1
0
Fork 0
pipewire/spa/plugins/alsa/alsa-pcm.c
Daniel Baumann 6b016a712f
Adding upstream version 1.4.2.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 21:40:42 +02:00

3902 lines
116 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sched.h>
#include <errno.h>
#include <getopt.h>
#include <sys/time.h>
#include <math.h>
#include <limits.h>
#include <spa/pod/filter.h>
#include <spa/utils/string.h>
#include <spa/utils/result.h>
#include <spa/support/system.h>
#include <spa/utils/keys.h>
#include <spa/node/keys.h>
#include <spa/monitor/device.h>
#include "alsa-pcm.h"
static struct spa_list cards = SPA_LIST_INIT(&cards);
static struct spa_list states = SPA_LIST_INIT(&states);
static struct card *find_card(uint32_t index)
{
struct card *c;
spa_list_for_each(c, &cards, link) {
if (c->index == index) {
c->ref++;
return c;
}
}
return NULL;
}
static struct card *ensure_card(uint32_t index, bool ucm, bool ucm_split)
{
struct card *c;
char card_name[128];
const char *alibpref = NULL;
int err;
if (index == SPA_ID_INVALID)
return NULL;
if ((c = find_card(index)) != NULL)
return c;
c = calloc(1, sizeof(*c));
c->ref = 1;
c->index = index;
if (ucm) {
const char *split_prefix = ucm_split ? "<<<SplitPCM=1>>>" : "";
snprintf(card_name, sizeof(card_name), "%shw:%i", split_prefix, index);
err = snd_use_case_mgr_open(&c->ucm, card_name);
if (err < 0) {
char *name;
err = snd_card_get_name(index, &name);
if (err < 0)
goto error;
snprintf(card_name, sizeof(card_name), "%s%s", split_prefix, name);
free(name);
err = snd_use_case_mgr_open(&c->ucm, card_name);
if (err < 0)
goto error;
}
if ((snd_use_case_get(c->ucm, "_alibpref", &alibpref) != 0))
alibpref = NULL;
c->ucm_prefix = (char*)alibpref;
}
spa_list_append(&cards, &c->link);
return c;
error:
free(c);
errno = -err;
return NULL;
}
static void release_card(struct card *c)
{
if (!c)
return;
spa_assert(c->ref > 0);
if (--c->ref > 0)
return;
spa_list_remove(&c->link);
if (c->ucm) {
free(c->ucm_prefix);
snd_use_case_mgr_close(c->ucm);
}
free(c);
}
#define CHECK(s,msg,...) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", ##__VA_ARGS__, snd_strerror(err)); return err; }
static int write_bind_ctl_param(struct state *state, const char *name, const char *param) {
int err;
unsigned int count, idx;
char _name[1024];
for (unsigned int i = 0; i < state->num_bind_ctls; i++) {
snd_ctl_elem_info_t *info = state->bound_ctls[i].info;
bool changed = false;
int type;
if(!state->bound_ctls[i].value || !info)
continue;
snprintf(_name, sizeof(_name), "api.alsa.bind-ctl.%s",
snd_ctl_elem_info_get_name(info));
if (!spa_streq(name, _name))
continue;
type = snd_ctl_elem_info_get_type(info);
count = snd_ctl_elem_info_get_count(info);
switch (type) {
case SND_CTL_ELEM_TYPE_BOOLEAN: {
bool b = spa_atob(param);
for (idx = 0; idx < count; idx++)
snd_ctl_elem_value_set_boolean(state->bound_ctls[i].value, idx, b);
changed = true;
}
break;
case SND_CTL_ELEM_TYPE_INTEGER: {
long l = (long) atoi(param);
for (idx = 0; idx < count; idx++)
snd_ctl_elem_value_set_integer(state->bound_ctls[i].value, idx, l);
changed = true;
}
break;
default:
spa_log_warn(state->log, "%s ctl '%s' not supported",
snd_ctl_elem_type_name(snd_ctl_elem_info_get_type(info)),
snd_ctl_elem_info_get_name(info));
break;
}
if(changed)
CHECK(snd_ctl_elem_write(state->ctl, state->bound_ctls[i].value), "snd_ctl_elem_write");
return 0;
}
return 0;
}
static int alsa_set_param(struct state *state, const char *k, const char *s)
{
int fmt_change = 0;
if (spa_streq(k, SPA_KEY_AUDIO_CHANNELS)) {
state->default_channels = atoi(s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_RATE)) {
state->default_rate = atoi(s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_FORMAT)) {
state->default_format = spa_type_audio_format_from_short_name(s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_POSITION)) {
spa_alsa_parse_position(&state->default_pos, s, strlen(s));
fmt_change++;
} else if (spa_streq(k, SPA_KEY_AUDIO_ALLOWED_RATES)) {
state->n_allowed_rates = spa_alsa_parse_rates(state->allowed_rates,
MAX_RATES, s, strlen(s));
fmt_change++;
} else if (spa_streq(k, "iec958.codecs")) {
spa_alsa_parse_iec958_codecs(&state->iec958_codecs, s, strlen(s));
fmt_change++;
} else if (spa_streq(k, "api.alsa.period-size")) {
state->default_period_size = atoi(s);
} else if (spa_streq(k, "api.alsa.period-num")) {
state->default_period_num = atoi(s);
} else if (spa_streq(k, "api.alsa.headroom")) {
state->default_headroom = atoi(s);
} else if (spa_streq(k, "api.alsa.start-delay")) {
state->default_start_delay = atoi(s);
} else if (spa_streq(k, "api.alsa.disable-mmap")) {
state->disable_mmap = spa_atob(s);
} else if (spa_streq(k, "api.alsa.disable-batch")) {
state->disable_batch = spa_atob(s);
} else if (spa_streq(k, "api.alsa.disable-tsched")) {
state->disable_tsched = spa_atob(s);
} else if (spa_streq(k, "api.alsa.use-chmap")) {
state->props.use_chmap = spa_atob(s);
} else if (spa_streq(k, "api.alsa.multi-rate")) {
state->multi_rate = spa_atob(s);
} else if (spa_streq(k, "api.alsa.htimestamp")) {
state->htimestamp = spa_atob(s);
} else if (spa_streq(k, "api.alsa.htimestamp.max-errors")) {
state->htimestamp_max_errors = atoi(s);
} else if (spa_streq(k, "api.alsa.auto-link")) {
state->auto_link = spa_atob(s);
} else if (spa_streq(k, "latency.internal.rate")) {
state->process_latency.rate = atoi(s);
} else if (spa_streq(k, "latency.internal.ns")) {
state->process_latency.ns = atoi(s);
} else if (spa_streq(k, "clock.name")) {
spa_scnprintf(state->clock_name,
sizeof(state->clock_name), "%s", s);
} else if (spa_strstartswith(k, "api.alsa.bind-ctl.")) {
write_bind_ctl_param(state, k, s);
fmt_change++;
} else if (spa_streq(k, SPA_KEY_MEDIA_CLASS)) {
spa_scnprintf(state->props.media_class, sizeof(state->props.media_class), "%s", s);
} else if (spa_streq(k, "api.alsa.split.parent")) {
state->is_split_parent = true;
} else
return 0;
if (fmt_change > 0) {
state->port_info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS;
state->port_params[PORT_EnumFormat].user++;
}
return 1;
}
static int position_to_string(struct channel_map *map, char *val, size_t len)
{
uint32_t i, o = 0;
int r;
o += snprintf(val, len, "[ ");
for (i = 0; i < map->channels; i++) {
r = snprintf(val+o, len-o, "%s%s", i == 0 ? "" : ", ",
spa_debug_type_find_short_name(spa_type_audio_channel,
map->pos[i]));
if (r < 0 || o + r >= len)
return -ENOSPC;
o += r;
}
if (len > o)
o += snprintf(val+o, len-o, " ]");
return 0;
}
static int uint32_array_to_string(uint32_t *vals, uint32_t n_vals, char *val, size_t len)
{
uint32_t i, o = 0;
int r;
o += snprintf(val, len, "[ ");
for (i = 0; i < n_vals; i++) {
r = snprintf(val+o, len-o, "%s%d", i == 0 ? "" : ", ", vals[i]);
if (r < 0 || o + r >= len)
return -ENOSPC;
o += r;
}
if (len > o)
o += snprintf(val+o, len-o, " ]");
return 0;
}
static struct spa_pod *enum_bind_ctl_propinfo(struct state *state, uint32_t idx, struct spa_pod_builder *b)
{
char param_name[1024];
char param_desc[1024];
snd_ctl_elem_info_t *info = state->bound_ctls[idx].info;
if (!info) {
// This will end iteration early, so print a warning
spa_log_warn(state->log, "Don't have prop info for bind ctl, bailing");
return NULL;
}
snprintf(param_name, sizeof(param_name), "api.alsa.bind-ctl.%s",
snd_ctl_elem_info_get_name(info));
snprintf(param_desc, sizeof(param_desc), "Value of ALSA control '%s'",
snd_ctl_elem_info_get_name(info));
// We don't have meaningful default values
switch (snd_ctl_elem_info_get_type(info)) {
case SND_CTL_ELEM_TYPE_BOOLEAN:
return spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(param_name),
SPA_PROP_INFO_description, SPA_POD_String(param_desc),
SPA_PROP_INFO_type, SPA_POD_Bool(false),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
case SND_CTL_ELEM_TYPE_INTEGER:
return spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(param_name),
SPA_PROP_INFO_description, SPA_POD_String(param_desc),
SPA_PROP_INFO_type, SPA_POD_Int(0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case SND_CTL_ELEM_TYPE_INTEGER64:
return spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(param_name),
SPA_PROP_INFO_description, SPA_POD_String(param_desc),
SPA_PROP_INFO_type, SPA_POD_Long(0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case SND_CTL_ELEM_TYPE_ENUMERATED:
return spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(param_name),
SPA_PROP_INFO_description, SPA_POD_String(param_desc),
SPA_PROP_INFO_type, SPA_POD_Int(0),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
default:
// FIXME: we can probably support bytes but the length seems unknown in the API
spa_log_warn(state->log, "%s ctl '%s' not supported",
snd_ctl_elem_type_name(snd_ctl_elem_info_get_type(info)),
snd_ctl_elem_info_get_name(info));
return NULL;
}
}
struct spa_pod *spa_alsa_enum_propinfo(struct state *state,
uint32_t idx, struct spa_pod_builder *b)
{
struct spa_pod *param;
switch (idx) {
case 0:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_CHANNELS),
SPA_PROP_INFO_description, SPA_POD_String("Audio Channels"),
SPA_PROP_INFO_type, SPA_POD_Int(state->default_channels),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 1:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_RATE),
SPA_PROP_INFO_description, SPA_POD_String("Audio Rate"),
SPA_PROP_INFO_type, SPA_POD_Int(state->default_rate),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 2:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_FORMAT),
SPA_PROP_INFO_description, SPA_POD_String("Audio Format"),
SPA_PROP_INFO_type, SPA_POD_String(
spa_debug_type_find_short_name(spa_type_audio_format,
state->default_format)),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 3:
{
char buf[1024];
position_to_string(&state->default_pos, buf, sizeof(buf));
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_POSITION),
SPA_PROP_INFO_description, SPA_POD_String("Audio Position"),
SPA_PROP_INFO_type, SPA_POD_String(buf),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
}
case 4:
{
char buf[1024];
uint32_array_to_string(state->allowed_rates, state->n_allowed_rates, buf, sizeof(buf));
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_ALLOWED_RATES),
SPA_PROP_INFO_description, SPA_POD_String("Audio Allowed Rates"),
SPA_PROP_INFO_type, SPA_POD_String(buf),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
}
case 5:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.period-size"),
SPA_PROP_INFO_description, SPA_POD_String("Period Size"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_period_size, 0, 8192),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 6:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.period-num"),
SPA_PROP_INFO_description, SPA_POD_String("Number of Periods"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_period_num, 0, 1024),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 7:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.headroom"),
SPA_PROP_INFO_description, SPA_POD_String("Headroom"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_headroom, 0, 8192),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 8:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.start-delay"),
SPA_PROP_INFO_description, SPA_POD_String("Start Delay"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_start_delay, 0, 8192),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 9:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-mmap"),
SPA_PROP_INFO_description, SPA_POD_String("Disable MMAP"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_mmap),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 10:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-batch"),
SPA_PROP_INFO_description, SPA_POD_String("Disable Batch"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_batch),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 11:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-tsched"),
SPA_PROP_INFO_description, SPA_POD_String("Disable timer based scheduling"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_tsched),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 12:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.use-chmap"),
SPA_PROP_INFO_description, SPA_POD_String("Use the driver channelmap"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->props.use_chmap),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 13:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.multi-rate"),
SPA_PROP_INFO_description, SPA_POD_String("Support multiple rates"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->multi_rate),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 14:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.htimestamp"),
SPA_PROP_INFO_description, SPA_POD_String("Use hires timestamps"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->htimestamp),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 15:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("latency.internal.rate"),
SPA_PROP_INFO_description, SPA_POD_String("Internal latency in samples"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->process_latency.rate,
0, 65536),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 16:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("latency.internal.ns"),
SPA_PROP_INFO_description, SPA_POD_String("Internal latency in nanoseconds"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(state->process_latency.ns,
0LL, 2 * SPA_NSEC_PER_SEC),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 17:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("clock.name"),
SPA_PROP_INFO_description, SPA_POD_String("The name of the clock"),
SPA_PROP_INFO_type, SPA_POD_String(state->clock_name),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
case 18:
param = spa_pod_builder_add_object(b,
SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo,
SPA_PROP_INFO_name, SPA_POD_String("api.alsa.htimestamp.max-errors"),
SPA_PROP_INFO_description, SPA_POD_String("Max errors before disabling htimestamp"),
SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->htimestamp_max_errors, 0, INT32_MAX),
SPA_PROP_INFO_params, SPA_POD_Bool(true));
break;
// While adding params here, update the math in default too
default:
idx -= 18;
if (idx <= state->num_bind_ctls)
param = enum_bind_ctl_propinfo(state, idx - 1, b);
else
return NULL;
}
return param;
}
static void add_bind_ctl_param(struct state *state, const snd_ctl_elem_value_t *elem, const snd_ctl_elem_info_t *info,
struct spa_pod_builder *b)
{
struct spa_pod_frame f[1];
char param_name[1024];
unsigned int count = snd_ctl_elem_info_get_count(info);
int type = snd_ctl_elem_info_get_type(info);
bool is_array = count > 1 && type != SND_CTL_ELEM_TYPE_BYTES;
snprintf(param_name, sizeof(param_name), "api.alsa.bind-ctl.%s",
snd_ctl_elem_info_get_name(info));
spa_pod_builder_string(b, param_name);
if (is_array)
spa_pod_builder_push_array(b, &f[0]);
switch (type) {
case SND_CTL_ELEM_TYPE_BOOLEAN:
for (unsigned int i = 0; i < count; i++)
spa_pod_builder_bool(b, snd_ctl_elem_value_get_boolean(elem, i));
break;
case SND_CTL_ELEM_TYPE_INTEGER:
for (unsigned int i = 0; i < count; i++)
spa_pod_builder_int(b, snd_ctl_elem_value_get_integer(elem, i));
break;
case SND_CTL_ELEM_TYPE_INTEGER64:
for (unsigned int i = 0; i < count; i++)
spa_pod_builder_long(b, snd_ctl_elem_value_get_integer64(elem, i));
break;
case SND_CTL_ELEM_TYPE_ENUMERATED:
for (unsigned int i = 0; i < count; i++)
spa_pod_builder_int(b, snd_ctl_elem_value_get_enumerated(elem, i));
break;
case SND_CTL_ELEM_TYPE_BYTES:
spa_pod_builder_bytes(b, snd_ctl_elem_value_get_bytes(elem), count);
break;
default:
spa_log_warn(state->log, "%s ctl '%s' not supported",
snd_ctl_elem_type_name(snd_ctl_elem_info_get_type(info)),
snd_ctl_elem_info_get_name(info));
break;
}
if (is_array)
spa_pod_builder_pop(b, &f[0]);
}
static void add_bind_ctl_params(struct state *state, struct spa_pod_builder *b)
{
int err;
for (unsigned int i = 0; i < state->num_bind_ctls; i++) {
if(!state->bound_ctls[i].value || !state->bound_ctls[i].info)
continue;
err = snd_ctl_elem_read(state->ctl, state->bound_ctls[i].value);
if (err < 0) {
spa_log_warn(state->log, "Could not read elem value for '%s': %s",
state->bound_ctls[i].name, snd_strerror(err));
}
add_bind_ctl_param(state, state->bound_ctls[i].value, state->bound_ctls[i].info, b);
}
}
int spa_alsa_add_prop_params(struct state *state, struct spa_pod_builder *b)
{
struct spa_pod_frame f[1];
char buf[1024];
spa_pod_builder_prop(b, SPA_PROP_params, 0);
spa_pod_builder_push_struct(b, &f[0]);
spa_pod_builder_string(b, SPA_KEY_AUDIO_CHANNELS);
spa_pod_builder_int(b, state->default_channels);
spa_pod_builder_string(b, SPA_KEY_AUDIO_RATE);
spa_pod_builder_int(b, state->default_rate);
spa_pod_builder_string(b, SPA_KEY_AUDIO_FORMAT);
spa_pod_builder_string(b,
spa_debug_type_find_short_name(spa_type_audio_format,
state->default_format));
position_to_string(&state->default_pos, buf, sizeof(buf));
spa_pod_builder_string(b, SPA_KEY_AUDIO_POSITION);
spa_pod_builder_string(b, buf);
uint32_array_to_string(state->allowed_rates, state->n_allowed_rates,
buf, sizeof(buf));
spa_pod_builder_string(b, SPA_KEY_AUDIO_ALLOWED_RATES);
spa_pod_builder_string(b, buf);
spa_pod_builder_string(b, "api.alsa.period-size");
spa_pod_builder_int(b, state->default_period_size);
spa_pod_builder_string(b, "api.alsa.period-num");
spa_pod_builder_int(b, state->default_period_num);
spa_pod_builder_string(b, "api.alsa.headroom");
spa_pod_builder_int(b, state->default_headroom);
spa_pod_builder_string(b, "api.alsa.start-delay");
spa_pod_builder_int(b, state->default_start_delay);
spa_pod_builder_string(b, "api.alsa.disable-mmap");
spa_pod_builder_bool(b, state->disable_mmap);
spa_pod_builder_string(b, "api.alsa.disable-batch");
spa_pod_builder_bool(b, state->disable_batch);
spa_pod_builder_string(b, "api.alsa.disable-tsched");
spa_pod_builder_bool(b, state->disable_tsched);
spa_pod_builder_string(b, "api.alsa.use-chmap");
spa_pod_builder_bool(b, state->props.use_chmap);
spa_pod_builder_string(b, "api.alsa.multi-rate");
spa_pod_builder_bool(b, state->multi_rate);
spa_pod_builder_string(b, "api.alsa.htimestamp");
spa_pod_builder_bool(b, state->htimestamp);
spa_pod_builder_string(b, "api.alsa.htimestamp.max-errors");
spa_pod_builder_int(b, state->htimestamp_max_errors);
spa_pod_builder_string(b, "latency.internal.rate");
spa_pod_builder_int(b, state->process_latency.rate);
spa_pod_builder_string(b, "latency.internal.ns");
spa_pod_builder_long(b, state->process_latency.ns);
spa_pod_builder_string(b, "clock.name");
spa_pod_builder_string(b, state->clock_name);
add_bind_ctl_params(state, b);
spa_pod_builder_pop(b, &f[0]);
return 0;
}
int spa_alsa_parse_prop_params(struct state *state, struct spa_pod *params)
{
struct spa_pod_parser prs;
struct spa_pod_frame f;
int changed = 0;
if (params == NULL)
return 0;
spa_pod_parser_pod(&prs, params);
if (spa_pod_parser_push_struct(&prs, &f) < 0)
return 0;
while (true) {
const char *name;
struct spa_pod *pod;
char value[512];
if (spa_pod_parser_get_string(&prs, &name) < 0)
break;
if (spa_pod_parser_get_pod(&prs, &pod) < 0)
break;
if (spa_pod_is_string(pod)) {
spa_pod_copy_string(pod, sizeof(value), value);
} else if (spa_pod_is_int(pod)) {
snprintf(value, sizeof(value), "%d",
SPA_POD_VALUE(struct spa_pod_int, pod));
} else if (spa_pod_is_long(pod)) {
snprintf(value, sizeof(value), "%"PRIi64,
SPA_POD_VALUE(struct spa_pod_long, pod));
} else if (spa_pod_is_bool(pod)) {
snprintf(value, sizeof(value), "%s",
SPA_POD_VALUE(struct spa_pod_bool, pod) ?
"true" : "false");
} else
continue;
spa_log_info(state->log, "key:'%s' val:'%s'", name, value);
alsa_set_param(state, name, value);
changed++;
}
if (changed > 0) {
state->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
state->params[NODE_Props].user++;
}
return changed;
}
static ssize_t log_write(void *cookie, const char *buf, size_t size)
{
struct state *state = cookie;
int len;
while (size > 0) {
len = strcspn(buf, "\n");
if (len > 0)
spa_log_debug(state->log, "%.*s", (int)len, buf);
buf += len + 1;
size -= len + 1;
}
return size;
}
static cookie_io_functions_t io_funcs = {
.write = log_write,
};
static void silence_error_handler(const char *file, int line,
const char *function, int err, const char *fmt, ...)
{
}
static void fill_device_name(struct state *state, const char *params, char device_name[], size_t len)
{
spa_scnprintf(device_name, len, "%s%s%s",
state->card && state->card->ucm_prefix ? state->card->ucm_prefix : "",
state->props.device, params ? params : "");
}
static void bind_ctl_event(struct spa_source *source)
{
struct state *state = source->data;
snd_ctl_event_t *ev;
snd_ctl_elem_id_t *id, *bound_id;
snd_ctl_elem_value_t *old_value;
unsigned short revents;
int err;
// Do the same demangling of revents we do for PCM pollfds
for (int i = 0; i < state->ctl_n_fds; i++) {
state->ctl_pfds[i].revents = state->ctl_sources[i].rmask;
state->ctl_sources[i].rmask = 0;
}
err = snd_ctl_poll_descriptors_revents(state->ctl, state->ctl_pfds, state->ctl_n_fds, &revents);
if (SPA_UNLIKELY(err < 0)) {
spa_log_warn(state->log, "Could not read ctl revents: %s", snd_strerror(err));
return;
}
if (!revents) {
spa_log_trace(state->log, "Got a bind ctl wakeup but no actual event");
return;
}
snd_ctl_event_alloca(&ev);
snd_ctl_elem_id_alloca(&id);
snd_ctl_elem_id_alloca(&bound_id);
snd_ctl_elem_value_alloca(&old_value);
while ((err = snd_ctl_read(state->ctl, ev) > 0)) {
bool changed = false;
if (snd_ctl_event_get_type(ev) != SND_CTL_EVENT_ELEM)
continue;
snd_ctl_event_elem_get_id(ev, id);
for (unsigned int i = 0; i < state->num_bind_ctls; i++) {
int err;
if(!state->bound_ctls[i].value || !state->bound_ctls[i].info)
continue;
// Check if we have the right element
snd_ctl_elem_value_get_id(state->bound_ctls[i].value, bound_id);
if (snd_ctl_elem_id_compare_set(id, bound_id) ||
snd_ctl_elem_id_compare_numid(id, bound_id)) {
continue;
}
snd_ctl_elem_value_copy(old_value, state->bound_ctls[i].value);
err = snd_ctl_elem_read(state->ctl, state->bound_ctls[i].value);
if (err < 0) {
spa_log_warn(state->log, "Could not read ctl '%s': %s",
state->bound_ctls[i].name, snd_strerror(err));
continue;
}
if (snd_ctl_elem_value_compare(old_value, state->bound_ctls[i].value) != 0) {
// We don't need to check all the ctls, if one changed,
// we'll emit a notification and they'll be read when
// the props are read
spa_log_debug(state->log, "bound ctl '%s' has changed", state->bound_ctls[i].name);
changed = true;
break;
}
}
if (changed) {
state->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS;
state->params[NODE_Props].user++;
spa_alsa_emit_node_info(state, false);
}
}
if (err < 0 && err != -EAGAIN)
spa_log_warn(state->log, "Could not read ctl: %s", snd_strerror(err));
}
static void fetch_bind_ctls(struct state *state)
{
snd_ctl_elem_list_t* element_list;
unsigned int elem_count = 0;
int err;
if (!state->num_bind_ctls)
return;
snd_ctl_elem_list_alloca(&element_list);
/* Get number of elements */
err = snd_ctl_elem_list(state->ctl, element_list);
if (SPA_UNLIKELY(err < 0)) {
spa_log_warn(state->log, "Couldn't get elem list count. Error: %s",
snd_strerror(err));
return;
}
elem_count = snd_ctl_elem_list_get_count(element_list);
err = snd_ctl_elem_list_alloc_space(element_list, elem_count);
if (SPA_UNLIKELY(err < 0)) {
spa_log_error(state->log, "Couldn't allocate elem_list space. Error: %s",
snd_strerror(err));
return;
}
/* Get identifiers */
err = snd_ctl_elem_list(state->ctl, element_list);
if (SPA_UNLIKELY(err < 0)) {
spa_log_warn(state->log, "Couldn't get elem list. Error: %s",
snd_strerror(err));
goto cleanup;
}
for (unsigned int i = 0; i < state->num_bind_ctls; i++) {
unsigned int numid = 0;
for (unsigned int j = 0; j < elem_count; j++) {
const char* element_name = snd_ctl_elem_list_get_name(element_list, j);
if (!strcmp(element_name, state->bound_ctls[i].name)) {
numid = snd_ctl_elem_list_get_numid(element_list, j);
break;
}
}
/* zero = invalid numid */
if (SPA_UNLIKELY(!numid)) {
spa_log_warn(state->log, "Didn't find ctl: '%s', count: %u",
state->bound_ctls[i].name, elem_count);
continue;
}
snd_ctl_elem_info_malloc(&state->bound_ctls[i].info);
snd_ctl_elem_info_set_numid(state->bound_ctls[i].info, numid);
err = snd_ctl_elem_info(state->ctl, state->bound_ctls[i].info);
if (SPA_UNLIKELY(err < 0)) {
spa_log_warn(state->log, "Could not read elem info for '%s': %s",
state->bound_ctls[i].name, snd_strerror(err));
snd_ctl_elem_info_free(state->bound_ctls[i].info);
state->bound_ctls[i].info = NULL;
continue;
}
snd_ctl_elem_value_malloc(&state->bound_ctls[i].value);
snd_ctl_elem_value_set_numid(state->bound_ctls[i].value, numid);
spa_log_debug(state->log, "Binding ctl for '%s'",
snd_ctl_elem_info_get_name(state->bound_ctls[i].info));
}
cleanup:
snd_ctl_elem_list_free_space(element_list);
}
int open_card_ctl(struct state *state)
{
int err;
char card_name[256];
snprintf(card_name, sizeof(card_name), "hw:%d", state->card_index);
spa_log_debug(state->log, "Trying to open ctl device '%s'", card_name);
err = snd_ctl_open(&state->ctl, card_name, SND_CTL_NONBLOCK);
if (err < 0) {
spa_log_info(state->log, "%s could not find ctl card: %s",
card_name, snd_strerror(err));
return err;
}
return 0;
}
static void bind_ctls_for_params(struct state *state)
{
int err;
if (state->num_bind_ctls == 0)
return;
if (!state->ctl) {
err = open_card_ctl(state);
if (err < 0)
return;
}
state->ctl_n_fds = snd_ctl_poll_descriptors_count(state->ctl);
if (state->ctl_n_fds > (int)SPA_N_ELEMENTS(state->ctl_sources)) {
spa_log_warn(state->log, "Too many poll descriptors (%d), listening to a subset", state->ctl_n_fds);
state->ctl_n_fds = SPA_N_ELEMENTS(state->ctl_sources);
}
if ((err = snd_ctl_poll_descriptors(state->ctl, state->ctl_pfds, state->ctl_n_fds)) < 0) {
spa_log_warn(state->log, "Could not get poll descriptors: %s", snd_strerror(err));
return;
}
snd_ctl_subscribe_events(state->ctl, 1);
for (int i = 0; i < state->ctl_n_fds; i++) {
state->ctl_sources[i].func = bind_ctl_event;
state->ctl_sources[i].data = state;
state->ctl_sources[i].fd = state->ctl_pfds[i].fd;
state->ctl_sources[i].mask = SPA_IO_IN;
state->ctl_sources[i].rmask = 0;
spa_loop_add_source(state->main_loop, &state->ctl_sources[i]);
}
fetch_bind_ctls(state);
}
int spa_alsa_init(struct state *state, const struct spa_dict *info)
{
uint32_t i;
int err;
const char *str;
spa_list_init(&state->followers);
spa_list_init(&state->rt.followers);
snd_config_update_free_global();
if ((str = spa_dict_lookup(info, "device.profile.pro")) != NULL)
state->is_pro = spa_atob(str);
state->multi_rate = true;
state->htimestamp = false;
state->htimestamp_max_errors = MAX_HTIMESTAMP_ERROR;
state->card_index = SPA_ID_INVALID;
for (i = 0; info && i < info->n_items; i++) {
const char *k = info->items[i].key;
const char *s = info->items[i].value;
if (spa_streq(k, SPA_KEY_API_ALSA_PATH)) {
snprintf(state->props.device, 63, "%s", s);
} else if (spa_streq(k, SPA_KEY_API_ALSA_PCM_CARD)) {
state->card_index = atoi(s);
} else if (spa_streq(k, SPA_KEY_API_ALSA_OPEN_UCM)) {
state->open_ucm = spa_atob(s);
if (state->open_ucm)
state->props.use_chmap = true;
} else if (spa_streq(k, "clock.quantum-limit")) {
spa_atou32(s, &state->quantum_limit, 0);
} else if (spa_streq(k, SPA_KEY_API_ALSA_BIND_CTLS)) {
struct spa_json it[1];
char v[256];
unsigned int i = 0;
/* Read a list of ALSA control names to bind as params */
if (spa_json_begin_array_relax(&it[0], s, strlen(s)) <= 0)
continue;
while (spa_json_get_string(&it[0], v, sizeof(v)) > 0 &&
i < SPA_N_ELEMENTS(state->bound_ctls)) {
snprintf(state->bound_ctls[i].name,
sizeof(state->bound_ctls[i].name), "%s", v);
i++;
}
state->num_bind_ctls = i;
/* We'll do the actual binding after checking the card exists */
} else {
alsa_set_param(state, k, s);
}
}
if (state->card_index == SPA_ID_INVALID) {
/* If we don't have a card index, see if we have a *:<idx> string */
sscanf(state->props.device, "%*[^:]:%u", &state->card_index);
if (state->card_index == SPA_ID_INVALID) {
spa_log_info(state->log, "Could not determine card index. %s and/or clock.name "
"may need to be configured manually", SPA_KEY_API_ALSA_PCM_CARD);
}
}
if (state->clock_name[0] == '\0' && state->card_index != SPA_ID_INVALID)
snprintf(state->clock_name, sizeof(state->clock_name),
"api.alsa.%s-%u",
state->stream == SND_PCM_STREAM_PLAYBACK ? "p" : "c",
state->card_index);
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
state->is_iec958 = spa_strstartswith(state->props.device, "iec958");
state->is_hdmi = spa_strstartswith(state->props.device, "hdmi");
state->iec958_codecs |= 1ULL << SPA_AUDIO_IEC958_CODEC_PCM;
}
state->card = ensure_card(state->card_index, state->open_ucm, state->is_split_parent);
state->log_file = fopencookie(state, "w", io_funcs);
if (state->log_file == NULL) {
spa_log_error(state->log, "can't create log file");
return -errno;
}
CHECK(snd_output_stdio_attach(&state->output, state->log_file, 0), "attach failed");
spa_list_append(&states, &state->link);
state->rate_limit.interval = 2 * SPA_NSEC_PER_SEC;
state->rate_limit.burst = 1;
bind_ctls_for_params(state);
return 0;
}
int spa_alsa_clear(struct state *state)
{
int err;
struct state *follower;
spa_list_remove(&state->link);
release_card(state->card);
if (state->driver != NULL) {
spa_list_remove(&state->driver_link);
state->driver = NULL;
}
if (state->rt.driver != NULL) {
spa_list_remove(&state->rt.driver_link);
state->rt.driver = NULL;
}
spa_list_consume(follower, &state->followers, driver_link) {
spa_list_remove(&follower->driver_link);
follower->driver = NULL;
}
spa_list_consume(follower, &state->rt.followers, rt.driver_link) {
spa_list_remove(&follower->rt.driver_link);
follower->rt.driver = NULL;
}
state->card = NULL;
state->card_index = SPA_ID_INVALID;
if ((err = snd_output_close(state->output)) < 0)
spa_log_warn(state->log, "output close failed: %s", snd_strerror(err));
fclose(state->log_file);
free(state->tag[0]);
free(state->tag[1]);
if (state->ctl) {
for (int i = 0; i < state->ctl_n_fds; i++) {
spa_loop_remove_source(state->main_loop, &state->ctl_sources[i]);
}
snd_ctl_close(state->ctl);
state->ctl = NULL;
for (unsigned int i = 0; i < state->num_bind_ctls; i++) {
if (state->bound_ctls[i].info) {
snd_ctl_elem_info_free(state->bound_ctls[i].info);
state->bound_ctls[i].info = NULL;
}
if (state->bound_ctls[i].value) {
snd_ctl_elem_value_free(state->bound_ctls[i].value);
state->bound_ctls[i].value = NULL;
}
}
}
return err;
}
static int probe_pitch_ctl(struct state *state)
{
snd_ctl_elem_id_t *id;
/* TODO: Add configuration params for the control name and units */
const char *elem_name =
state->stream == SND_PCM_STREAM_CAPTURE ?
"Capture Pitch 1000000" :
"Playback Pitch 1000000";
bool opened = false;
int err;
snd_lib_error_set_handler(silence_error_handler);
if (!state->ctl) {
err = open_card_ctl(state);
if (err < 0)
goto error;
opened = true;
}
snd_ctl_elem_id_alloca(&id);
snd_ctl_elem_id_set_name(id, elem_name);
snd_ctl_elem_id_set_interface(id, SND_CTL_ELEM_IFACE_PCM);
snd_ctl_elem_value_malloc(&state->pitch_elem);
snd_ctl_elem_value_set_id(state->pitch_elem, id);
err = snd_ctl_elem_read(state->ctl, state->pitch_elem);
if (err < 0) {
spa_log_debug(state->log, "%s: did not find ctl: %s",
elem_name, snd_strerror(err));
snd_ctl_elem_value_free(state->pitch_elem);
state->pitch_elem = NULL;
if (opened) {
snd_ctl_close(state->ctl);
state->ctl = NULL;
}
goto error;
}
snd_ctl_elem_value_set_integer(state->pitch_elem, 0, 1000000);
CHECK(snd_ctl_elem_write(state->ctl, state->pitch_elem), "snd_ctl_elem_write");
state->last_rate = 1.0;
spa_log_info(state->log, "found ctl %s", elem_name);
err = 0;
error:
snd_lib_error_set_handler(NULL);
return err;
}
static int do_link(struct state *driver, struct state *state)
{
int res;
snd_pcm_status_t *status;
snd_pcm_status_alloca(&status);
snd_pcm_status(driver->hndl, status);
snd_pcm_status_dump(status, state->output);
snd_pcm_status(state->hndl, status);
snd_pcm_status_dump(status, state->output);
fflush(state->log_file);
res = snd_pcm_link(driver->hndl, state->hndl);
if (res >= 0 || res == -EALREADY)
state->linked = true;
spa_log_info(state->log, "%p: linked to driver %p: %u (%s)",
state, driver, state->linked, snd_strerror(res));
return 0;
}
int spa_alsa_open(struct state *state, const char *params)
{
int err;
struct props *props = &state->props;
char device_name[256];
if (state->opened)
return 0;
fill_device_name(state, params, device_name, sizeof(device_name));
spa_scnprintf(state->name, sizeof(state->name), "%s%s",
props->device, state->stream == SND_PCM_STREAM_CAPTURE ? "c" : "p");
spa_log_info(state->log, "%p: ALSA device open '%s' %s", state, device_name,
state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback");
CHECK(snd_pcm_open(&state->hndl,
device_name,
state->stream,
SND_PCM_NONBLOCK |
SND_PCM_NO_AUTO_RESAMPLE |
SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "'%s': %s open failed",
device_name,
state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback");
if (!state->disable_tsched) {
if ((err = spa_system_timerfd_create(state->data_system,
CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0)
goto error_exit_close;
state->timerfd = err;
} else {
/* ALSA pollfds may only be ready after setting swparams, so
* these are initialised in spa_alsa_start() */
}
state->opened = true;
state->sample_count = 0;
state->sample_time = 0;
probe_pitch_ctl(state);
return 0;
error_exit_close:
spa_log_info(state->log, "%p: Device '%s' closing: %s", state, state->name,
spa_strerror(err));
snd_pcm_close(state->hndl);
return err;
}
static void try_unlink(struct state *state)
{
struct state *follower;
if (state->driver != NULL && state->linked) {
snd_pcm_unlink(state->hndl);
spa_log_info(state->log, "%p: unlinked from driver %p",
state, state->driver);
state->linked = false;
}
spa_list_for_each(follower, &state->followers, driver_link) {
if (follower->opened && follower->linked) {
snd_pcm_unlink(follower->hndl);
spa_log_info(state->log, "%p: follower unlinked from driver %p",
follower, state);
follower->linked = false;
}
}
}
int spa_alsa_close(struct state *state)
{
int err = 0;
if (!state->opened)
return 0;
try_unlink(state);
spa_alsa_pause(state);
spa_log_info(state->log, "%p: Device '%s' closing", state, state->name);
if ((err = snd_pcm_close(state->hndl)) < 0)
spa_log_warn(state->log, "%s: close failed: %s", state->name,
snd_strerror(err));
if (!state->disable_tsched)
spa_system_close(state->data_system, state->timerfd);
else
state->n_fds = 0;
if (state->have_format && state->card)
state->card->format_ref--;
state->have_format = false;
state->opened = false;
state->linked = false;
if (state->pitch_elem) {
snd_ctl_elem_value_free(state->pitch_elem);
state->pitch_elem = NULL;
// Close it unless we've got some bind_ctls we're listening to
if (state->ctl_n_fds == 0) {
snd_ctl_close(state->ctl);
state->ctl = NULL;
}
}
return err;
}
struct format_info {
uint32_t spa_format;
uint32_t spa_pformat;
snd_pcm_format_t format;
};
static const struct format_info format_info[] = {
{ SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN},
{ SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE},
{ SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE},
{ SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE},
{ SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE},
{ SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE},
{ SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE},
{ SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE},
{ SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE},
{ SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE},
{ SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE},
{ SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8},
{ SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8},
{ SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE},
{ SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE},
{ SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE},
{ SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE},
{ SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE},
{ SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE},
{ SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE},
{ SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE},
{ SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE},
{ SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE},
};
static snd_pcm_format_t spa_format_to_alsa(uint32_t format, bool *planar)
{
SPA_FOR_EACH_ELEMENT_VAR(format_info, i) {
*planar = i->spa_pformat == format;
if (i->spa_format == format || *planar)
return i->format;
}
return SND_PCM_FORMAT_UNKNOWN;
}
struct chmap_info {
enum snd_pcm_chmap_position pos;
enum spa_audio_channel channel;
};
static const struct chmap_info chmap_info[] = {
[SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN },
[SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA },
[SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO },
[SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL },
[SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR },
[SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL },
[SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR },
[SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC },
[SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE },
[SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL },
[SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR },
[SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC },
[SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC },
[SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC },
[SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC },
[SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC },
[SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW },
[SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW },
[SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH },
[SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH },
[SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH },
[SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC },
[SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL },
[SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR },
[SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC },
[SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL },
[SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR },
[SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC },
[SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC },
[SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC },
[SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL },
[SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR },
[SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE },
[SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE },
[SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC },
[SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC },
[SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC },
};
#define _M(ch) (1LL << SND_CHMAP_ ##ch)
struct def_mask {
int channels;
uint64_t mask;
};
static const struct def_mask default_layouts[] = {
{ 0, 0 },
{ 1, _M(MONO) },
{ 2, _M(FL) | _M(FR) },
{ 3, _M(FL) | _M(FR) | _M(LFE) },
{ 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) },
{ 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) },
{ 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) },
{ 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) },
{ 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) },
};
#define _C(ch) (SPA_AUDIO_CHANNEL_ ##ch)
static const struct channel_map default_map[] = {
{ 0, { 0, } } ,
{ 1, { _C(MONO), } },
{ 2, { _C(FL), _C(FR), } },
{ 3, { _C(FL), _C(FR), _C(LFE) } },
{ 4, { _C(FL), _C(FR), _C(RL), _C(RR), } },
{ 5, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC) } },
{ 6, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), } },
{ 7, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(SL), _C(SR), } },
{ 8, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), _C(SL), _C(SR), } },
};
static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos)
{
return chmap_info[pos].channel;
}
static void sanitize_map(snd_pcm_chmap_t* map)
{
uint64_t mask = 0, p, dup = 0;
const struct def_mask *def;
uint32_t i, j, pos;
for (i = 0; i < map->channels; i++) {
if (map->pos[i] > SND_CHMAP_LAST)
map->pos[i] = SND_CHMAP_UNKNOWN;
p = 1LL << map->pos[i];
if (mask & p) {
/* duplicate channel */
for (j = 0; j <= i; j++)
if (map->pos[j] == map->pos[i])
map->pos[j] = SND_CHMAP_UNKNOWN;
dup |= p;
p = 1LL << SND_CHMAP_UNKNOWN;
}
mask |= p;
}
if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0)
return;
def = &default_layouts[map->channels];
/* remove duplicates */
mask &= ~dup;
/* keep unassigned channels */
mask = def->mask & ~mask;
pos = 0;
for (i = 0; i < map->channels; i++) {
if (map->pos[i] == SND_CHMAP_UNKNOWN) {
do {
mask >>= 1;
pos++;
}
while (mask != 0 && (mask & 1) == 0);
map->pos[i] = mask ? pos : 0;
}
}
}
static bool uint32_array_contains(uint32_t *vals, uint32_t n_vals, uint32_t val)
{
uint32_t i;
for (i = 0; i < n_vals; i++)
if (vals[i] == val)
return true;
return false;
}
static int add_rate(struct state *state, uint32_t scale, uint32_t interleave, bool all, uint32_t index, uint32_t *next,
uint32_t min_allowed_rate, snd_pcm_hw_params_t *params, struct spa_pod_builder *b)
{
struct spa_pod_frame f[1];
int err, dir;
unsigned int min, max;
struct spa_pod_choice *choice;
uint32_t rate;
CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min");
CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max");
spa_log_debug(state->log, "min:%u max:%u min-allowed:%u scale:%u interleave:%u all:%d",
min, max, min_allowed_rate, scale, interleave, all);
min = SPA_MAX(min_allowed_rate * scale / interleave, min) * interleave / scale;
max = max * interleave / scale;
if (max < min)
return 0;
if (!state->multi_rate && state->card && state->card->format_ref > 0)
rate = state->card->rate;
else
rate = state->default_rate;
if (rate < min || rate > max)
rate = 0;
if (rate != 0 && !all)
min = max = rate;
if (rate == 0)
rate = state->position ? state->position->clock.target_rate.denom : DEFAULT_RATE;
rate = SPA_CLAMP(rate, min, max);
spa_log_debug(state->log, "rate:%u multi:%d card:%u def:%d",
rate, state->multi_rate, state->card ? state->card->rate : 0, state->default_rate);
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_rate, 0);
spa_pod_builder_push_choice(b, &f[0], SPA_CHOICE_None, 0);
choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[0]);
if (state->n_allowed_rates > 0) {
uint32_t i, v, last = 0, count = 0;
if (uint32_array_contains(state->allowed_rates, state->n_allowed_rates, rate)) {
spa_pod_builder_int(b, rate * scale);
count++;
}
for (i = 0; i < state->n_allowed_rates; i++) {
v = SPA_CLAMP(state->allowed_rates[i], min, max);
if (v != last &&
uint32_array_contains(state->allowed_rates, state->n_allowed_rates, v)) {
spa_pod_builder_int(b, v * scale);
if (count == 0)
spa_pod_builder_int(b, v * scale);
count++;
}
last = v;
}
if (count > 1)
choice->body.type = SPA_CHOICE_Enum;
} else {
spa_pod_builder_int(b, rate * scale);
if (min != max) {
spa_pod_builder_int(b, min * scale);
spa_pod_builder_int(b, max * scale);
choice->body.type = SPA_CHOICE_Range;
}
}
spa_pod_builder_pop(b, &f[0]);
return 1;
}
static int add_channels(struct state *state, bool all, uint32_t index, uint32_t *next,
snd_pcm_hw_params_t *params, struct spa_pod_builder *b)
{
struct spa_pod_frame f[1];
size_t i;
int err;
snd_pcm_t *hndl = state->hndl;
snd_pcm_chmap_query_t **maps;
unsigned int min, max;
CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min");
CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max");
spa_log_debug(state->log, "channels (%d %d) default:%d all:%d",
min, max, state->default_channels, all);
if (state->default_channels != 0 && !all) {
if (min < state->default_channels)
min = state->default_channels;
if (max > state->default_channels)
max = state->default_channels;
}
min = SPA_MIN(min, SPA_AUDIO_MAX_CHANNELS);
max = SPA_MIN(max, SPA_AUDIO_MAX_CHANNELS);
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_channels, 0);
if (state->props.use_chmap && (maps = snd_pcm_query_chmaps(hndl)) != NULL) {
uint32_t channel;
snd_pcm_chmap_t* map;
skip_channels:
if (maps[index] == NULL) {
snd_pcm_free_chmaps(maps);
return 0;
}
map = &maps[index]->map;
spa_log_debug(state->log, "map %d channels (%d %d)", map->channels, min, max);
if (map->channels < min || map->channels > max) {
index = (*next)++;
goto skip_channels;
}
spa_log_debug(state->log, "%p: using chmap", state);
sanitize_map(map);
spa_pod_builder_int(b, map->channels);
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_position, 0);
spa_pod_builder_push_array(b, &f[0]);
for (i = 0; i < map->channels; i++) {
spa_log_debug(state->log, "%p: position %zd %d", state, i, map->pos[i]);
channel = chmap_position_to_channel(map->pos[i]);
spa_pod_builder_id(b, channel);
}
spa_pod_builder_pop(b, &f[0]);
snd_pcm_free_chmaps(maps);
}
else {
const struct channel_map *map = NULL;
struct spa_pod_choice *choice;
if (index > 0)
return 0;
spa_pod_builder_push_choice(b, &f[0], SPA_CHOICE_None, 0);
choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[0]);
spa_pod_builder_int(b, max);
if (min != max) {
spa_pod_builder_int(b, min);
spa_pod_builder_int(b, max);
choice->body.type = SPA_CHOICE_Range;
}
spa_pod_builder_pop(b, &f[0]);
if (min == max) {
if (state->default_pos.channels == min) {
map = &state->default_pos;
spa_log_debug(state->log, "%p: using provided default", state);
} else if (min <= 8) {
map = &default_map[min];
spa_log_debug(state->log, "%p: using default %d channel map", state, min);
}
}
if (map) {
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_position, 0);
spa_pod_builder_push_array(b, &f[0]);
for (i = 0; i < map->channels; i++) {
spa_log_debug(state->log, "%p: position %zd %d", state, i, map->pos[i]);
spa_pod_builder_id(b, map->pos[i]);
}
spa_pod_builder_pop(b, &f[0]);
}
}
return 1;
}
static void debug_hw_params(struct state *state, const char *prefix, snd_pcm_hw_params_t *params)
{
if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_DEBUG))) {
spa_log_debug(state->log, "%s:", prefix);
snd_pcm_hw_params_dump(params, state->output);
fflush(state->log_file);
}
}
static int enum_pcm_formats(struct state *state, uint32_t index, uint32_t *next,
struct spa_pod **result, struct spa_pod_builder *b)
{
int res, err;
size_t j;
snd_pcm_t *hndl;
snd_pcm_hw_params_t *params;
struct spa_pod_frame f[2];
snd_pcm_format_mask_t *fmask;
snd_pcm_access_mask_t *amask;
unsigned int rrate, rchannels;
struct spa_pod_choice *choice;
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available");
debug_hw_params(state, __func__, params);
CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample");
if (state->default_channels != 0) {
rchannels = state->default_channels;
CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels");
if (state->default_channels != rchannels) {
spa_log_warn(state->log, "%s: Channels doesn't match (requested %u, got %u)",
state->name, state->default_channels, rchannels);
}
}
if (state->default_rate != 0) {
rrate = state->default_rate;
CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near");
if (state->default_rate != rrate) {
spa_log_warn(state->log, "%s: Rate doesn't match (requested %u, got %u)",
state->name, state->default_rate, rrate);
}
}
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_add(b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
0);
snd_pcm_format_mask_alloca(&fmask);
snd_pcm_hw_params_get_format_mask(params, fmask);
snd_pcm_access_mask_alloca(&amask);
snd_pcm_hw_params_get_access_mask(params, amask);
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_format, 0);
spa_pod_builder_push_choice(b, &f[1], SPA_CHOICE_None, 0);
choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[1]);
j = 0;
SPA_FOR_EACH_ELEMENT_VAR(format_info, fi) {
if (fi->format == SND_PCM_FORMAT_UNKNOWN)
continue;
if (snd_pcm_format_mask_test(fmask, fi->format)) {
if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) ||
snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_NONINTERLEAVED)) &&
fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN &&
(state->default_format == 0 || state->default_format == fi->spa_pformat)) {
if (j++ == 0)
spa_pod_builder_id(b, fi->spa_pformat);
spa_pod_builder_id(b, fi->spa_pformat);
}
if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED) ||
snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_INTERLEAVED)) &&
(state->default_format == 0 || state->default_format == fi->spa_format)) {
if (j++ == 0)
spa_pod_builder_id(b, fi->spa_format);
spa_pod_builder_id(b, fi->spa_format);
}
}
}
if (j > 1)
choice->body.type = SPA_CHOICE_Enum;
spa_pod_builder_pop(b, &f[1]);
if (j == 0) {
char buf[1024];
int i, r, offs;
for (i = 0, offs = 0; i <= SND_PCM_FORMAT_LAST; i++) {
if (snd_pcm_format_mask_test(fmask, (snd_pcm_format_t)i)) {
r = snprintf(&buf[offs], sizeof(buf) - offs,
"%s ", snd_pcm_format_name((snd_pcm_format_t)i));
if (r < 0 || r + offs >= (int)sizeof(buf))
return -ENOSPC;
offs += r;
}
}
spa_log_warn(state->log, "%s: no format found (def:%d) formats:%s",
state->name, state->default_format, buf);
for (i = 0, offs = 0; i <= SND_PCM_ACCESS_LAST; i++) {
if (snd_pcm_access_mask_test(amask, (snd_pcm_access_t)i)) {
r = snprintf(&buf[offs], sizeof(buf) - offs,
"%s ", snd_pcm_access_name((snd_pcm_access_t)i));
if (r < 0 || r + offs >= (int)sizeof(buf))
return -ENOSPC;
offs += r;
}
}
spa_log_warn(state->log, "%s: access:%s", state->name, buf);
return -ENOTSUP;
}
if ((res = add_rate(state, 1, 1, false, index & 0xffff, next, 0, params, b)) != 1)
return res;
if ((res = add_channels(state, false, index & 0xffff, next, params, b)) != 1)
return res;
*result = spa_pod_builder_pop(b, &f[0]);
return 1;
}
static bool codec_supported(uint32_t codec, unsigned int chmax, unsigned int rmax)
{
switch (codec) {
case SPA_AUDIO_IEC958_CODEC_PCM:
case SPA_AUDIO_IEC958_CODEC_DTS:
case SPA_AUDIO_IEC958_CODEC_AC3:
case SPA_AUDIO_IEC958_CODEC_MPEG:
case SPA_AUDIO_IEC958_CODEC_MPEG2_AAC:
if (chmax >= 2)
return true;
break;
case SPA_AUDIO_IEC958_CODEC_EAC3:
if (rmax >= 48000 * 4 && chmax >= 2)
return true;
break;
case SPA_AUDIO_IEC958_CODEC_TRUEHD:
case SPA_AUDIO_IEC958_CODEC_DTSHD:
if (chmax >= 8)
return true;
break;
}
return false;
}
static int enum_iec958_formats(struct state *state, uint32_t index, uint32_t *next,
struct spa_pod **result, struct spa_pod_builder *b)
{
int res, err, dir;
snd_pcm_t *hndl;
snd_pcm_hw_params_t *params;
struct spa_pod_frame f[2];
unsigned int rmin, rmax;
unsigned int chmin, chmax;
uint32_t i, c, codecs[16], n_codecs;
if ((index & 0xffff) > 0)
return 0;
if (!(state->is_iec958 || state->is_hdmi))
return 0;
if (state->iec958_codecs == 0)
return 0;
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available");
debug_hw_params(state, __func__, params);
CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample");
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_add(b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_iec958),
0);
CHECK(snd_pcm_hw_params_get_channels_min(params, &chmin), "get_channels_min");
CHECK(snd_pcm_hw_params_get_channels_max(params, &chmax), "get_channels_max");
spa_log_debug(state->log, "channels (%d %d)", chmin, chmax);
CHECK(snd_pcm_hw_params_get_rate_min(params, &rmin, &dir), "get_rate_min");
CHECK(snd_pcm_hw_params_get_rate_max(params, &rmax, &dir), "get_rate_max");
spa_log_debug(state->log, "rate (%d %d)", rmin, rmax);
if (state->default_rate != 0) {
if (rmin < state->default_rate)
rmin = state->default_rate;
if (rmax > state->default_rate)
rmax = state->default_rate;
}
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_iec958Codec, 0);
spa_pod_builder_push_choice(b, &f[1], SPA_CHOICE_Enum, 0);
n_codecs = spa_alsa_get_iec958_codecs(state, codecs, SPA_N_ELEMENTS(codecs));
for (i = 0, c = 0; i < n_codecs; i++) {
if (!codec_supported(codecs[i], chmax, rmax))
continue;
if (c++ == 0)
spa_pod_builder_id(b, codecs[i]);
spa_pod_builder_id(b, codecs[i]);
}
spa_pod_builder_pop(b, &f[1]);
if ((res = add_rate(state, 1, 1, true, index & 0xffff, next, 0, params, b)) != 1)
return res;
(*next)++;
*result = spa_pod_builder_pop(b, &f[0]);
return 1;
}
static int enum_dsd_formats(struct state *state, uint32_t index, uint32_t *next,
struct spa_pod **result, struct spa_pod_builder *b)
{
int res, err;
snd_pcm_t *hndl;
snd_pcm_hw_params_t *params;
snd_pcm_format_mask_t *fmask;
struct spa_pod_frame f[2];
int32_t interleave;
if ((index & 0xffff) > 0)
return 0;
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available");
debug_hw_params(state, __func__, params);
snd_pcm_format_mask_alloca(&fmask);
snd_pcm_hw_params_get_format_mask(params, fmask);
if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U32_BE))
interleave = 4;
else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U32_LE))
interleave = -4;
else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U16_BE))
interleave = 2;
else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U16_LE))
interleave = -2;
else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U8))
interleave = 1;
else
return 0;
CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample");
spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_add(b,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_dsd),
0);
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_bitorder, 0);
spa_pod_builder_id(b, SPA_PARAM_BITORDER_msb);
spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_interleave, 0);
spa_pod_builder_int(b, interleave);
/* Use a lower rate limit of 352800 (= 44100 * 64 / 8). This is because in
* PipeWire, DSD rates are given in bytes, not bits, so 352800 corresponds
* to the bit rate of DSD64. (The "64" in DSD64 means "64 times the rate
* of 44.1 kHz".) Some hardware may report rates lower than that, for example
* 176400. This would correspond to "DSD32" (which does not exist). Trying
* to use such a rate with DSD hardware does not work and may cause undefined
* behavior in said hardware. */
if ((res = add_rate(state, 8, SPA_ABS(interleave), true, index & 0xffff,
next, 44100, params, b)) != 1)
return res;
if ((res = add_channels(state, true, index & 0xffff, next, params, b)) != 1)
return res;
*result = spa_pod_builder_pop(b, &f[0]);
return 1;
}
/* find smaller power of 2 */
static uint32_t flp2(uint32_t x)
{
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x - (x >> 1);
}
int
spa_alsa_enum_format(struct state *state, int seq, uint32_t start, uint32_t num,
const struct spa_pod *filter)
{
uint8_t buffer[4096];
struct spa_pod_builder b = { 0 };
struct spa_pod *fmt;
int err, res;
bool opened;
struct spa_result_node_params result;
uint32_t count = 0;
spa_log_debug(state->log, "opened:%d format:%d started:%d", state->opened,
state->have_format, state->started);
opened = state->opened;
if (!state->started && state->have_format)
spa_alsa_close(state);
if ((err = spa_alsa_open(state, NULL)) < 0)
return err;
result.id = SPA_PARAM_EnumFormat;
result.next = start;
next:
result.index = result.next++;
spa_pod_builder_init(&b, buffer, sizeof(buffer));
if (result.index < 0x10000) {
if ((res = enum_pcm_formats(state, result.index, &result.next, &fmt, &b)) != 1) {
result.next = 0x10000;
goto next;
}
}
else if (result.index < 0x20000) {
if ((res = enum_iec958_formats(state, result.index, &result.next, &fmt, &b)) != 1) {
result.next = 0x20000;
goto next;
}
}
else if (result.index < 0x30000) {
if ((res = enum_dsd_formats(state, result.index, &result.next, &fmt, &b)) != 1) {
result.next = 0x30000;
goto next;
}
}
else
goto enum_end;
if (spa_pod_filter(&b, &result.param, fmt, filter) < 0)
goto next;
spa_node_emit_result(&state->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result);
if (++count != num)
goto next;
enum_end:
res = 0;
if (!opened)
spa_alsa_close(state);
return res;
}
static void recalc_headroom(struct state *state)
{
uint32_t latency;
uint32_t rate = 0;
if (state->position != NULL)
rate = state->position->clock.target_rate.denom;
state->headroom = state->default_headroom;
if (!state->disable_tsched || state->resample) {
/* When using timers, we might miss the pointer update for batch
* devices so add some extra headroom. With IRQ, we know the pointers
* are updated when we wake up and we don't need the headroom. */
if (state->is_batch)
state->headroom += state->period_frames;
/* Add 32 extra samples of headroom to handle jitter in capture.
* For IRQ, we don't need this because when we wake up, we have
* exactly enough samples to read or write. */
if (state->stream == SND_PCM_STREAM_CAPTURE)
state->headroom = SPA_MAX(state->headroom, 32u);
}
if (SPA_LIKELY(state->buffer_frames >= state->threshold))
state->headroom = SPA_MIN(state->headroom, state->buffer_frames - state->threshold);
else
state->headroom = 0;
latency = SPA_MAX(state->min_delay, SPA_MIN(state->max_delay, state->headroom));
if (rate != 0 && state->rate != 0)
latency = SPA_SCALE32_UP(latency, rate, state->rate);
state->latency[state->port_direction].min_rate =
state->latency[state->port_direction].max_rate = latency;
}
int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags)
{
unsigned int rrate, rchannels, val, rscale = 1;
snd_pcm_uframes_t period_size;
int err, dir;
snd_pcm_hw_params_t *params;
snd_pcm_format_t rformat;
snd_pcm_access_mask_t *amask;
snd_pcm_t *hndl;
unsigned int periods;
bool match = true, planar = false;
char spdif_params[128] = "";
uint32_t default_period;
spa_log_debug(state->log, "opened:%d format:%d started:%d", state->opened,
state->have_format, state->started);
state->use_mmap = !state->disable_mmap;
state->force_rate = false;
switch (fmt->media_subtype) {
case SPA_MEDIA_SUBTYPE_raw:
{
struct spa_audio_info_raw *f = &fmt->info.raw;
rrate = f->rate;
rchannels = f->channels;
rformat = spa_format_to_alsa(f->format, &planar);
break;
}
case SPA_MEDIA_SUBTYPE_iec958:
{
struct spa_audio_info_iec958 *f = &fmt->info.iec958;
unsigned aes3;
spa_log_info(state->log, "using IEC958 Codec:%s rate:%d",
spa_type_audio_iec958_codec_to_short_name(f->codec),
f->rate);
rformat = SND_PCM_FORMAT_S16_LE;
rchannels = 2;
rrate = f->rate;
switch (f->codec) {
case SPA_AUDIO_IEC958_CODEC_PCM:
case SPA_AUDIO_IEC958_CODEC_DTS:
case SPA_AUDIO_IEC958_CODEC_AC3:
case SPA_AUDIO_IEC958_CODEC_MPEG:
case SPA_AUDIO_IEC958_CODEC_MPEG2_AAC:
break;
case SPA_AUDIO_IEC958_CODEC_EAC3:
/* EAC3 has 3 rates, 32, 44.1 and 48KHz. We need to
* open the device in 4x that rate. Some clients
* already multiply (mpv,..) others don't (vlc). */
if (rrate <= 48000)
rrate *= 4;
break;
case SPA_AUDIO_IEC958_CODEC_TRUEHD:
case SPA_AUDIO_IEC958_CODEC_DTSHD:
rchannels = 8;
break;
default:
return -ENOTSUP;
}
switch (rrate) {
case 22050: aes3 = IEC958_AES3_CON_FS_22050; break;
case 24000: aes3 = IEC958_AES3_CON_FS_24000; break;
case 32000: aes3 = IEC958_AES3_CON_FS_32000; break;
case 44100: aes3 = IEC958_AES3_CON_FS_44100; break;
case 48000: aes3 = IEC958_AES3_CON_FS_48000; break;
case 88200: aes3 = IEC958_AES3_CON_FS_88200; break;
case 96000: aes3 = IEC958_AES3_CON_FS_96000; break;
case 176400: aes3 = IEC958_AES3_CON_FS_176400; break;
case 192000: aes3 = IEC958_AES3_CON_FS_192000; break;
case 768000: aes3 = IEC958_AES3_CON_FS_768000; break;
default: aes3 = IEC958_AES3_CON_FS_NOTID; break;
}
spa_scnprintf(spdif_params, sizeof(spdif_params),
",AES0=0x%x,AES1=0x%x,AES2=0x%x,AES3=0x%x",
IEC958_AES0_CON_EMPHASIS_NONE | IEC958_AES0_NONAUDIO,
IEC958_AES1_CON_ORIGINAL | IEC958_AES1_CON_PCM_CODER,
0, aes3);
state->force_rate = true;
break;
}
case SPA_MEDIA_SUBTYPE_dsd:
{
struct spa_audio_info_dsd *f = &fmt->info.dsd;
rrate = f->rate;
rchannels = f->channels;
switch (f->interleave) {
case 4:
rformat = SND_PCM_FORMAT_DSD_U32_BE;
rrate /= 4;
rscale = 4;
break;
case -4:
rformat = SND_PCM_FORMAT_DSD_U32_LE;
rrate /= 4;
rscale = 4;
break;
case 2:
rformat = SND_PCM_FORMAT_DSD_U16_BE;
rrate /= 2;
rscale = 2;
break;
case -2:
rformat = SND_PCM_FORMAT_DSD_U16_LE;
rrate /= 2;
rscale = 2;
break;
case 1:
rformat = SND_PCM_FORMAT_DSD_U8;
rscale = 1;
break;
default:
return -ENOTSUP;
}
break;
}
default:
return -ENOTSUP;
}
if (rformat == SND_PCM_FORMAT_UNKNOWN) {
spa_log_warn(state->log, "%s: unknown format",
state->name);
return -EINVAL;
}
if (!state->started && state->have_format)
spa_alsa_close(state);
if ((err = spa_alsa_open(state, spdif_params)) < 0)
return err;
hndl = state->hndl;
snd_pcm_hw_params_alloca(&params);
/* choose all parameters */
CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available");
debug_hw_params(state, __func__, params);
/* set hardware resampling, no resample */
CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample");
/* set the interleaved/planar read/write format */
snd_pcm_access_mask_alloca(&amask);
snd_pcm_hw_params_get_access_mask(params, amask);
if (state->use_mmap) {
if ((err = snd_pcm_hw_params_set_access(hndl, params,
planar ? SND_PCM_ACCESS_MMAP_NONINTERLEAVED
: SND_PCM_ACCESS_MMAP_INTERLEAVED)) < 0) {
spa_log_debug(state->log, "%p: MMAP not possible: %s", state,
snd_strerror(err));
state->use_mmap = false;
}
}
if (!state->use_mmap) {
if ((err = snd_pcm_hw_params_set_access(hndl, params,
planar ? SND_PCM_ACCESS_RW_NONINTERLEAVED
: SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) {
spa_log_error(state->log, "%s: RW not possible: %s",
state->name, snd_strerror(err));
return err;
}
}
/* set the sample format */
spa_log_debug(state->log, "%p: Stream parameters are %iHz fmt:%s access:%s-%s channels:%i",
state, rrate, snd_pcm_format_name(rformat),
state->use_mmap ? "mmap" : "rw",
planar ? "planar" : "interleaved", rchannels);
CHECK(snd_pcm_hw_params_set_format(hndl, params, rformat), "set_format");
/* set the count of channels */
val = rchannels;
CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &val), "set_channels");
if (rchannels != val) {
spa_log_warn(state->log, "%s: Channels doesn't match (requested %u, got %u)",
state->name, rchannels, val);
if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST))
return -EINVAL;
if (fmt->media_subtype != SPA_MEDIA_SUBTYPE_raw)
return -EINVAL;
rchannels = val;
fmt->info.raw.channels = rchannels;
match = false;
}
if (!state->multi_rate &&
state->card &&
state->card->format_ref > 0 &&
state->card->rate != rrate) {
spa_log_error(state->log, "%p: card already opened at rate:%i",
state, state->card->rate);
return -EINVAL;
}
/* set the stream rate */
val = rrate;
CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &val, 0), "set_rate_near");
if (rrate != val) {
spa_log_warn(state->log, "%s: Rate doesn't match (requested %iHz, got %iHz)",
state->name, rrate, val);
if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST))
return -EINVAL;
if (fmt->media_subtype != SPA_MEDIA_SUBTYPE_raw)
return -EINVAL;
rrate = val;
fmt->info.raw.rate = rrate;
match = false;
}
if (rchannels == 0 || rrate == 0) {
spa_log_error(state->log, "%s: invalid channels:%d or rate:%d",
state->name, rchannels, rrate);
return -EIO;
}
state->format = rformat;
state->channels = rchannels;
state->rate = rrate;
state->frame_size = snd_pcm_format_physical_width(rformat) / 8;
state->frame_scale = rscale;
state->planar = planar;
state->blocks = 1;
if (planar)
state->blocks *= rchannels;
else
state->frame_size *= rchannels;
/* make sure we update threshold in check_position_config() because they depend
* on the samplerate. */
state->driver_duration = 0;
state->driver_rate.denom = 0;
state->have_format = true;
if (state->card && state->card->format_ref++ == 0)
state->card->rate = rrate;
dir = 0;
period_size = state->default_period_size;
state->is_batch = snd_pcm_hw_params_is_batch(params) && !state->disable_batch;
default_period = SPA_SCALE32_UP(DEFAULT_PERIOD, state->rate, DEFAULT_RATE);
default_period = flp2(2 * default_period - 1);
/* no period size specified. If we are batch or not using timers,
* use the graph duration as the period */
if (period_size == 0 && (state->is_batch || state->disable_tsched))
period_size = state->position ? state->position->clock.target_duration : default_period;
if (period_size == 0)
period_size = default_period;
if (!state->disable_tsched || state->resample) {
if (state->is_batch) {
/* batch devices get their hw pointers updated every period. Make
* the period smaller and add one period of headroom. Limit the
* period size to our default so that we don't create too much
* headroom. */
period_size = SPA_MIN(period_size, default_period) / 2;
} else {
/* disable ALSA wakeups */
if (snd_pcm_hw_params_can_disable_period_wakeup(params))
CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup");
}
}
CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near");
if (period_size == 0) {
spa_log_error(state->log, "%s: invalid period_size 0 (driver error?)", state->name);
return -EIO;
}
state->period_frames = period_size;
if (state->default_period_num != 0) {
periods = state->default_period_num;
CHECK(snd_pcm_hw_params_set_periods_near(hndl, params, &periods, &dir), "set_periods");
state->buffer_frames = period_size * periods;
} else {
CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max");
state->buffer_frames = SPA_MIN(state->buffer_frames, state->quantum_limit * 4 * state->frame_scale);
CHECK(snd_pcm_hw_params_set_buffer_size_min(hndl, params, &state->buffer_frames), "set_buffer_size_min");
CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near");
periods = state->buffer_frames / period_size;
}
if (state->buffer_frames == 0) {
spa_log_error(state->log, "%s: invalid buffer_frames 0 (driver error?)", state->name);
return -EIO;
}
state->max_delay = state->buffer_frames / 2;
if (spa_strstartswith(state->props.device, "a52") ||
spa_strstartswith(state->props.device, "dca") ||
(spa_strstartswith(state->props.device, "plug:") &&
strstr(state->props.device, "a52:")))
state->min_delay = SPA_MIN(2048u, state->buffer_frames);
else
state->min_delay = 0;
state->start_delay = state->default_start_delay;
recalc_headroom(state);
spa_log_info(state->log, "%s: format:%s access:%s-%s rate:%d channels:%d "
"buffer frames %lu, period frames %lu, periods %u, frame_size %zd "
"headroom %u start-delay:%u batch:%u tsched:%u",
state->name, snd_pcm_format_name(state->format),
state->use_mmap ? "mmap" : "rw",
planar ? "planar" : "interleaved",
state->rate, state->channels, state->buffer_frames, state->period_frames,
periods, state->frame_size, state->headroom, state->start_delay,
state->is_batch, !state->disable_tsched);
/* write the parameters to device */
CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params");
return match ? 0 : 1;
}
int spa_alsa_update_rate_match(struct state *state)
{
uint64_t pitch, last_pitch;
int err;
if (!state->pitch_elem)
return -ENOENT;
/* The rate/pitch defines the rate of input to output (if there were a
* resampler, it's the ratio of input samples to output samples). This
* means that to adjust the playback rate, we need to apply the inverse
* of the given rate. */
if (state->stream == SND_PCM_STREAM_CAPTURE) {
pitch = (uint64_t)(1000000 * state->rate_match->rate);
last_pitch = (uint64_t)(1000000 * state->last_rate);
} else {
pitch = (uint64_t)(1000000 / state->rate_match->rate);
last_pitch = (uint64_t)(1000000 / state->last_rate);
}
/* The pitch adjustment is limited to 1 ppm according to the spec, but
* let's avoid very granular changes so that we don't spam the host
* (and ourselves, if bind-ctls are enabled). */
if (SPA_ABS((int)pitch - (int)last_pitch) < 10)
return 0;
snd_ctl_elem_value_set_integer(state->pitch_elem, 0, pitch);
CHECK(snd_ctl_elem_write(state->ctl, state->pitch_elem), "snd_ctl_elem_write");
spa_log_trace_fp(state->log, "%s %u set rate to %g",
state->name, state->stream, state->rate_match->rate);
state->last_rate = state->rate_match->rate;
return 0;
}
static int set_swparams(struct state *state)
{
snd_pcm_t *hndl = state->hndl;
int err = 0;
snd_pcm_sw_params_t *params;
snd_pcm_sw_params_alloca(&params);
/* get the current params */
CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current");
CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE),
"sw_params_set_tstamp_mode");
CHECK(snd_pcm_sw_params_set_tstamp_type(hndl, params, SND_PCM_TSTAMP_TYPE_MONOTONIC),
"sw_params_set_tstamp_type");
#if 0
snd_pcm_uframes_t boundary;
CHECK(snd_pcm_sw_params_get_boundary(params, &boundary), "get_boundary");
CHECK(snd_pcm_sw_params_set_stop_threshold(hndl, params, boundary), "set_stop_threshold");
#endif
/* start the transfer */
CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold");
if (state->disable_tsched) {
snd_pcm_uframes_t avail_min = 0;
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
/* wake up when buffer has target frames or less data (will underrun soon) */
if (state->buffer_frames >= (state->threshold + state->headroom))
avail_min = state->buffer_frames - (state->threshold + state->headroom);
} else {
/* wake up when there's target frames or more (enough for us to read and push a buffer) */
avail_min = SPA_MIN(state->threshold + state->headroom, state->buffer_frames);
}
CHECK(snd_pcm_sw_params_set_avail_min(hndl, params, avail_min), "set_avail_min");
}
/* write the parameters to the playback device */
CHECK(snd_pcm_sw_params(hndl, params), "sw_params");
if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_DEBUG))) {
spa_log_debug(state->log, "state after sw_params:");
snd_pcm_dump(hndl, state->output);
fflush(state->log_file);
}
return 0;
}
static int set_timeout(struct state *state, uint64_t time)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
spa_system_timerfd_settime(state->data_system,
state->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL);
return 0;
}
static int spa_alsa_silence(struct state *state, snd_pcm_uframes_t silence)
{
snd_pcm_t *hndl = state->hndl;
const snd_pcm_channel_area_t *my_areas;
snd_pcm_uframes_t frames, offset;
int i, res;
if (state->use_mmap) {
frames = state->buffer_frames;
if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) {
spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s",
state->name, snd_strerror(res));
return res;
}
silence = SPA_MIN(silence, frames);
spa_log_trace_fp(state->log, "%p: frames:%ld offset:%ld silence %ld",
state, frames, offset, silence);
snd_pcm_areas_silence(my_areas, offset, state->channels, silence, state->format);
if (SPA_UNLIKELY((res = snd_pcm_mmap_commit(hndl, offset, silence)) < 0)) {
spa_log_error(state->log, "%s: snd_pcm_mmap_commit error: %s",
state->name, snd_strerror(res));
return res;
}
} else {
uint8_t buffer[silence * state->frame_size];
memset(buffer, 0, silence * state->frame_size);
if (state->planar) {
void *bufs[state->channels];
for (i = 0; i < state->channels; i++)
bufs[i] = buffer;
snd_pcm_writen(hndl, bufs, silence);
} else {
snd_pcm_writei(hndl, buffer, silence);
}
}
return 0;
}
static void reset_buffers(struct state *this)
{
uint32_t i;
spa_list_init(&this->free);
spa_list_init(&this->ready);
this->ready_offset = 0;
for (i = 0; i < this->n_buffers; i++) {
struct buffer *b = &this->buffers[i];
if (this->stream == SND_PCM_STREAM_PLAYBACK) {
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
spa_node_call_reuse_buffer(&this->callbacks, 0, b->id);
} else {
spa_list_append(&this->free, &b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT);
}
}
}
static int do_prepare(struct state *state)
{
int err;
state->last_threshold = state->threshold;
spa_log_debug(state->log, "%p: start threshold:%d duration:%d rate:%d follower:%d match:%d resample:%d",
state, state->threshold, state->driver_duration, state->driver_rate.denom,
state->following, state->matching, state->resample);
CHECK(set_swparams(state), "swparams");
if ((!state->linked) && (err = snd_pcm_prepare(state->hndl)) < 0 && err != -EBUSY) {
spa_log_error(state->log, "%s: snd_pcm_prepare error: %s",
state->name, snd_strerror(err));
return err;
}
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
snd_pcm_uframes_t silence = state->start_delay + state->threshold + state->headroom;
if (state->disable_tsched)
silence += state->threshold;
spa_alsa_silence(state, silence);
}
reset_buffers(state);
state->alsa_sync = true;
state->alsa_sync_warning = false;
state->alsa_started = false;
return 0;
}
static inline int do_drop(struct state *state)
{
int res;
spa_log_debug(state->log, "%p: snd_pcm_drop linked:%u", state, state->linked);
if (!state->linked && (res = snd_pcm_drop(state->hndl)) < 0) {
spa_log_error(state->log, "%s: snd_pcm_drop: %s",
state->name, snd_strerror(res));
return res;
}
return 0;
}
static inline int do_start(struct state *state)
{
int res;
if (SPA_UNLIKELY(!state->alsa_started)) {
spa_log_debug(state->log, "%p: snd_pcm_start linked:%u", state, state->linked);
if (!state->linked && (res = snd_pcm_start(state->hndl)) < 0) {
spa_log_error(state->log, "%s: snd_pcm_start: %s",
state->name, snd_strerror(res));
return res;
}
state->alsa_started = true;
}
return 0;
}
static inline int check_position_config(struct state *state, bool starting);
static int alsa_recover(struct state *state)
{
int res, st, retry = 0;
snd_pcm_status_t *status;
struct state *driver, *follower;
snd_pcm_status_alloca(&status);
if (SPA_UNLIKELY((res = snd_pcm_status(state->hndl, status)) < 0)) {
spa_log_error(state->log, "%s: snd_pcm_status error: %s",
state->name, snd_strerror(res));
goto recover;
}
st = snd_pcm_status_get_state(status);
switch (st) {
case SND_PCM_STATE_XRUN:
{
struct timeval now, trigger, diff;
uint64_t delay, missing;
snd_pcm_status_get_tstamp (status, &now);
snd_pcm_status_get_trigger_tstamp (status, &trigger);
timersub(&now, &trigger, &diff);
delay = SPA_TIMEVAL_TO_USEC(&diff);
missing = delay * state->rate / SPA_USEC_PER_SEC;
missing += state->start_delay + state->threshold + state->headroom;
spa_log_trace(state->log, "%p: xrun of %"PRIu64" usec %"PRIu64,
state, delay, missing);
if (state->clock) {
state->clock->xrun += SPA_SCALE32_UP(missing,
state->clock->rate.denom, state->rate);
}
spa_node_call_xrun(&state->callbacks,
SPA_TIMEVAL_TO_USEC(&trigger), delay, NULL);
break;
}
case SND_PCM_STATE_SUSPENDED:
spa_log_info(state->log, "%s: recover from state %s",
state->name, snd_pcm_state_name(st));
while (retry++ < 5 && (res = snd_pcm_resume(state->hndl)) == -EAGAIN)
/* wait until suspend flag is released */
poll(NULL, 0, 1000);
if (res >= 0)
return res;
/* try to drop and prepare below */
break;
default:
spa_log_error(state->log, "%s: recover from error state %s",
state->name, snd_pcm_state_name(st));
break;
}
recover:
if (state->driver && state->linked)
driver = state->driver;
else
driver = state;
do_drop(driver);
spa_list_for_each(follower, &driver->rt.followers, rt.driver_link) {
if (follower != driver && follower->linked) {
do_drop(follower);
check_position_config(follower, false);
}
}
do_prepare(driver);
spa_list_for_each(follower, &driver->rt.followers, rt.driver_link) {
if (follower != driver && follower->linked)
do_prepare(follower);
}
do_start(driver);
spa_list_for_each(follower, &driver->rt.followers, rt.driver_link) {
if (follower != driver && follower->linked)
do_start(follower);
}
return 0;
}
static inline snd_pcm_sframes_t alsa_avail(struct state *state)
{
snd_pcm_sframes_t avail;
if (!state->matching && state->disable_tsched && !state->resample)
avail = snd_pcm_avail_update(state->hndl);
else
avail = snd_pcm_avail(state->hndl);
return avail;
}
static int get_avail(struct state *state, uint64_t current_time, snd_pcm_uframes_t *delay)
{
int res, suppressed;
snd_pcm_sframes_t avail;
if (SPA_UNLIKELY((avail = alsa_avail(state)) < 0)) {
if ((res = alsa_recover(state)) < 0)
return res;
if ((avail = alsa_avail(state)) < 0) {
if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) {
spa_log_warn(state->log, "%s: (%d suppressed) snd_pcm_avail after recover: %s",
state->name, suppressed, snd_strerror(avail));
}
avail = state->threshold * 2;
}
}
*delay = avail;
if (state->htimestamp) {
snd_pcm_uframes_t havail;
snd_htimestamp_t tstamp;
uint64_t then;
if ((res = snd_pcm_htimestamp(state->hndl, &havail, &tstamp)) < 0) {
if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) {
spa_log_warn(state->log, "%s: (%d suppressed) snd_pcm_htimestamp error: %s",
state->name, suppressed, snd_strerror(res));
}
return avail;
}
avail = havail;
*delay = havail;
if ((then = SPA_TIMESPEC_TO_NSEC(&tstamp)) != 0) {
int64_t diff;
if (then < current_time)
diff = ((int64_t)(current_time - then)) * state->rate / SPA_NSEC_PER_SEC;
else
diff = -((int64_t)(then - current_time)) * state->rate / SPA_NSEC_PER_SEC;
spa_log_trace_fp(state->log, "%"PRIu64" %"PRIu64" %"PRIi64, current_time, then, diff);
if (SPA_ABS(diff) < state->threshold * 3) {
*delay += SPA_CLAMP(diff, -((int64_t)state->threshold), (int64_t)state->threshold);
state->htimestamp_error = 0;
} else if (state->htimestamp_max_errors) {
if (++state->htimestamp_error > state->htimestamp_max_errors) {
spa_log_error(state->log, "%s: wrong htimestamps from driver, disabling",
state->name);
state->htimestamp_error = 0;
state->htimestamp = false;
}
else if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) {
spa_log_warn(state->log, "%s: (%d suppressed) impossible htimestamp diff:%"PRIi64,
state->name, suppressed, diff);
}
}
}
}
return avail;
}
static int get_status(struct state *state, uint64_t current_time, snd_pcm_uframes_t *avail,
snd_pcm_uframes_t *delay, snd_pcm_uframes_t *target)
{
int res;
snd_pcm_uframes_t a, d;
if ((res = get_avail(state, current_time, &d)) < 0)
return res;
a = SPA_MIN(res, (int)state->buffer_frames);
if (state->resample && state->rate_match) {
state->delay = state->rate_match->delay;
state->read_size = state->rate_match->size;
} else {
state->delay = 0;
state->read_size = state->threshold;
}
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
*avail = state->buffer_frames - a;
*delay = state->buffer_frames - SPA_MIN(d, state->buffer_frames);
*target = state->threshold + state->headroom;
} else {
*avail = a;
*delay = d;
*target = SPA_MAX(state->threshold, state->read_size) + state->headroom;
}
*target = SPA_CLAMP(*target, state->min_delay, state->max_delay);
return 0;
}
static int update_time(struct state *state, uint64_t current_time, snd_pcm_sframes_t delay,
snd_pcm_sframes_t target, bool follower)
{
double err, corr, avg;
int32_t diff;
if (state->disable_tsched && !follower) {
err = (int64_t)(current_time - state->next_time);
err = err / 1e9 * state->rate;
} else {
if (state->stream == SND_PCM_STREAM_PLAYBACK)
err = delay - target;
else
err = target - delay;
}
if (SPA_UNLIKELY(state->dll.bw == 0.0)) {
spa_dll_set_bw(&state->dll, SPA_DLL_BW_MAX, state->threshold, state->rate);
state->next_time = current_time;
state->base_time = current_time;
}
diff = (int32_t) (state->last_threshold - state->threshold);
if (SPA_UNLIKELY(diff != 0)) {
err -= diff;
spa_log_trace(state->log, "%p: follower:%d quantum change %d -> %d (%d) %f",
state, follower, state->last_threshold, state->threshold, diff, err);
state->last_threshold = state->threshold;
state->alsa_sync = true;
state->alsa_sync_warning = false;
}
if (err > state->max_resync) {
state->alsa_sync = true;
if (err > state->max_error)
err = state->max_error;
} else if (err < -state->max_resync) {
state->alsa_sync = true;
if (err < -state->max_error)
err = -state->max_error;
}
if (!follower || state->matching) {
corr = spa_dll_update(&state->dll, err);
avg = (state->err_avg * state->err_wdw + (err - state->err_avg)) / (state->err_wdw + 1.0);
state->err_var = (state->err_var * state->err_wdw +
(err - state->err_avg) * (err - avg)) / (state->err_wdw + 1.0);
state->err_avg = avg;
} else {
corr = 1.0;
}
if (diff < 0)
state->next_time += (uint64_t)(diff / corr * 1e9 / state->rate);
if (SPA_UNLIKELY((state->next_time - state->base_time) > BW_PERIOD)) {
double bw;
state->base_time = state->next_time;
bw = (fabs(state->err_avg) + sqrt(fabs(state->err_var)))/1000.0;
spa_log_debug(state->log, "%s: follower:%d match:%d rate:%f "
"bw:%f thr:%u del:%ld target:%ld err:%f max_err:%f max_resync: %f var:%f:%f:%f",
state->name, follower, state->matching,
corr, state->dll.bw, state->threshold, delay, target,
err, state->max_error, state->max_resync, state->err_avg, state->err_var, bw);
spa_dll_set_bw(&state->dll,
SPA_CLAMPD(bw, 0.001, SPA_DLL_BW_MAX),
state->threshold, state->rate);
}
if (state->rate_match) {
if (state->stream == SND_PCM_STREAM_PLAYBACK)
state->rate_match->rate = corr;
else
state->rate_match->rate = 1.0/corr;
if (state->pitch_elem && state->matching)
spa_alsa_update_rate_match(state);
else
SPA_FLAG_UPDATE(state->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, state->matching);
}
state->next_time += (uint64_t)(state->threshold / corr * 1e9 / state->rate);
if (SPA_LIKELY(state->clock)) {
state->clock->nsec = current_time;
state->clock->rate = state->driver_rate;
state->clock->position += state->clock->duration;
state->clock->duration = state->driver_duration;
state->clock->delay = delay + state->delay;
state->clock->rate_diff = corr;
state->clock->next_nsec = state->next_time;
}
spa_log_trace_fp(state->log, "%p: follower:%d %"PRIu64" %f %ld %ld %f %f %u",
state, follower, current_time, corr, delay, target, err, state->threshold * corr,
state->threshold);
return 0;
}
static int setup_matching(struct state *state)
{
state->matching = state->following;
if (state->position == NULL)
return -ENOTSUP;
spa_log_debug(state->log, "driver clock:'%s' our clock:'%s'",
state->position->clock.name, state->clock_name);
if (spa_streq(state->position->clock.name, state->clock_name))
state->matching = false;
state->resample = !state->pitch_elem &&
(((uint32_t)state->rate != state->driver_rate.denom) || state->matching);
recalc_headroom(state);
spa_log_info(state->log, "driver clock:'%s'@%d our clock:'%s'@%d matching:%d resample:%d",
state->position->clock.name, state->driver_rate.denom,
state->clock_name, state->rate,
state->matching, state->resample);
return 0;
}
static void update_sources(struct state *state, bool active)
{
if (state->disable_tsched && state->rt.sources_added) {
for (int i = 0; i < state->n_fds; i++) {
state->source[i].mask = active ? state->pfds[i].events : 0;
spa_loop_update_source(state->data_loop, &state->source[i]);
}
}
}
static inline int check_position_config(struct state *state, bool starting)
{
uint64_t target_duration;
struct spa_fraction target_rate;
struct spa_io_position *pos;
if (SPA_UNLIKELY((pos = state->position) == NULL))
return 0;
if (state->disable_tsched && (starting || state->started) && !state->following) {
target_duration = state->period_frames;
target_rate = SPA_FRACTION(1, state->rate);
pos->clock.target_duration = target_duration;
pos->clock.target_rate = target_rate;
} else {
target_duration = pos->clock.target_duration;
if (state->force_rate && !state->following) {
target_rate = SPA_FRACTION(1, state->rate);
pos->clock.target_rate = target_rate;
} else {
target_rate = pos->clock.target_rate;
}
}
if (target_duration == 0 || target_rate.denom == 0)
return -EIO;
if (SPA_UNLIKELY((state->driver_duration != target_duration) ||
(state->driver_rate.denom != target_rate.denom))) {
spa_log_info(state->log, "%p: follower:%d duration:%u->%"PRIu64" rate:%d->%d",
state, state->following, state->driver_duration, target_duration,
state->driver_rate.denom, target_rate.denom);
state->driver_duration = target_duration;
state->driver_rate = target_rate;
state->threshold = SPA_SCALE32_UP(state->driver_duration, state->rate, state->driver_rate.denom);
state->max_error = SPA_MAX(256.0f, (state->threshold + state->headroom) / 2.0f);
state->max_resync = SPA_MIN(state->threshold + state->headroom, state->max_error);
state->err_wdw = (double)state->driver_rate.denom/state->driver_duration;
state->resample = !state->pitch_elem &&
(((uint32_t)state->rate != state->driver_rate.denom) || state->matching);
state->alsa_sync = true;
}
return 0;
}
static int alsa_write_sync(struct state *state, uint64_t current_time)
{
int res, suppressed;
snd_pcm_uframes_t avail, delay, target;
bool following = state->following;
if (SPA_UNLIKELY((res = check_position_config(state, false)) < 0))
return res;
if (SPA_UNLIKELY((res = get_status(state, current_time, &avail, &delay, &target)) < 0)) {
spa_log_error(state->log, "get_status error: %s", spa_strerror(res));
state->next_time += (uint64_t)(state->threshold * 1e9 / state->rate);
return res;
}
if (SPA_UNLIKELY(!following && state->alsa_started && delay > target + state->max_error)) {
spa_log_trace(state->log, "%p: early wakeup %ld %lu %lu", state,
avail, delay, target);
if (delay > target * 3)
delay = target * 3;
state->next_time = current_time + (delay - target) * SPA_NSEC_PER_SEC / state->rate;
return -EAGAIN;
}
if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, following)) < 0))
return res;
if (following && state->alsa_started && !state->linked) {
if (SPA_UNLIKELY(state->alsa_sync)) {
enum spa_log_level lev;
if (SPA_UNLIKELY(state->alsa_sync_warning))
lev = SPA_LOG_LEVEL_WARN;
else
lev = SPA_LOG_LEVEL_INFO;
if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) < 0)
lev = SPA_LOG_LEVEL_DEBUG;
spa_log_lev(state->log, lev, "%s: follower avail:%lu delay:%ld "
"target:%ld thr:%u, resync (%d suppressed)",
state->name, avail, delay,
target, state->threshold, suppressed);
if (avail > target)
snd_pcm_rewind(state->hndl, avail - target);
else if (avail < target)
spa_alsa_silence(state, target - avail);
avail = target;
spa_dll_init(&state->dll);
state->alsa_sync = false;
} else
state->alsa_sync_warning = true;
}
return 0;
}
static int alsa_write_frames(struct state *state)
{
snd_pcm_t *hndl = state->hndl;
const snd_pcm_channel_area_t *my_areas;
snd_pcm_uframes_t written, frames, offset, off, to_write, total_written;
snd_pcm_sframes_t commitres;
int res = 0;
size_t frame_size = state->frame_size;
total_written = 0;
again:
frames = state->buffer_frames;
if (state->use_mmap && frames > 0) {
if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) {
spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s",
state->name, snd_strerror(res));
alsa_recover(state);
return res;
}
spa_log_trace_fp(state->log, "%p: begin offset:%ld avail:%ld threshold:%d",
state, offset, frames, state->threshold);
off = offset;
} else {
off = 0;
}
to_write = frames;
written = 0;
while (!spa_list_is_empty(&state->ready) && to_write > 0) {
size_t n_bytes, n_frames;
struct buffer *b;
struct spa_data *d;
uint32_t i, offs, size, last_offset;
b = spa_list_first(&state->ready, struct buffer, link);
d = b->buf->datas;
offs = d[0].chunk->offset + state->ready_offset;
last_offset = d[0].chunk->size;
size = last_offset - state->ready_offset;
offs = SPA_MIN(offs, d[0].maxsize);
size = SPA_MIN(d[0].maxsize - offs, size);
n_frames = SPA_MIN(size / frame_size, to_write);
n_bytes = n_frames * frame_size;
if (SPA_LIKELY(state->use_mmap)) {
for (i = 0; i < b->buf->n_datas; i++) {
spa_memcpy(channel_area_addr(&my_areas[i], off),
SPA_PTROFF(d[i].data, offs, void), n_bytes);
}
} else {
void *bufs[b->buf->n_datas];
for (i = 0; i < b->buf->n_datas; i++)
bufs[i] = SPA_PTROFF(d[i].data, offs, void);
if (state->planar)
snd_pcm_writen(hndl, bufs, n_frames);
else
snd_pcm_writei(hndl, bufs[0], n_frames);
}
state->ready_offset += n_bytes;
if (state->ready_offset >= last_offset) {
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
state->io->buffer_id = b->id;
spa_log_trace_fp(state->log, "%p: reuse buffer %u", state, b->id);
spa_node_call_reuse_buffer(&state->callbacks, 0, b->id);
state->ready_offset = 0;
}
written += n_frames;
off += n_frames;
to_write -= n_frames;
}
spa_log_trace_fp(state->log, "%p: commit offset:%ld written:%ld sample_count:%"PRIi64,
state, offset, written, state->sample_count);
total_written += written;
if (state->use_mmap && written > 0) {
if (SPA_UNLIKELY((commitres = snd_pcm_mmap_commit(hndl, offset, written)) < 0)) {
if (commitres == -EPIPE || commitres == -ESTRPIPE) {
spa_log_warn(state->log, "%s: snd_pcm_mmap_commit error: %s",
state->name, snd_strerror(commitres));
} else {
spa_log_error(state->log, "%s: snd_pcm_mmap_commit error: %s",
state->name, snd_strerror(commitres));
return res;
}
}
if (commitres > 0 && written != (snd_pcm_uframes_t) commitres) {
spa_log_warn(state->log, "%s: mmap_commit wrote %ld instead of %ld",
state->name, commitres, written);
}
}
if (!spa_list_is_empty(&state->ready) && written > 0)
goto again;
state->sample_count += total_written;
if (SPA_UNLIKELY(!state->alsa_started && (total_written > 0 || frames == 0)))
do_start(state);
update_sources(state, true);
return 0;
}
int spa_alsa_write(struct state *state)
{
if (state->following && state->rt.driver == NULL) {
uint64_t current_time = state->position->clock.nsec;
alsa_write_sync(state, current_time);
}
return alsa_write_frames(state);
}
void spa_alsa_recycle_buffer(struct state *this, uint32_t buffer_id)
{
struct buffer *b = &this->buffers[buffer_id];
if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) {
spa_log_trace_fp(this->log, "%p: recycle buffer %u", this, buffer_id);
spa_list_append(&this->free, &b->link);
SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT);
}
}
static snd_pcm_uframes_t
push_frames(struct state *state,
const snd_pcm_channel_area_t *my_areas,
snd_pcm_uframes_t offset,
snd_pcm_uframes_t frames)
{
snd_pcm_uframes_t total_frames = 0;
if (spa_list_is_empty(&state->free)) {
spa_log_warn(state->log, "%s: no more buffers", state->name);
total_frames = frames;
} else {
size_t n_bytes, left, frame_size = state->frame_size;
struct buffer *b;
struct spa_data *d;
uint32_t i, avail, l0, l1;
b = spa_list_first(&state->free, struct buffer, link);
spa_list_remove(&b->link);
if (b->h) {
b->h->seq = state->sample_count;
b->h->pts = state->next_time;
b->h->dts_offset = 0;
}
d = b->buf->datas;
avail = d[0].maxsize / frame_size;
total_frames = SPA_MIN(avail, frames);
n_bytes = total_frames * frame_size;
if (my_areas) {
left = state->buffer_frames - offset;
l0 = SPA_MIN(n_bytes, left * frame_size);
l1 = n_bytes - l0;
for (i = 0; i < b->buf->n_datas; i++) {
spa_memcpy(d[i].data,
channel_area_addr(&my_areas[i], offset),
l0);
if (SPA_UNLIKELY(l1 > 0))
spa_memcpy(SPA_PTROFF(d[i].data, l0, void),
channel_area_addr(&my_areas[i], 0),
l1);
d[i].chunk->offset = 0;
d[i].chunk->size = n_bytes;
d[i].chunk->stride = frame_size;
}
} else {
void *bufs[b->buf->n_datas];
for (i = 0; i < b->buf->n_datas; i++) {
bufs[i] = d[i].data;
d[i].chunk->offset = 0;
d[i].chunk->size = n_bytes;
d[i].chunk->stride = frame_size;
}
if (state->planar) {
snd_pcm_readn(state->hndl, bufs, total_frames);
} else {
snd_pcm_readi(state->hndl, bufs[0], total_frames);
}
}
spa_log_trace_fp(state->log, "%p: wrote %ld frames into buffer %d",
state, total_frames, b->id);
spa_list_append(&state->ready, &b->link);
}
return total_frames;
}
static int alsa_read_sync(struct state *state, uint64_t current_time)
{
int res, suppressed;
snd_pcm_uframes_t avail, delay, target, max_read;
bool following = state->following;
if (SPA_UNLIKELY(!state->alsa_started))
return 0;
if (SPA_UNLIKELY((res = check_position_config(state, false)) < 0))
return res;
if (SPA_UNLIKELY((res = get_status(state, current_time, &avail, &delay, &target)) < 0)) {
spa_log_error(state->log, "get_status error: %s", spa_strerror(res));
state->next_time += (uint64_t)(state->threshold * 1e9 / state->rate);
return res;
}
if (SPA_UNLIKELY(!following && avail < state->read_size)) {
spa_log_trace(state->log, "%p: early wakeup %ld %ld %ld %d", state,
delay, avail, target, state->read_size);
state->next_time = current_time + (state->read_size - avail) * SPA_NSEC_PER_SEC /
state->rate;
return -EAGAIN;
}
if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, following)) < 0))
return res;
max_read = state->buffer_frames;
if (following && !state->linked) {
if (state->alsa_sync) {
enum spa_log_level lev;
if (SPA_UNLIKELY(state->alsa_sync_warning))
lev = SPA_LOG_LEVEL_WARN;
else
lev = SPA_LOG_LEVEL_INFO;
if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) < 0)
lev = SPA_LOG_LEVEL_DEBUG;
spa_log_lev(state->log, lev, "%s: follower delay:%ld target:%ld thr:%u "
"resample:%d, resync (%d suppressed)", state->name, delay,
target, state->threshold, state->resample, suppressed);
if (avail < target)
max_read = target - avail;
else if (avail > target) {
snd_pcm_forward(state->hndl, avail - target);
avail = target;
}
state->alsa_sync = false;
spa_dll_init(&state->dll);
} else
state->alsa_sync_warning = true;
if (avail < state->read_size)
max_read = 0;
}
state->max_read = SPA_MIN(max_read, state->read_size);
return 0;
}
static int alsa_read_frames(struct state *state)
{
snd_pcm_t *hndl = state->hndl;
snd_pcm_uframes_t total_read = 0, avail;
const snd_pcm_channel_area_t *my_areas;
snd_pcm_uframes_t read, frames, offset;
snd_pcm_sframes_t commitres;
int res = 0;
frames = state->max_read;
if (state->use_mmap) {
avail = state->buffer_frames;
if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &avail)) < 0) {
spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s",
state->name, snd_strerror(res));
alsa_recover(state);
return res;
}
spa_log_trace_fp(state->log, "%p: begin offs:%ld frames:%ld avail:%ld thres:%d", state,
offset, frames, avail, state->threshold);
} else {
my_areas = NULL;
offset = 0;
}
if (frames > 0) {
read = push_frames(state, my_areas, offset, frames);
total_read += read;
} else {
spa_alsa_skip(state);
total_read += state->read_size;
read = 0;
}
if (state->use_mmap && read > 0) {
spa_log_trace_fp(state->log, "%p: commit offs:%ld read:%ld count:%"PRIi64, state,
offset, read, state->sample_count);
if ((commitres = snd_pcm_mmap_commit(hndl, offset, read)) < 0) {
enum spa_log_level lev;
if (SPA_UNLIKELY(state->alsa_sync_warning))
lev = SPA_LOG_LEVEL_ERROR;
else
lev = SPA_LOG_LEVEL_INFO;
spa_log_lev(state->log, lev, "%s: snd_pcm_mmap_commit error %lu %lu %lu: %s",
state->name, frames, avail, read, snd_strerror(commitres));
if (commitres != -EPIPE && commitres != -ESTRPIPE)
return res;
}
if (commitres > 0 && read != (snd_pcm_uframes_t) commitres) {
spa_log_warn(state->log, "%s: mmap_commit read %ld instead of %ld",
state->name, commitres, read);
}
}
state->sample_count += total_read;
return 0;
}
int spa_alsa_read(struct state *state)
{
if (state->following && state->rt.driver == NULL) {
uint64_t current_time = state->position->clock.nsec;
alsa_read_sync(state, current_time);
}
return alsa_read_frames(state);
}
int spa_alsa_skip(struct state *state)
{
struct buffer *b;
struct spa_data *d;
uint32_t i, avail, total_frames, n_bytes, frames;
if (SPA_UNLIKELY(spa_list_is_empty(&state->free))) {
spa_log_warn(state->log, "%s: no more buffers", state->name);
return -EPIPE;
}
frames = state->read_size;
b = spa_list_first(&state->free, struct buffer, link);
spa_list_remove(&b->link);
d = b->buf->datas;
avail = d[0].maxsize / state->frame_size;
total_frames = SPA_MIN(avail, frames);
n_bytes = total_frames * state->frame_size;
for (i = 0; i < b->buf->n_datas; i++) {
memset(d[i].data, 0, n_bytes);
d[i].chunk->offset = 0;
d[i].chunk->size = n_bytes;
d[i].chunk->stride = state->frame_size;
}
spa_list_append(&state->ready, &b->link);
return 0;
}
static int playback_ready(struct state *state)
{
struct spa_io_buffers *io = state->io;
spa_log_trace_fp(state->log, "%p: %d", state, io->status);
update_sources(state, false);
io->status = SPA_STATUS_NEED_DATA;
return spa_node_call_ready(&state->callbacks, SPA_STATUS_NEED_DATA);
}
static int capture_ready(struct state *state)
{
struct spa_io_buffers *io;
bool have_data;
have_data = !spa_list_is_empty(&state->ready);
io = state->io;
if (io != NULL &&
(io->status != SPA_STATUS_HAVE_DATA || state->rate_match != NULL)) {
struct buffer *b;
if (SPA_LIKELY(io->buffer_id < state->n_buffers))
spa_alsa_recycle_buffer(state, io->buffer_id);
if (SPA_LIKELY(have_data)) {
b = spa_list_first(&state->ready, struct buffer, link);
spa_list_remove(&b->link);
SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT);
io->buffer_id = b->id;
io->status = SPA_STATUS_HAVE_DATA;
} else {
io->buffer_id = SPA_ID_INVALID;
}
spa_log_trace_fp(state->log, "%p: output buffer:%d", state, io->buffer_id);
}
if (have_data)
spa_node_call_ready(&state->callbacks, SPA_STATUS_HAVE_DATA);
return 0;
}
static uint64_t get_time_ns(struct state *state)
{
struct timespec now;
if (spa_system_clock_gettime(state->data_system, CLOCK_MONOTONIC, &now) < 0)
return 0;
return SPA_TIMESPEC_TO_NSEC(&now);
}
static inline int alsa_do_wakeup_work(struct state *state, uint64_t current_time)
{
struct state *follower;
int res;
/* first do all the sync */
if (state->stream == SND_PCM_STREAM_CAPTURE)
res = alsa_read_sync(state, current_time);
else
res = alsa_write_sync(state, current_time);
/* we can get -EAGAIN when we need to wait some more */
if (SPA_UNLIKELY(res == -EAGAIN))
return res;
spa_list_for_each(follower, &state->rt.followers, rt.driver_link) {
if (follower == state)
continue;
if (follower->stream == SND_PCM_STREAM_CAPTURE)
alsa_read_sync(follower, current_time);
else
alsa_write_sync(follower, current_time);
}
/* then read this source, the sinks will be written to when the
* graph completes. We can't read other follower sources yet because
* the resampler first needs to run. */
if (state->stream == SND_PCM_STREAM_CAPTURE)
alsa_read_frames(state);
/* and then trigger the graph */
if (state->stream == SND_PCM_STREAM_PLAYBACK)
playback_ready(state);
else
capture_ready(state);
return 0;
}
static void alsa_irq_wakeup_event(struct spa_source *source)
{
struct state *state = source->data;
uint64_t current_time;
int res, err;
unsigned short revents;
snd_pcm_uframes_t havail;
snd_htimestamp_t tstamp;
// First, take a snapshot of the wakeup time
current_time = get_time_ns(state);
// If the hi-res timestamps are working, we will get a timestamp that
// is earlier then current_time
if ((res = snd_pcm_htimestamp(state->hndl, &havail, &tstamp)) == 0) {
uint64_t htime = SPA_TIMESPEC_TO_NSEC(&tstamp);
if (htime < current_time) {
current_time = htime;
}
}
for (int i = 0; i < state->n_fds; i++) {
state->pfds[i].revents = state->source[i].rmask;
/* Reset so that we only handle all our sources' events once */
state->source[i].rmask = 0;
}
/* ALSA poll fds need to be "demangled" to know whether it's a real wakeup */
if (SPA_UNLIKELY(err = snd_pcm_poll_descriptors_revents(state->hndl,
state->pfds, state->n_fds, &revents))) {
spa_log_error(state->log, "Could not look up revents: %s",
snd_strerror(err));
return;
}
if (!revents) {
spa_log_trace_fp(state->log, "Woken up with no work to do");
return;
}
if (revents & POLLERR) {
spa_log_trace_fp(state->log, "poll error");
if ((res = alsa_recover(state)) < 0)
return;
}
alsa_do_wakeup_work(state, current_time);
}
static void alsa_timer_wakeup_event(struct spa_source *source)
{
struct state *state = source->data;
uint64_t expire, current_time;
int res, suppressed;
if (SPA_LIKELY(state->started)) {
if (SPA_UNLIKELY((res = spa_system_timerfd_read(state->data_system,
state->timerfd, &expire)) < 0)) {
/* we can get here when the timer is changed since the last
* timerfd wakeup, for example by do_reassign_follower() executed
* in the same epoll wakeup cycle */
if (res != -EAGAIN)
spa_log_warn(state->log, "%p: error reading timerfd: %s",
state, spa_strerror(res));
return;
}
}
current_time = state->next_time;
alsa_do_wakeup_work(state, current_time);
if (state->next_time > current_time + SPA_NSEC_PER_SEC ||
current_time > state->next_time + SPA_NSEC_PER_SEC) {
if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) {
spa_log_error(state->log, "%s: impossible timeout %"
PRIu64" %"PRIu64" %"PRIi64" %d %"PRIi64" (%d suppressed)",
state->name, current_time, state->next_time,
state->next_time - current_time, state->threshold,
state->sample_count, suppressed);
}
state->next_time = (uint64_t)(current_time + state->threshold * 1e9 / state->rate);
}
set_timeout(state, state->next_time);
}
static void remove_sources(struct state *state)
{
int i;
if (state->rt.sources_added) {
for (i = 0; i < state->n_fds; i++)
spa_loop_remove_source(state->data_loop, &state->source[i]);
state->rt.sources_added = false;
}
}
static void add_sources(struct state *state)
{
int i;
if (!state->rt.sources_added) {
for (i = 0; i < state->n_fds; i++)
spa_loop_add_source(state->data_loop, &state->source[i]);
state->rt.sources_added = true;
}
}
static int do_state_sync(struct spa_loop *loop, bool async, uint32_t seq,
const void *data, size_t size, void *user_data)
{
struct state *state = user_data;
struct rt_state *rt = &state->rt;
if (state->started) {
state->next_time = get_time_ns(state);
if (rt->driver != state->driver) {
spa_dll_init(&state->dll);
if (rt->driver != NULL)
spa_list_remove(&rt->driver_link);
if (state->driver != NULL)
spa_list_append(&state->driver->rt.followers, &rt->driver_link);
rt->driver = state->driver;
spa_log_debug(state->log, "state:%p -> driver:%p", state, state->driver);
if(state->linked && state->matching)
try_unlink(state);
}
if (state->following) {
remove_sources(state);
set_timeout(state, 0);
} else {
add_sources(state);
if (!state->disable_tsched)
set_timeout(state, state->next_time);
}
} else {
if (rt->driver) {
spa_list_remove(&rt->driver_link);
rt->driver = NULL;
}
if (!state->disable_tsched)
set_timeout(state, 0);
remove_sources(state);
}
return 0;
}
int spa_alsa_prepare(struct state *state)
{
struct state *follower;
int err;
if (!state->opened)
return -EIO;
spa_alsa_pause(state);
if (state->prepared)
return 0;
if (check_position_config(state, true) < 0) {
spa_log_error(state->log, "%s: invalid position config", state->name);
return -EIO;
}
if ((err = do_prepare(state)) < 0)
return err;
spa_list_for_each(follower, &state->followers, driver_link) {
if (follower != state && !follower->matching) {
if (spa_alsa_prepare(follower) < 0)
continue;
if (!follower->linked && state->auto_link)
do_link(state, follower);
}
}
state->prepared = true;
return 0;
}
int spa_alsa_start(struct state *state)
{
struct state *follower;
int err;
if (state->started)
return 0;
else if (!state->opened)
return -EIO;
spa_alsa_prepare(state);
if (!state->disable_tsched) {
/* Timer-based scheduling */
state->source[0].func = alsa_timer_wakeup_event;
state->source[0].data = state;
state->source[0].fd = state->timerfd;
state->source[0].mask = SPA_IO_IN;
state->source[0].rmask = 0;
state->n_fds = 1;
} else {
/* ALSA period-based scheduling */
err = snd_pcm_poll_descriptors_count(state->hndl);
if (err < 0) {
spa_log_error(state->log, "Could not get poll descriptor count: %s",
snd_strerror(err));
return err;
}
if (err > MAX_POLL) {
spa_log_error(state->log, "Unsupported poll descriptor count: %d", err);
return -EIO;
}
state->n_fds = err;
if ((err = snd_pcm_poll_descriptors(state->hndl, state->pfds, state->n_fds)) < 0) {
spa_log_error(state->log, "Could not get poll descriptors: %s",
snd_strerror(err));
return err;
}
/* We only add the source to the data loop if we're driving.
* This is done in add_sources() */
for (int i = 0; i < state->n_fds; i++) {
state->source[i].func = alsa_irq_wakeup_event;
state->source[i].data = state;
state->source[i].fd = state->pfds[i].fd;
state->source[i].mask = state->pfds[i].events;
state->source[i].rmask = 0;
}
}
spa_list_for_each(follower, &state->followers, driver_link)
if (follower != state)
spa_alsa_start(follower);
/* start capture now. We should have some data when the timer or IRQ
* goes off later */
if (state->stream == SND_PCM_STREAM_CAPTURE) {
if ((err = do_start(state)) < 0)
return err;
}
/* playback will start after first write. Without tsched, we start
* right away so that the fds become active in poll right away. */
if (state->stream == SND_PCM_STREAM_PLAYBACK) {
if (state->disable_tsched || state->start_delay > 0)
if ((err = do_start(state)) < 0)
return err;
}
state->started = true;
spa_loop_invoke(state->data_loop, do_state_sync, 0, NULL, 0, true, state);
return 0;
}
static struct state *find_state(uint32_t id)
{
struct state *state;
spa_list_for_each(state, &states, link) {
if (state->clock != NULL && state->clock->id == id)
return state;
}
return NULL;
}
int spa_alsa_reassign_follower(struct state *state)
{
bool following, freewheel;
struct spa_io_position *pos = state->position;
struct spa_io_clock *clock = state->clock;
struct state *driver;
if (clock != NULL)
spa_scnprintf(clock->name, sizeof(clock->name), "%s", state->clock_name);
following = pos && clock && pos->clock.id != clock->id;
driver = pos != NULL ? find_state(pos->clock.id) : NULL;
if (driver != state->driver) {
spa_log_debug(state->log, "%p: reassign driver %p->%p", state, state->driver, driver);
if (state->driver != NULL)
spa_list_remove(&state->driver_link);
if (driver != NULL) {
spa_list_append(&driver->followers, &state->driver_link);
}
state->driver = driver;
}
if (following != state->following) {
spa_log_debug(state->log, "%p: reassign follower %d->%d", state, state->following, following);
state->following = following;
}
setup_matching(state);
if (state->started)
spa_loop_invoke(state->data_loop, do_state_sync, 0, NULL, 0, true, state);
else if (state->want_started)
spa_alsa_start(state);
freewheel = pos != NULL && SPA_FLAG_IS_SET(pos->clock.flags, SPA_IO_CLOCK_FLAG_FREEWHEEL);
if (state->freewheel != freewheel) {
spa_log_debug(state->log, "%p: freewheel %d->%d", state, state->freewheel, freewheel);
state->freewheel = freewheel;
if (state->started) {
if (freewheel)
snd_pcm_pause(state->hndl, 1);
else
snd_pcm_pause(state->hndl, 0);
}
}
state->alsa_sync_warning = false;
return 0;
}
int spa_alsa_pause(struct state *state)
{
struct state *follower;
if (!state->started)
return 0;
spa_log_debug(state->log, "%p: pause", state);
state->started = false;
spa_loop_invoke(state->data_loop, do_state_sync, 0, NULL, 0, true, state);
spa_list_for_each(follower, &state->followers, driver_link)
spa_alsa_pause(follower);
do_drop(state);
state->prepared = false;
return 0;
}
void spa_alsa_emit_node_info(struct state *state, bool full)
{
uint64_t old = full ? state->info.change_mask : 0;
if (full)
state->info.change_mask = state->info_all;
if (state->info.change_mask) {
struct spa_dict_item items[7];
uint32_t i, n_items = 0;
char latency[64] = "", period[64] = "", nperiods[64] = "", headroom[64] = "";
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_DEVICE_API, "alsa");
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_MEDIA_CLASS, state->props.media_class);
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_NODE_DRIVER, "true");
if (state->have_format)
snprintf(latency, sizeof(latency), "%lu/%d",
state->buffer_frames / (2 * state->frame_scale), state->rate);
items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_NODE_MAX_LATENCY, latency[0] ? latency : NULL);
if (state->have_format)
snprintf(period, sizeof(period), "%lu", state->period_frames);
else if (state->default_period_size)
snprintf(period, sizeof(period), "%u", state->default_period_size);
items[n_items++] = SPA_DICT_ITEM_INIT("api.alsa.period-size", period[0] ? period : NULL);
if (state->have_format)
snprintf(nperiods, sizeof(nperiods), "%lu",
state->period_frames != 0 ? state->buffer_frames / state->period_frames : 0);
else if (state->default_period_num)
snprintf(nperiods, sizeof(nperiods), "%u", state->default_period_size);
items[n_items++] = SPA_DICT_ITEM_INIT("api.alsa.period-num", nperiods[0] ? nperiods : NULL);
if (state->have_format)
snprintf(headroom, sizeof(headroom), "%u", state->headroom);
else if (state->default_headroom)
snprintf(headroom, sizeof(headroom), "%u", state->default_headroom);
items[n_items++] = SPA_DICT_ITEM_INIT("api.alsa.headroom", headroom[0] ? headroom : NULL);
state->info.props = &SPA_DICT_INIT(items, n_items);
if (state->info.change_mask & SPA_NODE_CHANGE_MASK_PARAMS) {
for (i = 0; i < state->info.n_params; i++) {
if (state->params[i].user > 0) {
state->params[i].flags ^= SPA_PARAM_INFO_SERIAL;
state->params[i].user = 0;
}
}
}
spa_node_emit_info(&state->hooks, &state->info);
state->info.change_mask = old;
}
}
void spa_alsa_emit_port_info(struct state *state, bool full)
{
uint64_t old = full ? state->port_info.change_mask : 0;
if (full)
state->port_info.change_mask = state->port_info_all;
if (state->port_info.change_mask) {
uint32_t i;
static const struct spa_dict_item info_items[] = {
{ SPA_KEY_PORT_GROUP, "stream.0" },
};
state->port_info.props = &SPA_DICT_INIT_ARRAY(info_items);
if (state->port_info.change_mask & SPA_PORT_CHANGE_MASK_PARAMS) {
for (i = 0; i < state->port_info.n_params; i++) {
if (state->port_params[i].user > 0) {
state->port_params[i].flags ^= SPA_PARAM_INFO_SERIAL;
state->port_params[i].user = 0;
}
}
}
spa_node_emit_port_info(&state->hooks,
state->stream == SND_PCM_STREAM_PLAYBACK ? SPA_DIRECTION_INPUT : SPA_DIRECTION_OUTPUT,
0, &state->port_info);
state->port_info.change_mask = old;
}
}