diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/gpu/drm/amd/amdkfd/kfd_events.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/gpu/drm/amd/amdkfd/kfd_events.c')
-rw-r--r-- | drivers/gpu/drm/amd/amdkfd/kfd_events.c | 1038 |
1 files changed, 1038 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/amdkfd/kfd_events.c b/drivers/gpu/drm/amd/amdkfd/kfd_events.c new file mode 100644 index 000000000..892077377 --- /dev/null +++ b/drivers/gpu/drm/amd/amdkfd/kfd_events.c @@ -0,0 +1,1038 @@ +/* + * Copyright 2014 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ + +#include <linux/mm_types.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/sched/signal.h> +#include <linux/sched/mm.h> +#include <linux/uaccess.h> +#include <linux/mman.h> +#include <linux/memory.h> +#include "kfd_priv.h" +#include "kfd_events.h" +#include "kfd_iommu.h" +#include <linux/device.h> + +/* + * Wrapper around wait_queue_entry_t + */ +struct kfd_event_waiter { + wait_queue_entry_t wait; + struct kfd_event *event; /* Event to wait for */ + bool activated; /* Becomes true when event is signaled */ +}; + +/* + * Each signal event needs a 64-bit signal slot where the signaler will write + * a 1 before sending an interrupt. (This is needed because some interrupts + * do not contain enough spare data bits to identify an event.) + * We get whole pages and map them to the process VA. + * Individual signal events use their event_id as slot index. + */ +struct kfd_signal_page { + uint64_t *kernel_address; + uint64_t __user *user_address; + bool need_to_free_pages; +}; + + +static uint64_t *page_slots(struct kfd_signal_page *page) +{ + return page->kernel_address; +} + +static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) +{ + void *backing_store; + struct kfd_signal_page *page; + + page = kzalloc(sizeof(*page), GFP_KERNEL); + if (!page) + return NULL; + + backing_store = (void *) __get_free_pages(GFP_KERNEL, + get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); + if (!backing_store) + goto fail_alloc_signal_store; + + /* Initialize all events to unsignaled */ + memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, + KFD_SIGNAL_EVENT_LIMIT * 8); + + page->kernel_address = backing_store; + page->need_to_free_pages = true; + pr_debug("Allocated new event signal page at %p, for process %p\n", + page, p); + + return page; + +fail_alloc_signal_store: + kfree(page); + return NULL; +} + +static int allocate_event_notification_slot(struct kfd_process *p, + struct kfd_event *ev) +{ + int id; + + if (!p->signal_page) { + p->signal_page = allocate_signal_page(p); + if (!p->signal_page) + return -ENOMEM; + /* Oldest user mode expects 256 event slots */ + p->signal_mapped_size = 256*8; + } + + /* + * Compatibility with old user mode: Only use signal slots + * user mode has mapped, may be less than + * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase + * of the event limit without breaking user mode. + */ + id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, + GFP_KERNEL); + if (id < 0) + return id; + + ev->event_id = id; + page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; + + return 0; +} + +/* + * Assumes that p->event_mutex is held and of course that p is not going + * away (current or locked). + */ +static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) +{ + return idr_find(&p->event_idr, id); +} + +/** + * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID + * @p: Pointer to struct kfd_process + * @id: ID to look up + * @bits: Number of valid bits in @id + * + * Finds the first signaled event with a matching partial ID. If no + * matching signaled event is found, returns NULL. In that case the + * caller should assume that the partial ID is invalid and do an + * exhaustive search of all siglaned events. + * + * If multiple events with the same partial ID signal at the same + * time, they will be found one interrupt at a time, not necessarily + * in the same order the interrupts occurred. As long as the number of + * interrupts is correct, all signaled events will be seen by the + * driver. + */ +static struct kfd_event *lookup_signaled_event_by_partial_id( + struct kfd_process *p, uint32_t id, uint32_t bits) +{ + struct kfd_event *ev; + + if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) + return NULL; + + /* Fast path for the common case that @id is not a partial ID + * and we only need a single lookup. + */ + if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { + if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) + return NULL; + + return idr_find(&p->event_idr, id); + } + + /* General case for partial IDs: Iterate over all matching IDs + * and find the first one that has signaled. + */ + for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { + if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) + continue; + + ev = idr_find(&p->event_idr, id); + } + + return ev; +} + +static int create_signal_event(struct file *devkfd, + struct kfd_process *p, + struct kfd_event *ev) +{ + int ret; + + if (p->signal_mapped_size && + p->signal_event_count == p->signal_mapped_size / 8) { + if (!p->signal_event_limit_reached) { + pr_warn("Signal event wasn't created because limit was reached\n"); + p->signal_event_limit_reached = true; + } + return -ENOSPC; + } + + ret = allocate_event_notification_slot(p, ev); + if (ret) { + pr_warn("Signal event wasn't created because out of kernel memory\n"); + return ret; + } + + p->signal_event_count++; + + ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; + pr_debug("Signal event number %zu created with id %d, address %p\n", + p->signal_event_count, ev->event_id, + ev->user_signal_address); + + return 0; +} + +static int create_other_event(struct kfd_process *p, struct kfd_event *ev) +{ + /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an + * intentional integer overflow to -1 without a compiler + * warning. idr_alloc treats a negative value as "maximum + * signed integer". + */ + int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, + (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, + GFP_KERNEL); + + if (id < 0) + return id; + ev->event_id = id; + + return 0; +} + +void kfd_event_init_process(struct kfd_process *p) +{ + mutex_init(&p->event_mutex); + idr_init(&p->event_idr); + p->signal_page = NULL; + p->signal_event_count = 0; +} + +static void destroy_event(struct kfd_process *p, struct kfd_event *ev) +{ + struct kfd_event_waiter *waiter; + + /* Wake up pending waiters. They will return failure */ + list_for_each_entry(waiter, &ev->wq.head, wait.entry) + waiter->event = NULL; + wake_up_all(&ev->wq); + + if (ev->type == KFD_EVENT_TYPE_SIGNAL || + ev->type == KFD_EVENT_TYPE_DEBUG) + p->signal_event_count--; + + idr_remove(&p->event_idr, ev->event_id); + kfree(ev); +} + +static void destroy_events(struct kfd_process *p) +{ + struct kfd_event *ev; + uint32_t id; + + idr_for_each_entry(&p->event_idr, ev, id) + destroy_event(p, ev); + idr_destroy(&p->event_idr); +} + +/* + * We assume that the process is being destroyed and there is no need to + * unmap the pages or keep bookkeeping data in order. + */ +static void shutdown_signal_page(struct kfd_process *p) +{ + struct kfd_signal_page *page = p->signal_page; + + if (page) { + if (page->need_to_free_pages) + free_pages((unsigned long)page->kernel_address, + get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); + kfree(page); + } +} + +void kfd_event_free_process(struct kfd_process *p) +{ + destroy_events(p); + shutdown_signal_page(p); +} + +static bool event_can_be_gpu_signaled(const struct kfd_event *ev) +{ + return ev->type == KFD_EVENT_TYPE_SIGNAL || + ev->type == KFD_EVENT_TYPE_DEBUG; +} + +static bool event_can_be_cpu_signaled(const struct kfd_event *ev) +{ + return ev->type == KFD_EVENT_TYPE_SIGNAL; +} + +int kfd_event_page_set(struct kfd_process *p, void *kernel_address, + uint64_t size) +{ + struct kfd_signal_page *page; + + if (p->signal_page) + return -EBUSY; + + page = kzalloc(sizeof(*page), GFP_KERNEL); + if (!page) + return -ENOMEM; + + /* Initialize all events to unsignaled */ + memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, + KFD_SIGNAL_EVENT_LIMIT * 8); + + page->kernel_address = kernel_address; + + p->signal_page = page; + p->signal_mapped_size = size; + + return 0; +} + +int kfd_event_create(struct file *devkfd, struct kfd_process *p, + uint32_t event_type, bool auto_reset, uint32_t node_id, + uint32_t *event_id, uint32_t *event_trigger_data, + uint64_t *event_page_offset, uint32_t *event_slot_index) +{ + int ret = 0; + struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); + + if (!ev) + return -ENOMEM; + + ev->type = event_type; + ev->auto_reset = auto_reset; + ev->signaled = false; + + init_waitqueue_head(&ev->wq); + + *event_page_offset = 0; + + mutex_lock(&p->event_mutex); + + switch (event_type) { + case KFD_EVENT_TYPE_SIGNAL: + case KFD_EVENT_TYPE_DEBUG: + ret = create_signal_event(devkfd, p, ev); + if (!ret) { + *event_page_offset = KFD_MMAP_TYPE_EVENTS; + *event_page_offset <<= PAGE_SHIFT; + *event_slot_index = ev->event_id; + } + break; + default: + ret = create_other_event(p, ev); + break; + } + + if (!ret) { + *event_id = ev->event_id; + *event_trigger_data = ev->event_id; + } else { + kfree(ev); + } + + mutex_unlock(&p->event_mutex); + + return ret; +} + +/* Assumes that p is current. */ +int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) +{ + struct kfd_event *ev; + int ret = 0; + + mutex_lock(&p->event_mutex); + + ev = lookup_event_by_id(p, event_id); + + if (ev) + destroy_event(p, ev); + else + ret = -EINVAL; + + mutex_unlock(&p->event_mutex); + return ret; +} + +static void set_event(struct kfd_event *ev) +{ + struct kfd_event_waiter *waiter; + + /* Auto reset if the list is non-empty and we're waking + * someone. waitqueue_active is safe here because we're + * protected by the p->event_mutex, which is also held when + * updating the wait queues in kfd_wait_on_events. + */ + ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); + + list_for_each_entry(waiter, &ev->wq.head, wait.entry) + waiter->activated = true; + + wake_up_all(&ev->wq); +} + +/* Assumes that p is current. */ +int kfd_set_event(struct kfd_process *p, uint32_t event_id) +{ + int ret = 0; + struct kfd_event *ev; + + mutex_lock(&p->event_mutex); + + ev = lookup_event_by_id(p, event_id); + + if (ev && event_can_be_cpu_signaled(ev)) + set_event(ev); + else + ret = -EINVAL; + + mutex_unlock(&p->event_mutex); + return ret; +} + +static void reset_event(struct kfd_event *ev) +{ + ev->signaled = false; +} + +/* Assumes that p is current. */ +int kfd_reset_event(struct kfd_process *p, uint32_t event_id) +{ + int ret = 0; + struct kfd_event *ev; + + mutex_lock(&p->event_mutex); + + ev = lookup_event_by_id(p, event_id); + + if (ev && event_can_be_cpu_signaled(ev)) + reset_event(ev); + else + ret = -EINVAL; + + mutex_unlock(&p->event_mutex); + return ret; + +} + +static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) +{ + page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT; +} + +static void set_event_from_interrupt(struct kfd_process *p, + struct kfd_event *ev) +{ + if (ev && event_can_be_gpu_signaled(ev)) { + acknowledge_signal(p, ev); + set_event(ev); + } +} + +void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, + uint32_t valid_id_bits) +{ + struct kfd_event *ev = NULL; + + /* + * Because we are called from arbitrary context (workqueue) as opposed + * to process context, kfd_process could attempt to exit while we are + * running so the lookup function increments the process ref count. + */ + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + + if (!p) + return; /* Presumably process exited. */ + + mutex_lock(&p->event_mutex); + + if (valid_id_bits) + ev = lookup_signaled_event_by_partial_id(p, partial_id, + valid_id_bits); + if (ev) { + set_event_from_interrupt(p, ev); + } else if (p->signal_page) { + /* + * Partial ID lookup failed. Assume that the event ID + * in the interrupt payload was invalid and do an + * exhaustive search of signaled events. + */ + uint64_t *slots = page_slots(p->signal_page); + uint32_t id; + + if (valid_id_bits) + pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", + partial_id, valid_id_bits); + + if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { + /* With relatively few events, it's faster to + * iterate over the event IDR + */ + idr_for_each_entry(&p->event_idr, ev, id) { + if (id >= KFD_SIGNAL_EVENT_LIMIT) + break; + + if (slots[id] != UNSIGNALED_EVENT_SLOT) + set_event_from_interrupt(p, ev); + } + } else { + /* With relatively many events, it's faster to + * iterate over the signal slots and lookup + * only signaled events from the IDR. + */ + for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++) + if (slots[id] != UNSIGNALED_EVENT_SLOT) { + ev = lookup_event_by_id(p, id); + set_event_from_interrupt(p, ev); + } + } + } + + mutex_unlock(&p->event_mutex); + kfd_unref_process(p); +} + +static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) +{ + struct kfd_event_waiter *event_waiters; + uint32_t i; + + event_waiters = kmalloc_array(num_events, + sizeof(struct kfd_event_waiter), + GFP_KERNEL); + if (!event_waiters) + return NULL; + + for (i = 0; (event_waiters) && (i < num_events) ; i++) { + init_wait(&event_waiters[i].wait); + event_waiters[i].activated = false; + } + + return event_waiters; +} + +static int init_event_waiter_get_status(struct kfd_process *p, + struct kfd_event_waiter *waiter, + uint32_t event_id) +{ + struct kfd_event *ev = lookup_event_by_id(p, event_id); + + if (!ev) + return -EINVAL; + + waiter->event = ev; + waiter->activated = ev->signaled; + ev->signaled = ev->signaled && !ev->auto_reset; + + return 0; +} + +static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter) +{ + struct kfd_event *ev = waiter->event; + + /* Only add to the wait list if we actually need to + * wait on this event. + */ + if (!waiter->activated) + add_wait_queue(&ev->wq, &waiter->wait); +} + +/* test_event_condition - Test condition of events being waited for + * @all: Return completion only if all events have signaled + * @num_events: Number of events to wait for + * @event_waiters: Array of event waiters, one per event + * + * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have + * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) + * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of + * the events have been destroyed. + */ +static uint32_t test_event_condition(bool all, uint32_t num_events, + struct kfd_event_waiter *event_waiters) +{ + uint32_t i; + uint32_t activated_count = 0; + + for (i = 0; i < num_events; i++) { + if (!event_waiters[i].event) + return KFD_IOC_WAIT_RESULT_FAIL; + + if (event_waiters[i].activated) { + if (!all) + return KFD_IOC_WAIT_RESULT_COMPLETE; + + activated_count++; + } + } + + return activated_count == num_events ? + KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; +} + +/* + * Copy event specific data, if defined. + * Currently only memory exception events have additional data to copy to user + */ +static int copy_signaled_event_data(uint32_t num_events, + struct kfd_event_waiter *event_waiters, + struct kfd_event_data __user *data) +{ + struct kfd_hsa_memory_exception_data *src; + struct kfd_hsa_memory_exception_data __user *dst; + struct kfd_event_waiter *waiter; + struct kfd_event *event; + uint32_t i; + + for (i = 0; i < num_events; i++) { + waiter = &event_waiters[i]; + event = waiter->event; + if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { + dst = &data[i].memory_exception_data; + src = &event->memory_exception_data; + if (copy_to_user(dst, src, + sizeof(struct kfd_hsa_memory_exception_data))) + return -EFAULT; + } + } + + return 0; + +} + + + +static long user_timeout_to_jiffies(uint32_t user_timeout_ms) +{ + if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) + return 0; + + if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) + return MAX_SCHEDULE_TIMEOUT; + + /* + * msecs_to_jiffies interprets all values above 2^31-1 as infinite, + * but we consider them finite. + * This hack is wrong, but nobody is likely to notice. + */ + user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); + + return msecs_to_jiffies(user_timeout_ms) + 1; +} + +static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) +{ + uint32_t i; + + for (i = 0; i < num_events; i++) + if (waiters[i].event) + remove_wait_queue(&waiters[i].event->wq, + &waiters[i].wait); + + kfree(waiters); +} + +int kfd_wait_on_events(struct kfd_process *p, + uint32_t num_events, void __user *data, + bool all, uint32_t user_timeout_ms, + uint32_t *wait_result) +{ + struct kfd_event_data __user *events = + (struct kfd_event_data __user *) data; + uint32_t i; + int ret = 0; + + struct kfd_event_waiter *event_waiters = NULL; + long timeout = user_timeout_to_jiffies(user_timeout_ms); + + event_waiters = alloc_event_waiters(num_events); + if (!event_waiters) { + ret = -ENOMEM; + goto out; + } + + mutex_lock(&p->event_mutex); + + for (i = 0; i < num_events; i++) { + struct kfd_event_data event_data; + + if (copy_from_user(&event_data, &events[i], + sizeof(struct kfd_event_data))) { + ret = -EFAULT; + goto out_unlock; + } + + ret = init_event_waiter_get_status(p, &event_waiters[i], + event_data.event_id); + if (ret) + goto out_unlock; + } + + /* Check condition once. */ + *wait_result = test_event_condition(all, num_events, event_waiters); + if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { + ret = copy_signaled_event_data(num_events, + event_waiters, events); + goto out_unlock; + } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { + /* This should not happen. Events shouldn't be + * destroyed while we're holding the event_mutex + */ + goto out_unlock; + } + + /* Add to wait lists if we need to wait. */ + for (i = 0; i < num_events; i++) + init_event_waiter_add_to_waitlist(&event_waiters[i]); + + mutex_unlock(&p->event_mutex); + + while (true) { + if (fatal_signal_pending(current)) { + ret = -EINTR; + break; + } + + if (signal_pending(current)) { + /* + * This is wrong when a nonzero, non-infinite timeout + * is specified. We need to use + * ERESTARTSYS_RESTARTBLOCK, but struct restart_block + * contains a union with data for each user and it's + * in generic kernel code that I don't want to + * touch yet. + */ + ret = -ERESTARTSYS; + break; + } + + /* Set task state to interruptible sleep before + * checking wake-up conditions. A concurrent wake-up + * will put the task back into runnable state. In that + * case schedule_timeout will not put the task to + * sleep and we'll get a chance to re-check the + * updated conditions almost immediately. Otherwise, + * this race condition would lead to a soft hang or a + * very long sleep. + */ + set_current_state(TASK_INTERRUPTIBLE); + + *wait_result = test_event_condition(all, num_events, + event_waiters); + if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) + break; + + if (timeout <= 0) + break; + + timeout = schedule_timeout(timeout); + } + __set_current_state(TASK_RUNNING); + + /* copy_signaled_event_data may sleep. So this has to happen + * after the task state is set back to RUNNING. + */ + if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) + ret = copy_signaled_event_data(num_events, + event_waiters, events); + + mutex_lock(&p->event_mutex); +out_unlock: + free_waiters(num_events, event_waiters); + mutex_unlock(&p->event_mutex); +out: + if (ret) + *wait_result = KFD_IOC_WAIT_RESULT_FAIL; + else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) + ret = -EIO; + + return ret; +} + +int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) +{ + unsigned long pfn; + struct kfd_signal_page *page; + int ret; + + /* check required size doesn't exceed the allocated size */ + if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < + get_order(vma->vm_end - vma->vm_start)) { + pr_err("Event page mmap requested illegal size\n"); + return -EINVAL; + } + + page = p->signal_page; + if (!page) { + /* Probably KFD bug, but mmap is user-accessible. */ + pr_debug("Signal page could not be found\n"); + return -EINVAL; + } + + pfn = __pa(page->kernel_address); + pfn >>= PAGE_SHIFT; + + vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE + | VM_DONTDUMP | VM_PFNMAP; + + pr_debug("Mapping signal page\n"); + pr_debug(" start user address == 0x%08lx\n", vma->vm_start); + pr_debug(" end user address == 0x%08lx\n", vma->vm_end); + pr_debug(" pfn == 0x%016lX\n", pfn); + pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); + pr_debug(" size == 0x%08lX\n", + vma->vm_end - vma->vm_start); + + page->user_address = (uint64_t __user *)vma->vm_start; + + /* mapping the page to user process */ + ret = remap_pfn_range(vma, vma->vm_start, pfn, + vma->vm_end - vma->vm_start, vma->vm_page_prot); + if (!ret) + p->signal_mapped_size = vma->vm_end - vma->vm_start; + + return ret; +} + +/* + * Assumes that p->event_mutex is held and of course + * that p is not going away (current or locked). + */ +static void lookup_events_by_type_and_signal(struct kfd_process *p, + int type, void *event_data) +{ + struct kfd_hsa_memory_exception_data *ev_data; + struct kfd_event *ev; + uint32_t id; + bool send_signal = true; + + ev_data = (struct kfd_hsa_memory_exception_data *) event_data; + + id = KFD_FIRST_NONSIGNAL_EVENT_ID; + idr_for_each_entry_continue(&p->event_idr, ev, id) + if (ev->type == type) { + send_signal = false; + dev_dbg(kfd_device, + "Event found: id %X type %d", + ev->event_id, ev->type); + set_event(ev); + if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) + ev->memory_exception_data = *ev_data; + } + + if (type == KFD_EVENT_TYPE_MEMORY) { + dev_warn(kfd_device, + "Sending SIGSEGV to HSA Process with PID %d ", + p->lead_thread->pid); + send_sig(SIGSEGV, p->lead_thread, 0); + } + + /* Send SIGTERM no event of type "type" has been found*/ + if (send_signal) { + if (send_sigterm) { + dev_warn(kfd_device, + "Sending SIGTERM to HSA Process with PID %d ", + p->lead_thread->pid); + send_sig(SIGTERM, p->lead_thread, 0); + } else { + dev_err(kfd_device, + "HSA Process (PID %d) got unhandled exception", + p->lead_thread->pid); + } + } +} + +#ifdef KFD_SUPPORT_IOMMU_V2 +void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, + unsigned long address, bool is_write_requested, + bool is_execute_requested) +{ + struct kfd_hsa_memory_exception_data memory_exception_data; + struct vm_area_struct *vma; + + /* + * Because we are called from arbitrary context (workqueue) as opposed + * to process context, kfd_process could attempt to exit while we are + * running so the lookup function increments the process ref count. + */ + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + struct mm_struct *mm; + + if (!p) + return; /* Presumably process exited. */ + + /* Take a safe reference to the mm_struct, which may otherwise + * disappear even while the kfd_process is still referenced. + */ + mm = get_task_mm(p->lead_thread); + if (!mm) { + kfd_unref_process(p); + return; /* Process is exiting */ + } + + memset(&memory_exception_data, 0, sizeof(memory_exception_data)); + + down_read(&mm->mmap_sem); + vma = find_vma(mm, address); + + memory_exception_data.gpu_id = dev->id; + memory_exception_data.va = address; + /* Set failure reason */ + memory_exception_data.failure.NotPresent = 1; + memory_exception_data.failure.NoExecute = 0; + memory_exception_data.failure.ReadOnly = 0; + if (vma && address >= vma->vm_start) { + memory_exception_data.failure.NotPresent = 0; + + if (is_write_requested && !(vma->vm_flags & VM_WRITE)) + memory_exception_data.failure.ReadOnly = 1; + else + memory_exception_data.failure.ReadOnly = 0; + + if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) + memory_exception_data.failure.NoExecute = 1; + else + memory_exception_data.failure.NoExecute = 0; + } + + up_read(&mm->mmap_sem); + mmput(mm); + + pr_debug("notpresent %d, noexecute %d, readonly %d\n", + memory_exception_data.failure.NotPresent, + memory_exception_data.failure.NoExecute, + memory_exception_data.failure.ReadOnly); + + /* Workaround on Raven to not kill the process when memory is freed + * before IOMMU is able to finish processing all the excessive PPRs + */ + if (dev->device_info->asic_family != CHIP_RAVEN) { + mutex_lock(&p->event_mutex); + + /* Lookup events by type and signal them */ + lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, + &memory_exception_data); + + mutex_unlock(&p->event_mutex); + } + + kfd_unref_process(p); +} +#endif /* KFD_SUPPORT_IOMMU_V2 */ + +void kfd_signal_hw_exception_event(unsigned int pasid) +{ + /* + * Because we are called from arbitrary context (workqueue) as opposed + * to process context, kfd_process could attempt to exit while we are + * running so the lookup function increments the process ref count. + */ + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + + if (!p) + return; /* Presumably process exited. */ + + mutex_lock(&p->event_mutex); + + /* Lookup events by type and signal them */ + lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); + + mutex_unlock(&p->event_mutex); + kfd_unref_process(p); +} + +void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, + struct kfd_vm_fault_info *info) +{ + struct kfd_event *ev; + uint32_t id; + struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); + struct kfd_hsa_memory_exception_data memory_exception_data; + + if (!p) + return; /* Presumably process exited. */ + memset(&memory_exception_data, 0, sizeof(memory_exception_data)); + memory_exception_data.gpu_id = dev->id; + memory_exception_data.failure.imprecise = 1; + /* Set failure reason */ + if (info) { + memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; + memory_exception_data.failure.NotPresent = + info->prot_valid ? 1 : 0; + memory_exception_data.failure.NoExecute = + info->prot_exec ? 1 : 0; + memory_exception_data.failure.ReadOnly = + info->prot_write ? 1 : 0; + memory_exception_data.failure.imprecise = 0; + } + mutex_lock(&p->event_mutex); + + id = KFD_FIRST_NONSIGNAL_EVENT_ID; + idr_for_each_entry_continue(&p->event_idr, ev, id) + if (ev->type == KFD_EVENT_TYPE_MEMORY) { + ev->memory_exception_data = memory_exception_data; + set_event(ev); + } + + mutex_unlock(&p->event_mutex); + kfd_unref_process(p); +} + +void kfd_signal_reset_event(struct kfd_dev *dev) +{ + struct kfd_hsa_hw_exception_data hw_exception_data; + struct kfd_process *p; + struct kfd_event *ev; + unsigned int temp; + uint32_t id, idx; + + /* Whole gpu reset caused by GPU hang and memory is lost */ + memset(&hw_exception_data, 0, sizeof(hw_exception_data)); + hw_exception_data.gpu_id = dev->id; + hw_exception_data.memory_lost = 1; + + idx = srcu_read_lock(&kfd_processes_srcu); + hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { + mutex_lock(&p->event_mutex); + id = KFD_FIRST_NONSIGNAL_EVENT_ID; + idr_for_each_entry_continue(&p->event_idr, ev, id) + if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { + ev->hw_exception_data = hw_exception_data; + set_event(ev); + } + mutex_unlock(&p->event_mutex); + } + srcu_read_unlock(&kfd_processes_srcu, idx); +} |