/* * LZIP decompressor * * Copyright (C) 2016-2018 Antonio Diaz Diaz. * * Licensed under GPLv2 or later, see file LICENSE in this source tree. */ #include "linux_module.h" #include "linux_lzip.h" #include "linux_mm.h" /* * STATIC_RW_DATA is used in the pre-boot environment on some architectures. * See include/linux/decompress/mm.h for details. */ #ifndef STATIC_RW_DATA #define STATIC_RW_DATA static #endif typedef int State; enum { states = 12 }; static inline bool St_is_char(const State st) { return st < 7; } static inline State St_set_char(const State st) { STATIC_RW_DATA const State next[states] = { 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5 }; return next[st]; } static inline State St_set_match(const State st) { return ((st < 7) ? 7 : 10); } static inline State St_set_rep(const State st) { return ((st < 7) ? 8 : 11); } static inline State St_set_short_rep(const State st) { return ((st < 7) ? 9 : 11); } enum { min_dictionary_bits = 12, min_dictionary_size = 1 << min_dictionary_bits, max_dictionary_bits = 29, max_dictionary_size = 1 << max_dictionary_bits, literal_context_bits = 3, pos_state_bits = 2, pos_states = 1 << pos_state_bits, pos_state_mask = pos_states - 1, len_states = 4, dis_slot_bits = 6, start_dis_model = 4, end_dis_model = 14, modeled_distances = 1 << (end_dis_model / 2), /* 128 */ dis_align_bits = 4, dis_align_size = 1 << dis_align_bits, len_low_bits = 3, len_mid_bits = 3, len_high_bits = 8, len_low_symbols = 1 << len_low_bits, len_mid_symbols = 1 << len_mid_bits, len_high_symbols = 1 << len_high_bits, max_len_symbols = len_low_symbols + len_mid_symbols + len_high_symbols, min_match_len = 2, /* must be 2 */ max_match_len = min_match_len + max_len_symbols - 1, /* 273 */ min_match_len_limit = 5 }; static inline int get_len_state(const int len) { return min(len - min_match_len, len_states - 1); } static inline int get_lit_state(const uint8_t prev_byte) { return (prev_byte >> (8 - literal_context_bits)); } enum { bit_model_move_bits = 5, bit_model_total_bits = 11, bit_model_total = 1 << bit_model_total_bits }; typedef int Bit_model; static inline void Bm_init(Bit_model * const probability) { *probability = bit_model_total / 2; } static inline void Bm_array_init(Bit_model bm[], const int size) { int i; for (i = 0; i < size; ++i) Bm_init(&bm[i]); } struct Len_model { Bit_model choice1; Bit_model choice2; Bit_model bm_low[pos_states][len_low_symbols]; Bit_model bm_mid[pos_states][len_mid_symbols]; Bit_model bm_high[len_high_symbols]; }; static inline void Lm_init(struct Len_model * const lm) { Bm_init(&lm->choice1); Bm_init(&lm->choice2); Bm_array_init(lm->bm_low[0], pos_states * len_low_symbols); Bm_array_init(lm->bm_mid[0], pos_states * len_mid_symbols); Bm_array_init(lm->bm_high, len_high_symbols); } /* Table of CRCs of all 8-bit messages. */ STATIC_RW_DATA const uint32_t crc32[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; static inline void CRC32_update_buf(uint32_t * const crc, const uint8_t * const buffer, const long size) { long i; uint32_t c = *crc; for (i = 0; i < size; ++i) c = crc32[(c^buffer[i])&0xFF] ^ (c >> 8); *crc = c; } STATIC_RW_DATA const uint8_t lzip_magic[4] = { 0x4C, 0x5A, 0x49, 0x50 }; /* "LZIP" */ typedef uint8_t Lzip_header[6]; /* 0-3 magic bytes */ /* 4 version */ /* 5 coded_dict_size */ enum { Lh_size = 6 }; static inline bool Lh_verify_magic(const Lzip_header data) { int i; for (i = 0; i < 4; ++i) if (data[i] != lzip_magic[i]) return false; return true; } /* detect (truncated) header */ static inline bool Lh_verify_prefix(const Lzip_header data, const int sz) { int i; for (i = 0; i < sz && i < 4; ++i) if (data[i] != lzip_magic[i]) return false; return (sz > 0); } /* detect corrupt header */ static inline bool Lh_verify_corrupt(const Lzip_header data) { int matches = 0; int i; for (i = 0; i < 4; ++i) if (data[i] == lzip_magic[i]) ++matches; return (matches > 1 && matches < 4); } static inline bool Lh_verify_version(const Lzip_header data) { return (data[4] == 1); } static inline unsigned Lh_get_dictionary_size(const Lzip_header data) { unsigned sz = (1 << (data[5] & 0x1F)); if (sz > min_dictionary_size) sz -= (sz / 16) * ((data[5] >> 5) & 7); return sz; } typedef uint8_t Lzip_trailer[20]; /* 0-3 CRC32 of the uncompressed data */ /* 4-11 size of the uncompressed data */ /* 12-19 member size including header and trailer */ enum { Lt_size = 20 }; static inline unsigned Lt_get_data_crc(const Lzip_trailer data) { unsigned tmp = 0; int i; for (i = 3; i >= 0; --i) { tmp <<= 8; tmp += data[i]; } return tmp; } static inline unsigned long long Lt_get_data_size(const Lzip_trailer data) { unsigned long long tmp = 0; int i; for (i = 11; i >= 4; --i) { tmp <<= 8; tmp += data[i]; } return tmp; } static inline unsigned long long Lt_get_member_size(const Lzip_trailer data) { unsigned long long tmp = 0; int i; for (i = 19; i >= 12; --i) { tmp <<= 8; tmp += data[i]; } return tmp; } struct Range_decoder { unsigned long long partial_member_pos; uint8_t *buffer; /* input buffer */ long buffer_size; long pos; /* current pos in buffer */ long stream_pos; /* when reached, a new block must be read */ uint32_t code; uint32_t range; long (*fill)(void*, unsigned long); bool at_stream_end; bool buffer_given; }; static bool Rd_read_block(struct Range_decoder * const rdec) { if (!rdec->at_stream_end) { rdec->stream_pos = rdec->fill ? rdec->fill(rdec->buffer, rdec->buffer_size) : 0; rdec->at_stream_end = (rdec->stream_pos < rdec->buffer_size); rdec->partial_member_pos += rdec->pos; rdec->pos = 0; } return rdec->pos < rdec->stream_pos; } static inline bool Rd_init(struct Range_decoder * const rdec, uint8_t * const inbuf, const long in_len, long (*fill)(void*, unsigned long)) { rdec->partial_member_pos = 0; rdec->buffer_given = (inbuf && in_len > 0); rdec->buffer_size = rdec->buffer_given ? in_len : 16384; rdec->buffer = rdec->buffer_given ? inbuf : malloc(rdec->buffer_size); if (!rdec->buffer) return false; rdec->pos = 0; rdec->stream_pos = rdec->buffer_given ? in_len : 0; rdec->code = 0; rdec->range = 0xFFFFFFFFU; rdec->fill = fill; rdec->at_stream_end = false; return true; } static inline void Rd_free(struct Range_decoder * const rdec) { if (!rdec->buffer_given) free(rdec->buffer); } static inline bool Rd_finished(struct Range_decoder * const rdec) { return rdec->pos >= rdec->stream_pos && !Rd_read_block(rdec); } static inline unsigned long long Rd_member_position(const struct Range_decoder * const rdec) { return rdec->partial_member_pos + rdec->pos; } static inline void Rd_reset_member_position(struct Range_decoder * const rdec) { rdec->partial_member_pos = 0; rdec->partial_member_pos -= rdec->pos; } static inline uint8_t Rd_get_byte(struct Range_decoder * const rdec) { /* 0xFF avoids decoder error if member is truncated at EOS marker */ if (Rd_finished(rdec)) return 0xFF; return rdec->buffer[rdec->pos++]; } static inline void Rd_load(struct Range_decoder * const rdec) { int i; rdec->code = 0; for (i = 0; i < 5; ++i) rdec->code = (rdec->code << 8) | Rd_get_byte(rdec); rdec->range = 0xFFFFFFFFU; } static inline void Rd_normalize(struct Range_decoder * const rdec) { if (rdec->range <= 0x00FFFFFFU) { rdec->range <<= 8; rdec->code = (rdec->code << 8) | Rd_get_byte(rdec); } } static inline unsigned Rd_decode(struct Range_decoder * const rdec, const int num_bits) { unsigned symbol = 0; int i; for (i = num_bits; i > 0; --i) { bool bit; Rd_normalize(rdec); rdec->range >>= 1; /* symbol <<= 1; */ /* if(rdec->code >= rdec->range) { rdec->code -= rdec->range; symbol |= 1; } */ bit = (rdec->code >= rdec->range); symbol = (symbol << 1) + bit; rdec->code -= rdec->range & (0U - bit); } return symbol; } static inline unsigned Rd_decode_bit(struct Range_decoder * const rdec, Bit_model * const probability) { uint32_t bound; Rd_normalize(rdec); bound = (rdec->range >> bit_model_total_bits) * *probability; if (rdec->code < bound) { rdec->range = bound; *probability += (bit_model_total - *probability) >> bit_model_move_bits; return 0; } else { rdec->range -= bound; rdec->code -= bound; *probability -= *probability >> bit_model_move_bits; return 1; } } static inline unsigned Rd_decode_tree3(struct Range_decoder * const rdec, Bit_model bm[]) { unsigned symbol = 1; symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); return symbol & 7; } static inline unsigned Rd_decode_tree6(struct Range_decoder * const rdec, Bit_model bm[]) { unsigned symbol = 1; symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); return symbol & 0x3F; } static inline unsigned Rd_decode_tree8(struct Range_decoder * const rdec, Bit_model bm[]) { unsigned symbol = 1; int i; for (i = 0; i < 8; ++i) symbol = (symbol << 1) | Rd_decode_bit(rdec, &bm[symbol]); return symbol & 0xFF; } static inline unsigned Rd_decode_tree_reversed(struct Range_decoder * const rdec, Bit_model bm[], const int num_bits) { unsigned model = 1; unsigned symbol = 0; int i; for (i = 0; i < num_bits; ++i) { const unsigned bit = Rd_decode_bit(rdec, &bm[model]); model = (model << 1) + bit; symbol |= (bit << i); } return symbol; } static inline unsigned Rd_decode_tree_reversed4(struct Range_decoder * const rdec, Bit_model bm[]) { unsigned symbol = Rd_decode_bit(rdec, &bm[1]); unsigned model = 2 + symbol; unsigned bit = Rd_decode_bit(rdec, &bm[model]); model = (model << 1) + bit; symbol |= (bit << 1); bit = Rd_decode_bit(rdec, &bm[model]); model = (model << 1) + bit; symbol |= (bit << 2); symbol |= (Rd_decode_bit(rdec, &bm[model]) << 3); return symbol; } static inline unsigned Rd_decode_matched(struct Range_decoder * const rdec, Bit_model bm[], unsigned match_byte) { unsigned symbol = 1; unsigned mask = 0x100; while (true) { const unsigned match_bit = (match_byte <<= 1) & mask; const unsigned bit = Rd_decode_bit(rdec, &bm[symbol+match_bit+mask]); symbol = (symbol << 1) + bit; if (symbol > 0xFF) return symbol & 0xFF; mask &= ~(match_bit ^ (bit << 8)); /* if( match_bit != bit ) mask = 0; */ } } static inline unsigned Rd_decode_len(struct Range_decoder * const rdec, struct Len_model * const lm, const int pos_state) { if (Rd_decode_bit(rdec, &lm->choice1) == 0) return Rd_decode_tree3(rdec, lm->bm_low[pos_state]); if (Rd_decode_bit(rdec, &lm->choice2) == 0) return len_low_symbols + Rd_decode_tree3(rdec, lm->bm_mid[pos_state]); return len_low_symbols + len_mid_symbols + Rd_decode_tree8(rdec, lm->bm_high); } struct LZ_decoder { unsigned long long partial_data_pos; struct Range_decoder *rdec; /* Don't move bm_* to LZd_decode_member; makes frame too large. */ Bit_model bm_literal[1 << literal_context_bits][0x300]; Bit_model bm_match[states][pos_states]; Bit_model bm_rep[states]; Bit_model bm_rep0[states]; Bit_model bm_rep1[states]; Bit_model bm_rep2[states]; Bit_model bm_len[states][pos_states]; Bit_model bm_dis_slot[len_states][1 << dis_slot_bits]; Bit_model bm_dis[modeled_distances-end_dis_model+1]; Bit_model bm_align[dis_align_size]; struct Len_model match_len_model; struct Len_model rep_len_model; unsigned long buffer_size; unsigned dictionary_size; uint8_t *buffer; /* output buffer */ unsigned long pos; /* current pos in buffer */ unsigned long stream_pos; /* first byte not yet written to file */ uint32_t crc; long (*flush)(void*, unsigned long); bool pos_wrapped; bool buffer_given; bool write_error; }; static void LZd_flush_data(struct LZ_decoder * const d) { if (d->pos > d->stream_pos) { const long size = d->pos - d->stream_pos; CRC32_update_buf(&d->crc, d->buffer + d->stream_pos, size); if ((d->flush && d->flush(d->buffer + d->stream_pos, size) != size) || (!d->flush && d->pos_wrapped)) d->write_error = true; if (d->pos >= d->buffer_size) { d->partial_data_pos += d->pos; d->pos = 0; d->pos_wrapped = true; } d->stream_pos = d->pos; } } static inline uint8_t LZd_peek_prev(const struct LZ_decoder * const d) { if (d->pos > 0) return d->buffer[d->pos-1]; if (d->pos_wrapped) return d->buffer[d->buffer_size-1]; return 0; /* prev_byte of first byte */ } static inline uint8_t LZd_peek(const struct LZ_decoder * const d, const unsigned distance) { const unsigned long i = ((d->pos > distance) ? 0 : d->buffer_size) + d->pos - distance - 1; return d->buffer[i]; } static inline void LZd_put_byte(struct LZ_decoder * const d, const uint8_t b) { d->buffer[d->pos] = b; if (++d->pos >= d->buffer_size) LZd_flush_data(d); } static inline void LZd_copy_block(struct LZ_decoder * const d, const unsigned distance, unsigned len) { unsigned long lpos = d->pos, i = lpos - distance - 1; bool fast, fast2; if (lpos > distance) { fast = (len < d->buffer_size - lpos); fast2 = (fast && len <= lpos - i); } else { i += d->buffer_size; fast = (len < d->buffer_size - i); /* (i == pos) may happen */ fast2 = (fast && len <= i - lpos); } if (fast) { /* no wrap */ d->pos += len; if (fast2) /* no wrap, no overlap */ memcpy(d->buffer + lpos, d->buffer + i, len); else for (; len > 0; --len) d->buffer[lpos++] = d->buffer[i++]; } else for (; len > 0; --len) { d->buffer[d->pos] = d->buffer[i]; if (++d->pos >= d->buffer_size) LZd_flush_data(d); if (++i >= d->buffer_size) i = 0; } } static inline bool LZd_init(struct LZ_decoder * const d, struct Range_decoder * const rde, const unsigned dict_size, uint8_t * const outbuf, long out_size, long (*flush)(void*, unsigned long)) { d->partial_data_pos = 0; d->rdec = rde; Bm_array_init(d->bm_literal[0], (1 << literal_context_bits) * 0x300); Bm_array_init(d->bm_match[0], states * pos_states); Bm_array_init(d->bm_rep, states); Bm_array_init(d->bm_rep0, states); Bm_array_init(d->bm_rep1, states); Bm_array_init(d->bm_rep2, states); Bm_array_init(d->bm_len[0], states * pos_states); Bm_array_init(d->bm_dis_slot[0], len_states * (1 << dis_slot_bits)); Bm_array_init(d->bm_dis, modeled_distances - end_dis_model + 1); Bm_array_init(d->bm_align, dis_align_size); Lm_init(&d->match_len_model); Lm_init(&d->rep_len_model); d->buffer_given = (outbuf && out_size > 0); d->buffer_size = d->buffer_given ? (unsigned long)out_size : dict_size; d->dictionary_size = min_t(unsigned long, d->buffer_size, dict_size); d->buffer = d->buffer_given ? outbuf : large_malloc(d->buffer_size); if (!d->buffer) return false; d->pos = 0; d->stream_pos = 0; d->crc = 0xFFFFFFFFU; d->flush = flush; d->pos_wrapped = false; d->write_error = false; /* prev_byte of first byte; also for LZd_peek( 0 ) on corrupt file */ if (!d->buffer_given) /* inbuf and outbuf may overlap */ d->buffer[d->buffer_size-1] = 0; return true; } static inline void LZd_free(struct LZ_decoder * const d) { if (!d->buffer_given) large_free(d->buffer); } static inline unsigned LZd_crc(const struct LZ_decoder * const d) { return d->crc ^ 0xFFFFFFFFU; } static inline unsigned long long LZd_data_position(const struct LZ_decoder * const d) { return d->partial_data_pos + d->pos; } static bool LZd_verify_trailer(struct LZ_decoder * const d) { Lzip_trailer trailer; int i = 0; while (i < Lt_size) trailer[i++] = Rd_get_byte(d->rdec); return (Lt_get_data_crc(trailer) == LZd_crc(d) && Lt_get_data_size(trailer) == LZd_data_position(d) && Lt_get_member_size(trailer) == Rd_member_position(d->rdec)); } /* Return value: 0 = OK, < 0 = error (see include/linux/lzip.h). */ static int LZd_decode_member(struct LZ_decoder * const d) { struct Range_decoder * const rdec = d->rdec; unsigned rep0 = 0; /* rep[0-3] latest four distances */ unsigned rep1 = 0; /* used for efficient coding of */ unsigned rep2 = 0; /* repeated distances */ unsigned rep3 = 0; State state = 0; Rd_load(rdec); while (!Rd_finished(rdec)) { int len; const int pos_state = LZd_data_position(d) & pos_state_mask; if (Rd_decode_bit(rdec, &d->bm_match[state][pos_state]) == 0) { /* literal byte */ Bit_model * const bm = d->bm_literal[get_lit_state(LZd_peek_prev(d))]; if (St_is_char(state)) { state -= (state < 4) ? state : 3; LZd_put_byte(d, Rd_decode_tree8(rdec, bm)); } else { state -= (state < 10) ? 3 : 6; LZd_put_byte(d, Rd_decode_matched(rdec, bm, LZd_peek(d, rep0))); } continue; } /* match or repeated match */ if (Rd_decode_bit(rdec, &d->bm_rep[state]) != 0) { if (Rd_decode_bit(rdec, &d->bm_rep0[state]) == 0) { if (Rd_decode_bit(rdec, &d->bm_len[state][pos_state]) == 0) { state = St_set_short_rep(state); LZd_put_byte(d, LZd_peek(d, rep0)); continue; } } else { unsigned distance; if (Rd_decode_bit(rdec, &d->bm_rep1[state]) == 0) distance = rep1; else { if (Rd_decode_bit(rdec, &d->bm_rep2[state]) == 0) distance = rep2; else { distance = rep3; rep3 = rep2; } rep2 = rep1; } rep1 = rep0; rep0 = distance; } state = St_set_rep(state); len = min_match_len + Rd_decode_len(rdec, &d->rep_len_model, pos_state); } else { /* match */ unsigned distance; len = min_match_len + Rd_decode_len(rdec, &d->match_len_model, pos_state); distance = Rd_decode_tree6(rdec, d->bm_dis_slot[get_len_state(len)]); if (distance >= start_dis_model) { const unsigned dis_slot = distance; const int direct_bits = (dis_slot >> 1) - 1; distance = (2 | (dis_slot & 1)) << direct_bits; if (dis_slot < end_dis_model) distance += Rd_decode_tree_reversed(rdec, d->bm_dis + (distance - dis_slot), direct_bits); else { distance += Rd_decode(rdec, direct_bits - dis_align_bits) << dis_align_bits; distance += Rd_decode_tree_reversed4(rdec, d->bm_align); if (distance == 0xFFFFFFFFU) { /* marker found */ Rd_normalize(rdec); LZd_flush_data(d); if (d->write_error) return LZIP_WRITE_ERROR; if (len == min_match_len) { /* End Of Stream marker */ if (LZd_verify_trailer(d)) return 0; else return LZIP_BAD_CRC; } if (len == min_match_len + 1) { /* Sync Flush marker */ Rd_load(rdec); continue; } return LZIP_BAD_DATA; /* unknown marker */ } } } rep3 = rep2; rep2 = rep1; rep1 = rep0; rep0 = distance; state = St_set_match(state); if (rep0 >= d->dictionary_size || (rep0 >= d->pos && !d->pos_wrapped)) { LZd_flush_data(d); return LZIP_BAD_DATA; } } LZd_copy_block(d, rep0, len); } LZd_flush_data(d); return LZIP_DATA_EOF; } int lzip_decompress(unsigned char *inbuf, long in_len, long (*fill)(void*, unsigned long), long (*flush)(void*, unsigned long), unsigned char *outbuf, long out_size, long *in_posp, long *out_posp) { unsigned char *outptr = outbuf; struct Range_decoder rdec; struct LZ_decoder *decoder = 0; int retval = 0; bool first_member; if (in_posp) *in_posp = 0; if (out_posp) *out_posp = 0; if (!Rd_init(&rdec, inbuf, in_len, fill)) return LZIP_OOM_INBUF; for (first_member = true;; first_member = false) { long data_pos; int size; unsigned dictionary_size; Lzip_header header; Rd_reset_member_position(&rdec); for (size = 0; size < Lh_size && !Rd_finished(&rdec); ++size) header[size] = Rd_get_byte(&rdec); if (Rd_finished(&rdec)) { /* End Of File */ if (first_member) retval = LZIP_HEADER1_EOF; else if (Lh_verify_prefix(header, size)) retval = LZIP_HEADER2_EOF; break; } if (!Lh_verify_magic(header)) { if (first_member) retval = LZIP_BAD_MAGIC1; else if (Lh_verify_corrupt(header)) retval = LZIP_BAD_MAGIC2; break; } if (!Lh_verify_version(header)) { retval = LZIP_BAD_VERSION; break; } dictionary_size = Lh_get_dictionary_size(header); if (dictionary_size < min_dictionary_size || dictionary_size > max_dictionary_size) { retval = LZIP_BAD_DICT_SIZE; break; } if (!decoder) decoder = malloc(sizeof *decoder); if (!decoder || !LZd_init(decoder, &rdec, dictionary_size, outptr, out_size, flush)) { retval = LZIP_OOM_OUTBUF; break; } retval = LZd_decode_member(decoder); if (in_posp) *in_posp += Rd_member_position(&rdec); data_pos = LZd_data_position(decoder); if (outptr) outptr += data_pos; if (out_posp) *out_posp += data_pos; if (out_size > 0) out_size -= data_pos; LZd_free(decoder); if (retval != 0) break; } if (decoder) free(decoder); Rd_free(&rdec); return retval; } #ifndef STATIC EXPORT_SYMBOL_GPL(lzip_decompress); #endif MODULE_DESCRIPTION("LZIP Decompressor"); MODULE_AUTHOR("Antonio Diaz Diaz "); MODULE_LICENSE("GPL");