >= in_slots ) ? num_workers * in_slots : INT_MAX; const int dictionary_size = option_mapping[cl_opts.level].dictionary_size; const int match_len_limit = option_mapping[cl_opts.level].match_len_limit; gcl_opts = &cl_opts; /* If an error happens after any threads have been started, exit must be called before courier goes out of scope. */ Packet_courier courier( num_workers, total_in_slots, cl_opts.out_slots ); courierp = &courier; // needed by add_member_lz Grouper_arg grouper_arg; grouper_arg.cl_opts = &cl_opts; grouper_arg.courier = &courier; pthread_t grouper_thread; int errcode = pthread_create( &grouper_thread, 0, grouper, &grouper_arg ); if( errcode ) { show_error( "Can't create grouper thread", errcode ); return 1; } Worker_arg * worker_args = new( std::nothrow ) Worker_arg[num_workers]; pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers]; if( !worker_args || !worker_threads ) { show_error( mem_msg ); exit_fail_mt(); } for( int i = 0; i < num_workers; ++i ) { worker_args[i].courier = &courier; worker_args[i].dictionary_size = dictionary_size; worker_args[i].match_len_limit = match_len_limit; worker_args[i].worker_id = i; errcode = pthread_create( &worker_threads[i], 0, cworker, &worker_args[i] ); if( errcode ) { show_error( "Can't create worker threads", errcode ); exit_fail_mt(); } } muxer( courier, outfd ); for( int i = num_workers - 1; i >= 0; --i ) { errcode = pthread_join( worker_threads[i], 0 ); if( errcode ) { show_error( "Can't join worker threads", errcode ); exit_fail_mt(); } } delete[] worker_threads; delete[] worker_args; errcode = pthread_join( grouper_thread, 0 ); if( errcode ) { show_error( "Can't join grouper thread", errcode ); exit_fail_mt(); } // write End-Of-Archive records int retval = !write_eoa_records( outfd, true ); if( close( outfd ) != 0 && retval == 0 ) { show_file_error( archive_namep, eclosa_msg, errno ); retval = 1; } if( cl_opts.debug_level & 1 ) std::fprintf( stderr, "any worker tried to consume from grouper %8u times\n" "any worker had to wait %8u times\n" "muxer tried to consume from workers %8u times\n" "muxer had to wait %8u times\n", courier.icheck_counter, courier.iwait_counter, courier.ocheck_counter, courier.owait_counter ); if( !courier.finished() ) internal_error( conofin_msg ); return final_exit_status( retval ); }