summaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/mm/soft-dirty.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/admin-guide/mm/soft-dirty.rst
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/admin-guide/mm/soft-dirty.rst')
-rw-r--r--Documentation/admin-guide/mm/soft-dirty.rst47
1 files changed, 47 insertions, 0 deletions
diff --git a/Documentation/admin-guide/mm/soft-dirty.rst b/Documentation/admin-guide/mm/soft-dirty.rst
new file mode 100644
index 000000000..cb0cfd667
--- /dev/null
+++ b/Documentation/admin-guide/mm/soft-dirty.rst
@@ -0,0 +1,47 @@
+.. _soft_dirty:
+
+===============
+Soft-Dirty PTEs
+===============
+
+The soft-dirty is a bit on a PTE which helps to track which pages a task
+writes to. In order to do this tracking one should
+
+ 1. Clear soft-dirty bits from the task's PTEs.
+
+ This is done by writing "4" into the ``/proc/PID/clear_refs`` file of the
+ task in question.
+
+ 2. Wait some time.
+
+ 3. Read soft-dirty bits from the PTEs.
+
+ This is done by reading from the ``/proc/PID/pagemap``. The bit 55 of the
+ 64-bit qword is the soft-dirty one. If set, the respective PTE was
+ written to since step 1.
+
+
+Internally, to do this tracking, the writable bit is cleared from PTEs
+when the soft-dirty bit is cleared. So, after this, when the task tries to
+modify a page at some virtual address the #PF occurs and the kernel sets
+the soft-dirty bit on the respective PTE.
+
+Note, that although all the task's address space is marked as r/o after the
+soft-dirty bits clear, the #PF-s that occur after that are processed fast.
+This is so, since the pages are still mapped to physical memory, and thus all
+the kernel does is finds this fact out and puts both writable and soft-dirty
+bits on the PTE.
+
+While in most cases tracking memory changes by #PF-s is more than enough
+there is still a scenario when we can lose soft dirty bits -- a task
+unmaps a previously mapped memory region and then maps a new one at exactly
+the same place. When unmap is called, the kernel internally clears PTE values
+including soft dirty bits. To notify user space application about such
+memory region renewal the kernel always marks new memory regions (and
+expanded regions) as soft dirty.
+
+This feature is actively used by the checkpoint-restore project. You
+can find more details about it on http://criu.org
+
+
+-- Pavel Emelyanov, Apr 9, 2013