1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
-- Module implementation
local M = {
namespace = '',
finalize = function (_ --[[metrics]]) end,
}
local snapshots, snapshots_count = {}, 120
-- Gauge metrics
local gauges = {
['worker.concurrent'] = true,
['worker.rss'] = true,
}
local function merge(t, results, prefix)
for _, result in pairs(results) do
if type(result) == 'table' then
for k, v in pairs(result) do
local val = t[prefix..k]
t[prefix..k] = (val or 0) + v
end
end
end
end
local function getstats()
local t = {}
merge(t, map 'stats.list()', '')
merge(t, map 'cache.stats()', 'cache.')
merge(t, map 'worker.stats()', 'worker.')
return t
end
local function snapshot_end()
snapshots_count = false
end
-- Function to sort frequency list
local function snapshot_start()
local prev = getstats()
while snapshots_count do
local is_empty = true
-- Get current snapshot
local cur, stats_dt = getstats(), {}
for k,v in pairs(cur) do
if gauges[k] then
stats_dt[k] = v
else
stats_dt[k] = v - (prev[k] or 0)
end
is_empty = is_empty and stats_dt[k] == 0
end
prev = cur
-- Calculate upstreams and geotag them if possible
local upstreams
if http.geoip then
upstreams = stats.upstreams()
for k,v in pairs(upstreams) do
local gi
if string.find(k, '.', 1, true) then
gi = http.geoip:search_ipv4(k)
else
gi = http.geoip:search_ipv6(k)
end
if gi then
upstreams[k] = {data=v, location=gi.location, country=gi.country and gi.country.iso_code}
end
end
end
-- Aggregate per-worker metrics
local wdata = {}
for _, info in pairs(map 'worker.info()') do
if type(info) == 'table' then
wdata[tostring(info.pid)] = {
rss = info.rss,
usertime = info.usertime,
systime = info.systime,
pagefaults = info.pagefaults,
queries = info.queries
}
end
end
-- Publish stats updates periodically
if not is_empty then
local update = {time=os.time(), stats=stats_dt, upstreams=upstreams, workers=wdata}
table.insert(snapshots, update)
if #snapshots > snapshots_count then
table.remove(snapshots, 1)
end
end
worker.sleep(1)
end
end
-- Function to sort frequency list
local function stream_stats(_, ws)
-- Initially, stream history
local ok, last = true, nil
local batch = {}
for i, s in ipairs(snapshots) do
table.insert(batch, s)
if #batch == 20 or i + 1 == #snapshots then
ok = ws:send(tojson(batch))
batch = {}
end
end
-- Publish stats updates periodically
while ok do
-- Get last snapshot
local id = #snapshots - 1
if id > 0 and snapshots[id].time ~= last then
local push = tojson(snapshots[id])
last = snapshots[id].time
ok = ws:send(push)
end
worker.sleep(1)
end
end
-- Render stats in Prometheus text format
local function serve_prometheus()
-- First aggregate metrics list and print counters
local slist, render = getstats(), {}
local latency = {}
local counter = '# TYPE %s counter\n%s %f'
for k,v in pairs(slist) do
k = select(1, k:gsub('%.', '_'))
-- Aggregate histograms
local band = k:match('answer_([%d]+)ms')
if band then
table.insert(latency, {band, v})
elseif k == 'answer_slow' then
table.insert(latency, {'+Inf', v})
-- Counter as a fallback
else
local key = M.namespace .. k
table.insert(render, string.format(counter, key, key, v))
end
end
-- Fill in latency histogram
local function kweight(x) return tonumber(x) or math.huge end
table.sort(latency, function (a,b) return kweight(a[1]) < kweight(b[1]) end)
table.insert(render, string.format('# TYPE %slatency histogram', M.namespace))
local count, sum = 0.0, 0.0
for _,e in ipairs(latency) do
-- The information about the %Inf bin is lost, so we treat it
-- as a timeout (3000ms) for metrics purposes
count = count + e[2]
sum = sum + e[2] * (math.min(tonumber(e[1]), 3000.0))
table.insert(render, string.format('%slatency_bucket{le="%s"} %f', M.namespace, e[1], count))
end
table.insert(render, string.format('%slatency_count %f', M.namespace, count))
table.insert(render, string.format('%slatency_sum %f', M.namespace, sum))
-- Finalize metrics table before rendering
if type(M.finalize) == 'function' then
M.finalize(render)
end
return table.concat(render, '\n') .. '\n'
end
-- Export module interface
M.init = snapshot_start
M.deinit = snapshot_end
M.endpoints = {
['/stats'] = {'application/json', getstats, stream_stats},
['/frequent'] = {'application/json', function () return stats.frequent() end},
['/upstreams'] = {'application/json', function () return stats.upstreams() end},
['/bogus'] = {'application/json', function () return bogus_log.frequent() end},
['/metrics'] = {'text/plain; version=0.0.4', serve_prometheus},
}
return M
|