/* Tarlz - Archiver with multimember lzip compression
Copyright (C) 2013-2020 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#define _FILE_OFFSET_BITS 64
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "arg_parser.h"
#include "tarlz.h"
namespace {
const Cl_options * gcl_opts = 0; // local vars needed by add_member_lz
enum { max_packet_size = 1 << 20 };
class Packet_courier;
Packet_courier * courierp = 0;
unsigned long long partial_data_size = 0; // size of current block
class Slot_tally
{
const int num_slots; // total slots
int num_free; // remaining free slots
pthread_mutex_t mutex;
pthread_cond_t slot_av; // slot available
Slot_tally( const Slot_tally & ); // declared as private
void operator=( const Slot_tally & ); // declared as private
public:
explicit Slot_tally( const int slots )
: num_slots( slots ), num_free( slots )
{ xinit_mutex( &mutex ); xinit_cond( &slot_av ); }
~Slot_tally() { xdestroy_cond( &slot_av ); xdestroy_mutex( &mutex ); }
bool all_free() { return ( num_free == num_slots ); }
void get_slot() // wait for a free slot
{
xlock( &mutex );
while( num_free <= 0 ) xwait( &slot_av, &mutex );
--num_free;
xunlock( &mutex );
}
void leave_slot() // return a slot to the tally
{
xlock( &mutex );
if( ++num_free == 1 ) xsignal( &slot_av ); // num_free was 0
xunlock( &mutex );
}
};
struct Ipacket // filename, file size and headers
{
const long long file_size;
const std::string filename; // filename.empty() means end of lzip member
const Extended * const extended;
const uint8_t * const header;
Ipacket() : file_size( 0 ), extended( 0 ), header( 0 ) {}
Ipacket( const char * const name, const long long s,
const Extended * const ext, const uint8_t * const head )
: file_size( s ), filename( name ), extended( ext ), header( head ) {}
};
struct Opacket // compressed data to be written to the archive
{
const uint8_t * const data; // data == 0 means end of lzip member
const int size; // number of bytes in data (if any)
Opacket() : data( 0 ), size( 0 ) {}
Opacket( uint8_t * const d, const int s ) : data( d ), size( s ) {}
};
class Packet_courier // moves packets around
{
public:
unsigned icheck_counter;
unsigned iwait_counter;
unsigned ocheck_counter;
unsigned owait_counter;
private:
int receive_worker_id; // worker queue currently receiving packets
int deliver_worker_id; // worker queue currently delivering packets
Slot_tally slot_tally; // limits the number of input packets
std::vector< std::queue< const Ipacket * > > ipacket_queues;
std::vector< std::queue< const Opacket * > > opacket_queues;
int num_working; // number of workers still running
const int num_workers; // number of workers
const unsigned out_slots; // max output packets per queue
pthread_mutex_t imutex;
pthread_cond_t iav_or_eof; // input packet available or grouper done
pthread_mutex_t omutex;
pthread_cond_t oav_or_exit; // output packet available or all workers exited
std::vector< pthread_cond_t > slot_av; // output slot available
bool eof; // grouper done
Packet_courier( const Packet_courier & ); // declared as private
void operator=( const Packet_courier & ); // declared as private
public:
Packet_courier( const int workers, const int in_slots, const int oslots )
: icheck_counter( 0 ), iwait_counter( 0 ),
ocheck_counter( 0 ), owait_counter( 0 ),
receive_worker_id( 0 ), deliver_worker_id( 0 ),
slot_tally( in_slots ), ipacket_queues( workers ),
opacket_queues( workers ), num_working( workers ),
num_workers( workers ), out_slots( oslots ), slot_av( workers ),
eof( false )
{
xinit_mutex( &imutex ); xinit_cond( &iav_or_eof );
xinit_mutex( &omutex ); xinit_cond( &oav_or_exit );
for( unsigned i = 0; i < slot_av.size(); ++i ) xinit_cond( &slot_av[i] );
}
~Packet_courier()
{
for( unsigned i = 0; i < slot_av.size(); ++i ) xdestroy_cond( &slot_av[i] );
xdestroy_cond( &oav_or_exit ); xdestroy_mutex( &omutex );
xdestroy_cond( &iav_or_eof ); xdestroy_mutex( &imutex );
}
/* Receive an ipacket from grouper.
If filename.empty() (end of lzip member token), move to next queue. */
void receive_packet( const Ipacket * const ipacket )
{
if( !ipacket->filename.empty() )
slot_tally.get_slot(); // wait for a free slot
xlock( &imutex );
ipacket_queues[receive_worker_id].push( ipacket );
if( ipacket->filename.empty() && ++receive_worker_id >= num_workers )
receive_worker_id = 0;
xbroadcast( &iav_or_eof );
xunlock( &imutex );
}
// distribute an ipacket to a worker
const Ipacket * distribute_packet( const int worker_id )
{
const Ipacket * ipacket = 0;
xlock( &imutex );
++icheck_counter;
while( ipacket_queues[worker_id].empty() && !eof )
{
++iwait_counter;
xwait( &iav_or_eof, &imutex );
}
if( !ipacket_queues[worker_id].empty() )
{
ipacket = ipacket_queues[worker_id].front();
ipacket_queues[worker_id].pop();
}
xunlock( &imutex );
if( ipacket )
{ if( !ipacket->filename.empty() ) slot_tally.leave_slot(); }
else
{
// notify muxer when last worker exits
xlock( &omutex );
if( --num_working == 0 ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
return ipacket;
}
// collect an opacket from a worker
void collect_packet( const Opacket * const opacket, const int worker_id )
{
xlock( &omutex );
if( opacket->data )
{
while( opacket_queues[worker_id].size() >= out_slots )
xwait( &slot_av[worker_id], &omutex );
}
opacket_queues[worker_id].push( opacket );
if( worker_id == deliver_worker_id ) xsignal( &oav_or_exit );
xunlock( &omutex );
}
/* Deliver an opacket to muxer.
If opacket data == 0, move to next queue and wait again. */
const Opacket * deliver_packet()
{
const Opacket * opacket = 0;
xlock( &omutex );
++ocheck_counter;
while( true )
{
while( opacket_queues[deliver_worker_id].empty() && num_working > 0 )
{
++owait_counter;
xwait( &oav_or_exit, &omutex );
}
if( opacket_queues[deliver_worker_id].empty() ) break;
opacket = opacket_queues[deliver_worker_id].front();
opacket_queues[deliver_worker_id].pop();
if( opacket_queues[deliver_worker_id].size() + 1 == out_slots )
xsignal( &slot_av[deliver_worker_id] );
if( opacket->data ) break;
if( ++deliver_worker_id >= num_workers ) deliver_worker_id = 0;
delete opacket; opacket = 0;
}
xunlock( &omutex );
return opacket;
}
void finish() // grouper has no more packets to send
{
xlock( &imutex );
eof = true;
xbroadcast( &iav_or_eof );
xunlock( &imutex );
}
bool finished() // all packets delivered to muxer
{
if( !slot_tally.all_free() || !eof || num_working != 0 ) return false;
for( int i = 0; i < num_workers; ++i )
if( !ipacket_queues[i].empty() ) return false;
for( int i = 0; i < num_workers; ++i )
if( !opacket_queues[i].empty() ) return false;
return true;
}
};
// send one ipacket with tar member metadata to courier
int add_member_lz( const char * const filename, const struct stat *,
const int flag, struct FTW * )
{
if( Exclude::excluded( filename ) ) return 0; // skip excluded files
long long file_size;
// metadata for extended records
Extended * const extended = new( std::nothrow ) Extended;
uint8_t * const header = extended ? new( std::nothrow ) Tar_header : 0;
if( !header )
{ show_error( mem_msg ); if( extended ) delete extended; return 1; }
if( !fill_headers( filename, *extended, header, file_size, flag ) )
{ delete[] header; delete extended; return 0; }
if( gcl_opts->solidity == bsolid &&
block_is_full( *extended, file_size, partial_data_size ) )
courierp->receive_packet( new Ipacket ); // end of group
courierp->receive_packet( new Ipacket( filename, file_size, extended, header ) );
if( gcl_opts->solidity == no_solid ) // one tar member per group
courierp->receive_packet( new Ipacket );
if( verbosity >= 1 ) std::fprintf( stderr, "%s\n", filename );
return 0;
}
struct Grouper_arg
{
const Cl_options * cl_opts;
Packet_courier * courier;
};
/* Package metadata of the files to be archived and pass them to the
courier for distribution to workers.
*/
extern "C" void * grouper( void * arg )
{
const Grouper_arg & tmp = *(const Grouper_arg *)arg;
const Cl_options & cl_opts = *tmp.cl_opts;
Packet_courier & courier = *tmp.courier;
for( int i = 0; i < cl_opts.parser.arguments(); ++i ) // parse command line
{
const int code = cl_opts.parser.code( i );
const std::string & arg = cl_opts.parser.argument( i );
const char * filename = arg.c_str();
if( code == 'C' && chdir( filename ) != 0 )
{ show_file_error( filename, "Error changing working directory", errno );
cleanup_and_fail(); }
if( code ) continue; // skip options
if( cl_opts.parser.argument( i ).empty() ) continue; // skip empty names
std::string deslashed; // arg without trailing slashes
unsigned len = arg.size();
while( len > 1 && arg[len-1] == '/' ) --len;
if( len < arg.size() )
{ deslashed.assign( arg, 0, len ); filename = deslashed.c_str(); }
if( Exclude::excluded( filename ) ) continue; // skip excluded files
struct stat st;
if( lstat( filename, &st ) != 0 ) // filename from command line
{ show_file_error( filename, "Can't stat input file", errno );
set_error_status( 1 ); }
else if( nftw( filename, add_member_lz, 16,
cl_opts.dereference ? 0 : FTW_PHYS ) != 0 )
cleanup_and_fail(); // write error or OOM
else if( cl_opts.solidity == dsolid ) // end of group
courier.receive_packet( new Ipacket );
}
if( cl_opts.solidity == bsolid && partial_data_size ) // finish last block
{ partial_data_size = 0; courierp->receive_packet( new Ipacket ); }
courier.finish(); // no more packets to send
return 0;
}
/* Writes ibuf to encoder. To minimize dictionary size, it does not read
from encoder until encoder's input buffer is full or finish is true.
Sends opacket to courier and allocates new obuf each time obuf is full.
*/
void loop_encode( const uint8_t * const ibuf, const int isize,
uint8_t * & obuf, int & opos, Packet_courier & courier,
LZ_Encoder * const encoder, const int worker_id,
const bool finish = false )
{
int ipos = 0;
if( opos < 0 || opos > max_packet_size )
internal_error( "bad buffer index in loop_encode." );
while( true )
{
if( ipos < isize )
{
const int wr = LZ_compress_write( encoder, ibuf + ipos, isize - ipos );
if( wr < 0 ) internal_error( "library error (LZ_compress_write)." );
ipos += wr;
}
if( ipos >= isize ) // ibuf is empty
{ if( finish ) LZ_compress_finish( encoder ); else break; }
const int rd =
LZ_compress_read( encoder, obuf + opos, max_packet_size - opos );
if( rd < 0 )
{
if( verbosity >= 0 )
std::fprintf( stderr, "LZ_compress_read error: %s\n",
LZ_strerror( LZ_compress_errno( encoder ) ) );
cleanup_and_fail();
}
opos += rd;
// obuf is full or last opacket in lzip member
if( opos >= max_packet_size || LZ_compress_finished( encoder ) == 1 )
{
if( opos > max_packet_size )
internal_error( "opacket size exceeded in worker." );
courier.collect_packet( new Opacket( obuf, opos ), worker_id );
opos = 0; obuf = new( std::nothrow ) uint8_t[max_packet_size];
if( !obuf ) { show_error( mem_msg2 ); cleanup_and_fail(); }
if( LZ_compress_finished( encoder ) == 1 )
{
if( LZ_compress_restart_member( encoder, LLONG_MAX ) >= 0 ) break;
show_error( "LZ_compress_restart_member failed." ); cleanup_and_fail();
}
}
}
if( ipos > isize ) internal_error( "ipacket size exceeded in worker." );
if( ipos < isize ) internal_error( "input not fully consumed in worker." );
}
struct Worker_arg
{
Packet_courier * courier;
int dictionary_size;
int match_len_limit;
int worker_id;
};
/* Get ipackets from courier, compress headers and file data, and give the
opackets produced to courier.
*/
extern "C" void * cworker( void * arg )
{
const Worker_arg & tmp = *(const Worker_arg *)arg;
Packet_courier & courier = *tmp.courier;
const int dictionary_size = tmp.dictionary_size;
const int match_len_limit = tmp.match_len_limit;
const int worker_id = tmp.worker_id;
LZ_Encoder * encoder = 0;
uint8_t * data = 0;
Resizable_buffer rbuf; // extended header + data
if( !rbuf.size() ) { show_error( mem_msg2 ); cleanup_and_fail(); }
int opos = 0;
bool flushed = true; // avoid producing empty lzip members
while( true )
{
const Ipacket * const ipacket = courier.distribute_packet( worker_id );
if( !ipacket ) break; // no more packets to process
if( ipacket->filename.empty() ) // end of group
{
if( !flushed ) // this lzip member is not empty
loop_encode( 0, 0, data, opos, courier, encoder, worker_id, true );
courier.collect_packet( new Opacket, worker_id ); // end of member token
flushed = true; delete ipacket; continue;
}
const int infd =
ipacket->file_size ? open_instream( ipacket->filename.c_str() ) : -1;
if( ipacket->file_size && infd < 0 ) // can't read file data
{ delete[] ipacket->header; delete ipacket->extended; delete ipacket;
set_error_status( 1 ); continue; } // skip file
flushed = false;
if( !encoder ) // init encoder just before using it
{
data = new( std::nothrow ) uint8_t[max_packet_size];
encoder = LZ_compress_open( dictionary_size, match_len_limit, LLONG_MAX );
if( !data || !encoder || LZ_compress_errno( encoder ) != LZ_ok )
{
if( !data || !encoder || LZ_compress_errno( encoder ) == LZ_mem_error )
show_error( mem_msg2 );
else
internal_error( "invalid argument to encoder." );
cleanup_and_fail();
}
}
if( !ipacket->extended->empty() ) // compress extended block
{
const long long ebsize = ipacket->extended->format_block( rbuf );
if( ebsize < 0 )
{ show_error( "Error formatting extended records." ); cleanup_and_fail(); }
/* Limit the size of the extended block to INT_MAX - 1 so that it can
be fed to lzlib as one buffer. */
if( ebsize >= INT_MAX )
{ show_error( "Extended records size >= INT_MAX." ); cleanup_and_fail(); }
loop_encode( (const uint8_t *)rbuf(), ebsize, data, opos, courier,
encoder, worker_id );
}
// compress ustar header
loop_encode( ipacket->header, header_size, data, opos, courier,
encoder, worker_id );
delete[] ipacket->header; delete ipacket->extended;
if( ipacket->file_size )
{
const long long bufsize = 32 * header_size;
uint8_t buf[bufsize];
long long rest = ipacket->file_size;
while( rest > 0 )
{
int size = std::min( rest, bufsize );
const int rd = readblock( infd, buf, size );
rest -= rd;
if( rd != size )
{
if( verbosity >= 0 )
std::fprintf( stderr, "File '%s' ends unexpectedly at pos %llu\n",
ipacket->filename.c_str(), ipacket->file_size - rest );
close( infd ); cleanup_and_fail();
}
if( rest == 0 ) // last read
{
const int rem = ipacket->file_size % header_size;
if( rem > 0 )
{ const int padding = header_size - rem;
std::memset( buf + size, 0, padding ); size += padding; }
}
// compress size bytes of file
loop_encode( buf, size, data, opos, courier, encoder, worker_id );
}
if( close( infd ) != 0 )
{ show_file_error( ipacket->filename.c_str(), "Error closing file", errno );
cleanup_and_fail(); }
}
delete ipacket;
}
if( data ) delete[] data;
if( encoder && LZ_compress_close( encoder ) < 0 )
{ show_error( "LZ_compress_close failed." ); cleanup_and_fail(); }
return 0;
}
/* Get from courier the processed and sorted packets, and write
their contents to the output archive.
*/
void muxer( Packet_courier & courier, const int outfd )
{
while( true )
{
const Opacket * const opacket = courier.deliver_packet();
if( !opacket ) break; // queue is empty. all workers exited
if( !writeblock_wrapper( outfd, opacket->data, opacket->size ) )
cleanup_and_fail();
delete[] opacket->data;
delete opacket;
}
}
} // end namespace
// init the courier, then start the grouper and the workers and call the muxer
int encode_lz( const Cl_options & cl_opts, const char * const archive_namep,
const int dictionary_size, const int match_len_limit,
const int outfd )
{
const int in_slots = 65536; // max small files (<=512B) in 64 MiB
const int num_workers = cl_opts.num_workers;
const int total_in_slots = ( INT_MAX / num_workers >= in_slots ) ?
num_workers * in_slots : INT_MAX;
gcl_opts = &cl_opts;
/* If an error happens after any threads have been started, exit must be
called before courier goes out of scope. */
Packet_courier courier( num_workers, total_in_slots, cl_opts.out_slots );
courierp = &courier; // needed by add_member_lz
Grouper_arg grouper_arg;
grouper_arg.cl_opts = &cl_opts;
grouper_arg.courier = &courier;
pthread_t grouper_thread;
int errcode = pthread_create( &grouper_thread, 0, grouper, &grouper_arg );
if( errcode )
{ show_error( "Can't create grouper thread", errcode ); cleanup_and_fail(); }
Worker_arg * worker_args = new( std::nothrow ) Worker_arg[num_workers];
pthread_t * worker_threads = new( std::nothrow ) pthread_t[num_workers];
if( !worker_args || !worker_threads )
{ show_error( mem_msg ); cleanup_and_fail(); }
for( int i = 0; i < num_workers; ++i )
{
worker_args[i].courier = &courier;
worker_args[i].dictionary_size = dictionary_size;
worker_args[i].match_len_limit = match_len_limit;
worker_args[i].worker_id = i;
errcode = pthread_create( &worker_threads[i], 0, cworker, &worker_args[i] );
if( errcode )
{ show_error( "Can't create worker threads", errcode ); cleanup_and_fail(); }
}
muxer( courier, outfd );
for( int i = num_workers - 1; i >= 0; --i )
{
errcode = pthread_join( worker_threads[i], 0 );
if( errcode )
{ show_error( "Can't join worker threads", errcode ); cleanup_and_fail(); }
}
delete[] worker_threads;
delete[] worker_args;
errcode = pthread_join( grouper_thread, 0 );
if( errcode )
{ show_error( "Can't join grouper thread", errcode ); cleanup_and_fail(); }
// write End-Of-Archive records
int retval = !write_eof_records( outfd, true );
if( close( outfd ) != 0 && !retval )
{ show_file_error( archive_namep, "Error closing archive", errno );
retval = 1; }
if( cl_opts.debug_level & 1 )
std::fprintf( stderr,
"any worker tried to consume from grouper %8u times\n"
"any worker had to wait %8u times\n"
"muxer tried to consume from workers %8u times\n"
"muxer had to wait %8u times\n",
courier.icheck_counter,
courier.iwait_counter,
courier.ocheck_counter,
courier.owait_counter );
if( !courier.finished() ) internal_error( "courier not finished." );
return final_exit_status( retval );
}