summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/e1000e/phy.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/net/ethernet/intel/e1000e/phy.c
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/phy.c')
-rw-r--r--drivers/net/ethernet/intel/e1000e/phy.c3220
1 files changed, 3220 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/phy.c b/drivers/net/ethernet/intel/e1000e/phy.c
new file mode 100644
index 000000000..422330192
--- /dev/null
+++ b/drivers/net/ethernet/intel/e1000e/phy.c
@@ -0,0 +1,3220 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright(c) 1999 - 2018 Intel Corporation. */
+
+#include "e1000.h"
+
+static s32 e1000_wait_autoneg(struct e1000_hw *hw);
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read, bool page_set);
+static u32 e1000_get_phy_addr_for_hv_page(u32 page);
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] = {
+ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
+};
+
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+ ARRAY_SIZE(e1000_m88_cable_length_table)
+
+static const u16 e1000_igp_2_cable_length_table[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+ 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+ 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+ 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+ 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+ 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+ 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+ 124
+};
+
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+ ARRAY_SIZE(e1000_igp_2_cable_length_table)
+
+/**
+ * e1000e_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked. If a reset is not blocked return 0, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
+{
+ u32 manc;
+
+ manc = er32(MANC);
+
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
+}
+
+/**
+ * e1000e_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ **/
+s32 e1000e_get_phy_id(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = 0;
+ u16 phy_id;
+ u16 retry_count = 0;
+
+ if (!phy->ops.read_reg)
+ return 0;
+
+ while (retry_count < 2) {
+ ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
+ if (ret_val)
+ return ret_val;
+
+ phy->id = (u32)(phy_id << 16);
+ usleep_range(20, 40);
+ ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
+ if (ret_val)
+ return ret_val;
+
+ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+ if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+ return 0;
+
+ retry_count++;
+ }
+
+ return 0;
+}
+
+/**
+ * e1000e_phy_reset_dsp - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ **/
+s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ if (ret_val)
+ return ret_val;
+
+ return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
+}
+
+/**
+ * e1000e_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control register in the PHY at offset and stores the
+ * information read to data.
+ **/
+s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ e_dbg("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /* Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ ew32(MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ udelay(50);
+ mdic = er32(MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ e_dbg("MDI Read did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ e_dbg("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+ e_dbg("MDI Read offset error - requested %d, returned %d\n",
+ offset,
+ (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ return -E1000_ERR_PHY;
+ }
+ *data = (u16)mdic;
+
+ /* Allow some time after each MDIC transaction to avoid
+ * reading duplicate data in the next MDIC transaction.
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ udelay(100);
+
+ return 0;
+}
+
+/**
+ * e1000e_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ e_dbg("PHY Address %d is out of range\n", offset);
+ return -E1000_ERR_PARAM;
+ }
+
+ /* Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = (((u32)data) |
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ ew32(MDIC, mdic);
+
+ /* Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ udelay(50);
+ mdic = er32(MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ e_dbg("MDI Write did not complete\n");
+ return -E1000_ERR_PHY;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ e_dbg("MDI Error\n");
+ return -E1000_ERR_PHY;
+ }
+ if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+ e_dbg("MDI Write offset error - requested %d, returned %d\n",
+ offset,
+ (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+ return -E1000_ERR_PHY;
+ }
+
+ /* Allow some time after each MDIC transaction to avoid
+ * reading duplicate data in the next MDIC transaction.
+ */
+ if (hw->mac.type == e1000_pch2lan)
+ udelay(100);
+
+ return 0;
+}
+
+/**
+ * e1000e_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000e_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_set_page_igp - Set page as on IGP-like PHY(s)
+ * @hw: pointer to the HW structure
+ * @page: page to set (shifted left when necessary)
+ *
+ * Sets PHY page required for PHY register access. Assumes semaphore is
+ * already acquired. Note, this function sets phy.addr to 1 so the caller
+ * must set it appropriately (if necessary) after this function returns.
+ **/
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
+{
+ e_dbg("Setting page 0x%x\n", page);
+
+ hw->phy.addr = 1;
+
+ return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
+}
+
+/**
+ * __e1000e_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ s32 ret_val = 0;
+
+ if (!locked) {
+ if (!hw->phy.ops.acquire)
+ return 0;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG)
+ ret_val = e1000e_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (!ret_val)
+ ret_val = e1000e_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000e_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores the
+ * retrieved information in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000e_read_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ * e1000e_read_phy_reg_igp_locked - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000e_read_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ * e1000e_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ s32 ret_val = 0;
+
+ if (!locked) {
+ if (!hw->phy.ops.acquire)
+ return 0;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG)
+ ret_val = e1000e_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (u16)offset);
+ if (!ret_val)
+ ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
+ offset, data);
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000e_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000e_write_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ * e1000e_write_phy_reg_igp_locked - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000e_write_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ * __e1000_read_kmrn_reg - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then reads the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+
+ if (!locked) {
+ s32 ret_val = 0;
+
+ if (!hw->phy.ops.acquire)
+ return 0;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ ew32(KMRNCTRLSTA, kmrnctrlsta);
+ e1e_flush();
+
+ udelay(2);
+
+ kmrnctrlsta = er32(KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return 0;
+}
+
+/**
+ * e1000e_read_kmrn_reg - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset using the
+ * kumeran interface. The information retrieved is stored in data.
+ * Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ * e1000e_read_kmrn_reg_locked - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the kumeran interface. The
+ * information retrieved is stored in data.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ * __e1000_write_kmrn_reg - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary. Then write the data to PHY register
+ * at the offset using the kumeran interface. Release any acquired semaphores
+ * before exiting.
+ **/
+static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked)
+{
+ u32 kmrnctrlsta;
+
+ if (!locked) {
+ s32 ret_val = 0;
+
+ if (!hw->phy.ops.acquire)
+ return 0;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ ew32(KMRNCTRLSTA, kmrnctrlsta);
+ e1e_flush();
+
+ udelay(2);
+
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return 0;
+}
+
+/**
+ * e1000e_write_kmrn_reg - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to the PHY register at the offset
+ * using the kumeran interface. Release the acquired semaphore before exiting.
+ **/
+s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ * e1000e_write_kmrn_reg_locked - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Write the data to PHY register at the offset using the kumeran interface.
+ * Assumes semaphore already acquired.
+ **/
+s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Master/slave mode
+ **/
+static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ /* Resolve Master/Slave mode */
+ ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* load defaults for future use */
+ hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
+ ((phy_data & CTL1000_AS_MASTER) ?
+ e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
+
+ switch (hw->phy.ms_type) {
+ case e1000_ms_force_master:
+ phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
+ break;
+ case e1000_ms_force_slave:
+ phy_data |= CTL1000_ENABLE_MASTER;
+ phy_data &= ~(CTL1000_AS_MASTER);
+ break;
+ case e1000_ms_auto:
+ phy_data &= ~CTL1000_ENABLE_MASTER;
+ /* fall-through */
+ default:
+ break;
+ }
+
+ return e1e_wphy(hw, MII_CTRL1000, phy_data);
+}
+
+/**
+ * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_data;
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+ /* Enable downshift */
+ phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+ ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Set MDI/MDIX mode */
+ ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
+ if (ret_val)
+ return ret_val;
+ phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
+ /* Options:
+ * 0 - Auto (default)
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ */
+ switch (hw->phy.mdix) {
+ case 1:
+ break;
+ case 2:
+ phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
+ break;
+ case 0:
+ default:
+ phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
+ break;
+ }
+ ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ return e1000_set_master_slave_mode(hw);
+}
+
+/**
+ * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
+ * and downshift values are set also.
+ **/
+s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ /* Enable CRS on Tx. This must be set for half-duplex operation. */
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* For BM PHY this bit is downshift enable */
+ if (phy->type != e1000_phy_bm)
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /* Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /* Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift on BM (disabled by default) */
+ if (phy->type == e1000_phy_bm) {
+ /* For 82574/82583, first disable then enable downshift */
+ if (phy->id == BME1000_E_PHY_ID_R2) {
+ phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
+ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
+ phy_data);
+ if (ret_val)
+ return ret_val;
+ /* Commit the changes. */
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ e_dbg("Error committing the PHY changes\n");
+ return ret_val;
+ }
+ }
+
+ phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+ }
+
+ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ if ((phy->type == e1000_phy_m88) &&
+ (phy->revision < E1000_REVISION_4) &&
+ (phy->id != BME1000_E_PHY_ID_R2)) {
+ /* Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
+ /* 82573L PHY - set the downshift counter to 5x. */
+ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ }
+ ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+ /* Set PHY page 0, register 29 to 0x0003 */
+ ret_val = e1e_wphy(hw, 29, 0x0003);
+ if (ret_val)
+ return ret_val;
+
+ /* Set PHY page 0, register 30 to 0x0000 */
+ ret_val = e1e_wphy(hw, 30, 0x0000);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Commit the changes. */
+ if (phy->ops.commit) {
+ ret_val = phy->ops.commit(hw);
+ if (ret_val) {
+ e_dbg("Error committing the PHY changes\n");
+ return ret_val;
+ }
+ }
+
+ if (phy->type == e1000_phy_82578) {
+ ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* 82578 PHY - set the downshift count to 1x. */
+ phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+ phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return 0;
+}
+
+/**
+ * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ **/
+s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val) {
+ e_dbg("Error resetting the PHY.\n");
+ return ret_val;
+ }
+
+ /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+ * timeout issues when LFS is enabled.
+ */
+ msleep(100);
+
+ /* disable lplu d0 during driver init */
+ if (hw->phy.ops.set_d0_lplu_state) {
+ ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
+ if (ret_val) {
+ e_dbg("Error Disabling LPLU D0\n");
+ return ret_val;
+ }
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (phy->mdix) {
+ case 1:
+ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ if (ret_val)
+ return ret_val;
+
+ /* set auto-master slave resolution settings */
+ if (hw->mac.autoneg) {
+ /* when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+
+ /* Set auto Master/Slave resolution process */
+ ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~CTL1000_ENABLE_MASTER;
+ ret_val = e1e_wphy(hw, MII_CTRL1000, data);
+ if (ret_val)
+ return ret_val;
+ }
+
+ ret_val = e1000_set_master_slave_mode(hw);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful. Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ **/
+static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg = 0;
+
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
+ ADVERTISE_100HALF |
+ ADVERTISE_10FULL | ADVERTISE_10HALF);
+ mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
+
+ e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+ e_dbg("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= ADVERTISE_10HALF;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+ e_dbg("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= ADVERTISE_10FULL;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+ e_dbg("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= ADVERTISE_100HALF;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+ e_dbg("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= ADVERTISE_100FULL;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+ e_dbg("Advertise 1000mb Half duplex request denied!\n");
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+ e_dbg("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
+ }
+
+ /* Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (MII_ADVERTISE) and re-start auto-
+ * negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc.current_mode) {
+ case e1000_fc_none:
+ /* Flow control (Rx & Tx) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &=
+ ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
+ break;
+ case e1000_fc_rx_pause:
+ /* Rx Flow control is enabled, and Tx Flow control is
+ * disabled, by a software over-ride.
+ *
+ * Since there really isn't a way to advertise that we are
+ * capable of Rx Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric Rx PAUSE. Later
+ * (in e1000e_config_fc_after_link_up) we will disable the
+ * hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |=
+ (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
+ break;
+ case e1000_fc_tx_pause:
+ /* Tx Flow control is enabled, and Rx Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
+ mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
+ break;
+ case e1000_fc_full:
+ /* Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |=
+ (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
+ break;
+ default:
+ e_dbg("Flow control param set incorrectly\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
+ if (ret_val)
+ return ret_val;
+
+ e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL)
+ ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
+
+ return ret_val;
+}
+
+/**
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ /* Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (!phy->autoneg_advertised)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ e_dbg("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ e_dbg("Error Setting up Auto-Negotiation\n");
+ return ret_val;
+ }
+ e_dbg("Restarting Auto-Neg\n");
+
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
+ ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ /* Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ e_dbg("Error while waiting for autoneg to complete\n");
+ return ret_val;
+ }
+ }
+
+ hw->mac.get_link_status = true;
+
+ return ret_val;
+}
+
+/**
+ * e1000e_setup_copper_link - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000e_setup_copper_link(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ bool link;
+
+ if (hw->mac.autoneg) {
+ /* Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ e_dbg("Forcing Speed and Duplex\n");
+ ret_val = hw->phy.ops.force_speed_duplex(hw);
+ if (ret_val) {
+ e_dbg("Error Forcing Speed and Duplex\n");
+ return ret_val;
+ }
+ }
+
+ /* Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+ &link);
+ if (ret_val)
+ return ret_val;
+
+ if (link) {
+ e_dbg("Valid link established!!!\n");
+ hw->mac.ops.config_collision_dist(hw);
+ ret_val = e1000e_config_fc_after_link_up(hw);
+ } else {
+ e_dbg("Unable to establish link!!!\n");
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e_dbg("IGP PSCR: %X\n", phy_data);
+
+ udelay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
+
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ e_dbg("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Resets the PHY to commit the
+ * changes. If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
+ * successful completion, else return corresponding error code.
+ **/
+s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e_dbg("M88E1000 PSCR: %X\n", phy_data);
+
+ ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Reset the phy to commit changes. */
+ if (hw->phy.ops.commit) {
+ ret_val = hw->phy.ops.commit(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (phy->autoneg_wait_to_complete) {
+ e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
+
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ if (hw->phy.type != e1000_phy_m88) {
+ e_dbg("Link taking longer than expected.\n");
+ } else {
+ /* We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
+ 0x001d);
+ if (ret_val)
+ return ret_val;
+ ret_val = e1000e_phy_reset_dsp(hw);
+ if (ret_val)
+ return ret_val;
+ }
+ }
+
+ /* Try once more */
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ if (hw->phy.type != e1000_phy_m88)
+ return 0;
+
+ ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Resetting the phy means we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock from
+ * the reset value of 2.5MHz.
+ */
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ * @hw: pointer to the HW structure
+ *
+ * Forces the speed and duplex settings of the PHY.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ ret_val = e1e_rphy(hw, MII_BMCR, &data);
+ if (ret_val)
+ return ret_val;
+
+ e1000e_phy_force_speed_duplex_setup(hw, &data);
+
+ ret_val = e1e_wphy(hw, MII_BMCR, data);
+ if (ret_val)
+ return ret_val;
+
+ /* Disable MDI-X support for 10/100 */
+ ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IFE_PMC_AUTO_MDIX;
+ data &= ~IFE_PMC_FORCE_MDIX;
+
+ ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
+ if (ret_val)
+ return ret_val;
+
+ e_dbg("IFE PMC: %X\n", data);
+
+ udelay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
+
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ e_dbg("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+ }
+
+ return 0;
+}
+
+/**
+ * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of MII_BMCR
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register. The
+ * caller must write to the MII_BMCR register for these settings to
+ * take affect.
+ **/
+void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+
+ /* Turn off flow control when forcing speed/duplex */
+ hw->fc.current_mode = e1000_fc_none;
+
+ /* Force speed/duplex on the mac */
+ ctrl = er32(CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~E1000_CTRL_SPD_SEL;
+
+ /* Disable Auto Speed Detection */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Disable autoneg on the phy */
+ *phy_ctrl &= ~BMCR_ANENABLE;
+
+ /* Forcing Full or Half Duplex? */
+ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+ ctrl &= ~E1000_CTRL_FD;
+ *phy_ctrl &= ~BMCR_FULLDPLX;
+ e_dbg("Half Duplex\n");
+ } else {
+ ctrl |= E1000_CTRL_FD;
+ *phy_ctrl |= BMCR_FULLDPLX;
+ e_dbg("Full Duplex\n");
+ }
+
+ /* Forcing 10mb or 100mb? */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+ ctrl |= E1000_CTRL_SPD_100;
+ *phy_ctrl |= BMCR_SPEED100;
+ *phy_ctrl &= ~BMCR_SPEED1000;
+ e_dbg("Forcing 100mb\n");
+ } else {
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
+ e_dbg("Forcing 10mb\n");
+ }
+
+ hw->mac.ops.config_collision_dist(hw);
+
+ ew32(CTRL, ctrl);
+}
+
+/**
+ * e1000e_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ **/
+s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ return ret_val;
+
+ if (!active) {
+ data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+ if (ret_val)
+ return ret_val;
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ return ret_val;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
+ if (ret_val)
+ return ret_val;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000e_check_downshift - Checks whether a downshift in speed occurred
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000e_check_downshift(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ switch (phy->type) {
+ case e1000_phy_m88:
+ case e1000_phy_gg82563:
+ case e1000_phy_bm:
+ case e1000_phy_82578:
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
+ break;
+ case e1000_phy_igp_2:
+ case e1000_phy_igp_3:
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ break;
+ default:
+ /* speed downshift not supported */
+ phy->speed_downgraded = false;
+ return 0;
+ }
+
+ ret_val = e1e_rphy(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->speed_downgraded = !!(phy_data & mask);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data, offset, mask;
+
+ /* Polarity is determined based on the speed of
+ * our connection.
+ */
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
+ } else {
+ /* This really only applies to 10Mbps since
+ * there is no polarity for 100Mbps (always 0).
+ */
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+
+ ret_val = e1e_rphy(hw, offset, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ * @hw: pointer to the HW structure
+ *
+ * Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ /* Polarity is determined based on the reversal feature being enabled.
+ */
+ if (phy->polarity_correction) {
+ offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+ mask = IFE_PESC_POLARITY_REVERSED;
+ } else {
+ offset = IFE_PHY_SPECIAL_CONTROL;
+ mask = IFE_PSC_FORCE_POLARITY;
+ }
+
+ ret_val = e1e_rphy(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((phy_data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_wait_autoneg - Wait for auto-neg completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ **/
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ s32 ret_val = 0;
+ u16 i, phy_status;
+
+ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+ ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & BMSR_ANEGCOMPLETE)
+ break;
+ msleep(100);
+ }
+
+ /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ * has completed.
+ */
+ return ret_val;
+}
+
+/**
+ * e1000e_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success)
+{
+ s32 ret_val = 0;
+ u16 i, phy_status;
+
+ *success = false;
+ for (i = 0; i < iterations; i++) {
+ /* Some PHYs require the MII_BMSR register to be read
+ * twice due to the link bit being sticky. No harm doing
+ * it across the board.
+ */
+ ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
+ if (ret_val) {
+ /* If the first read fails, another entity may have
+ * ownership of the resources, wait and try again to
+ * see if they have relinquished the resources yet.
+ */
+ if (usec_interval >= 1000)
+ msleep(usec_interval / 1000);
+ else
+ udelay(usec_interval);
+ }
+ ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & BMSR_LSTATUS) {
+ *success = true;
+ break;
+ }
+ if (usec_interval >= 1000)
+ msleep(usec_interval / 1000);
+ else
+ udelay(usec_interval);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information. The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length. The m88 PHY has four
+ * possible cable length values, which are:
+ * Register Value Cable Length
+ * 0 < 50 meters
+ * 1 50 - 80 meters
+ * 2 80 - 110 meters
+ * 3 110 - 140 meters
+ * 4 > 140 meters
+ **/
+s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+ if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+ return -E1000_ERR_PHY;
+
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+ return 0;
+}
+
+/**
+ * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which represent the
+ * combination of coarse and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ **/
+s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, i, agc_value = 0;
+ u16 cur_agc_index, max_agc_index = 0;
+ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+ static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
+ IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D
+ };
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ /* Getting bits 15:9, which represent the combination of
+ * coarse and fine gain values. The result is a number
+ * that can be put into the lookup table to obtain the
+ * approximate cable length.
+ */
+ cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK);
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0))
+ return -E1000_ERR_PHY;
+
+ /* Remove min & max AGC values from calculation. */
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+ }
+
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+ e1000_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+ /* Calculate cable length with the error range of +/- 10 meters. */
+ phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0);
+ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+ return 0;
+}
+
+/**
+ * e1000e_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links. Read the PHY status register (sticky read)
+ * to verify that link is up. Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance. Read the PHY
+ * special status register to determine MDI/MDIx and current speed. If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ if (phy->media_type != e1000_media_type_copper) {
+ e_dbg("Phy info is only valid for copper media\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ e_dbg("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy->polarity_correction = !!(phy_data &
+ M88E1000_PSCR_POLARITY_REVERSAL);
+
+ ret_val = e1000_check_polarity_m88(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
+ ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (phy_data & LPA_1000REMRXOK)
+ ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ } else {
+ /* Set values to "undefined" */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000e_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ e_dbg("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ phy->polarity_correction = true;
+
+ ret_val = e1000_check_polarity_igp(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ ret_val = phy->ops.get_cable_length(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1e_rphy(hw, MII_STAT1000, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->local_rx = (data & LPA_1000LOCALRXOK)
+ ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & LPA_1000REMRXOK)
+ ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ * @hw: pointer to the HW structure
+ *
+ * Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ e_dbg("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+ phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
+
+ if (phy->polarity_correction) {
+ ret_val = e1000_check_polarity_ife(hw);
+ if (ret_val)
+ return ret_val;
+ } else {
+ /* Polarity is forced */
+ phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+ }
+
+ ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
+
+ /* The following parameters are undefined for 10/100 operation. */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+ return 0;
+}
+
+/**
+ * e1000e_phy_sw_reset - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ phy_ctrl |= BMCR_RESET;
+ ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
+ if (ret_val)
+ return ret_val;
+
+ udelay(1);
+
+ return ret_val;
+}
+
+/**
+ * e1000e_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and release the semaphore (if necessary).
+ **/
+s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 ctrl;
+
+ if (phy->ops.check_reset_block) {
+ ret_val = phy->ops.check_reset_block(hw);
+ if (ret_val)
+ return 0;
+ }
+
+ ret_val = phy->ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ ctrl = er32(CTRL);
+ ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+ e1e_flush();
+
+ udelay(phy->reset_delay_us);
+
+ ew32(CTRL, ctrl);
+ e1e_flush();
+
+ usleep_range(150, 300);
+
+ phy->ops.release(hw);
+
+ return phy->ops.get_cfg_done(hw);
+}
+
+/**
+ * e1000e_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ **/
+s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
+{
+ mdelay(10);
+
+ return 0;
+}
+
+/**
+ * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
+{
+ e_dbg("Running IGP 3 PHY init script\n");
+
+ /* PHY init IGP 3 */
+ /* Enable rise/fall, 10-mode work in class-A */
+ e1e_wphy(hw, 0x2F5B, 0x9018);
+ /* Remove all caps from Replica path filter */
+ e1e_wphy(hw, 0x2F52, 0x0000);
+ /* Bias trimming for ADC, AFE and Driver (Default) */
+ e1e_wphy(hw, 0x2FB1, 0x8B24);
+ /* Increase Hybrid poly bias */
+ e1e_wphy(hw, 0x2FB2, 0xF8F0);
+ /* Add 4% to Tx amplitude in Gig mode */
+ e1e_wphy(hw, 0x2010, 0x10B0);
+ /* Disable trimming (TTT) */
+ e1e_wphy(hw, 0x2011, 0x0000);
+ /* Poly DC correction to 94.6% + 2% for all channels */
+ e1e_wphy(hw, 0x20DD, 0x249A);
+ /* ABS DC correction to 95.9% */
+ e1e_wphy(hw, 0x20DE, 0x00D3);
+ /* BG temp curve trim */
+ e1e_wphy(hw, 0x28B4, 0x04CE);
+ /* Increasing ADC OPAMP stage 1 currents to max */
+ e1e_wphy(hw, 0x2F70, 0x29E4);
+ /* Force 1000 ( required for enabling PHY regs configuration) */
+ e1e_wphy(hw, 0x0000, 0x0140);
+ /* Set upd_freq to 6 */
+ e1e_wphy(hw, 0x1F30, 0x1606);
+ /* Disable NPDFE */
+ e1e_wphy(hw, 0x1F31, 0xB814);
+ /* Disable adaptive fixed FFE (Default) */
+ e1e_wphy(hw, 0x1F35, 0x002A);
+ /* Enable FFE hysteresis */
+ e1e_wphy(hw, 0x1F3E, 0x0067);
+ /* Fixed FFE for short cable lengths */
+ e1e_wphy(hw, 0x1F54, 0x0065);
+ /* Fixed FFE for medium cable lengths */
+ e1e_wphy(hw, 0x1F55, 0x002A);
+ /* Fixed FFE for long cable lengths */
+ e1e_wphy(hw, 0x1F56, 0x002A);
+ /* Enable Adaptive Clip Threshold */
+ e1e_wphy(hw, 0x1F72, 0x3FB0);
+ /* AHT reset limit to 1 */
+ e1e_wphy(hw, 0x1F76, 0xC0FF);
+ /* Set AHT master delay to 127 msec */
+ e1e_wphy(hw, 0x1F77, 0x1DEC);
+ /* Set scan bits for AHT */
+ e1e_wphy(hw, 0x1F78, 0xF9EF);
+ /* Set AHT Preset bits */
+ e1e_wphy(hw, 0x1F79, 0x0210);
+ /* Change integ_factor of channel A to 3 */
+ e1e_wphy(hw, 0x1895, 0x0003);
+ /* Change prop_factor of channels BCD to 8 */
+ e1e_wphy(hw, 0x1796, 0x0008);
+ /* Change cg_icount + enable integbp for channels BCD */
+ e1e_wphy(hw, 0x1798, 0xD008);
+ /* Change cg_icount + enable integbp + change prop_factor_master
+ * to 8 for channel A
+ */
+ e1e_wphy(hw, 0x1898, 0xD918);
+ /* Disable AHT in Slave mode on channel A */
+ e1e_wphy(hw, 0x187A, 0x0800);
+ /* Enable LPLU and disable AN to 1000 in non-D0a states,
+ * Enable SPD+B2B
+ */
+ e1e_wphy(hw, 0x0019, 0x008D);
+ /* Enable restart AN on an1000_dis change */
+ e1e_wphy(hw, 0x001B, 0x2080);
+ /* Enable wh_fifo read clock in 10/100 modes */
+ e1e_wphy(hw, 0x0014, 0x0045);
+ /* Restart AN, Speed selection is 1000 */
+ e1e_wphy(hw, 0x0000, 0x1340);
+
+ return 0;
+}
+
+/**
+ * e1000e_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
+{
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ switch (phy_id) {
+ case M88E1000_I_PHY_ID:
+ case M88E1000_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+ phy_type = e1000_phy_igp_2;
+ break;
+ case GG82563_E_PHY_ID:
+ phy_type = e1000_phy_gg82563;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy_type = e1000_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy_type = e1000_phy_ife;
+ break;
+ case BME1000_E_PHY_ID:
+ case BME1000_E_PHY_ID_R2:
+ phy_type = e1000_phy_bm;
+ break;
+ case I82578_E_PHY_ID:
+ phy_type = e1000_phy_82578;
+ break;
+ case I82577_E_PHY_ID:
+ phy_type = e1000_phy_82577;
+ break;
+ case I82579_E_PHY_ID:
+ phy_type = e1000_phy_82579;
+ break;
+ case I217_E_PHY_ID:
+ phy_type = e1000_phy_i217;
+ break;
+ default:
+ phy_type = e1000_phy_unknown;
+ break;
+ }
+ return phy_type;
+}
+
+/**
+ * e1000e_determine_phy_address - Determines PHY address.
+ * @hw: pointer to the HW structure
+ *
+ * This uses a trial and error method to loop through possible PHY
+ * addresses. It tests each by reading the PHY ID registers and
+ * checking for a match.
+ **/
+s32 e1000e_determine_phy_address(struct e1000_hw *hw)
+{
+ u32 phy_addr = 0;
+ u32 i;
+ enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+ hw->phy.id = phy_type;
+
+ for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+ hw->phy.addr = phy_addr;
+ i = 0;
+
+ do {
+ e1000e_get_phy_id(hw);
+ phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
+
+ /* If phy_type is valid, break - we found our
+ * PHY address
+ */
+ if (phy_type != e1000_phy_unknown)
+ return 0;
+
+ usleep_range(1000, 2000);
+ i++;
+ } while (i < 10);
+ }
+
+ return -E1000_ERR_PHY_TYPE;
+}
+
+/**
+ * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ * @page: page to access
+ *
+ * Returns the phy address for the page requested.
+ **/
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+ u32 phy_addr = 2;
+
+ if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+ phy_addr = 1;
+
+ return phy_addr;
+}
+
+/**
+ * e1000e_write_phy_reg_bm - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ false, false);
+ goto release;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ u32 page_shift, page_select;
+
+ /* Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000e_read_phy_reg_bm - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ true, false);
+ goto release;
+ }
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ u32 page_shift, page_select;
+
+ /* Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000e_read_phy_reg_bm2 - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ **/
+s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ true, false);
+ goto release;
+ }
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000e_write_phy_reg_bm2 - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ false, false);
+ goto release;
+ }
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val)
+ goto release;
+ }
+
+ ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+release:
+ hw->phy.ops.release(hw);
+ return ret_val;
+}
+
+/**
+ * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
+ * @hw: pointer to the HW structure
+ * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
+ *
+ * Assumes semaphore already acquired and phy_reg points to a valid memory
+ * address to store contents of the BM_WUC_ENABLE_REG register.
+ **/
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+ s32 ret_val;
+ u16 temp;
+
+ /* All page select, port ctrl and wakeup registers use phy address 1 */
+ hw->phy.addr = 1;
+
+ /* Select Port Control Registers page */
+ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+ if (ret_val) {
+ e_dbg("Could not set Port Control page\n");
+ return ret_val;
+ }
+
+ ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ e_dbg("Could not read PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+ return ret_val;
+ }
+
+ /* Enable both PHY wakeup mode and Wakeup register page writes.
+ * Prevent a power state change by disabling ME and Host PHY wakeup.
+ */
+ temp = *phy_reg;
+ temp |= BM_WUC_ENABLE_BIT;
+ temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
+
+ ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
+ if (ret_val) {
+ e_dbg("Could not write PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+ return ret_val;
+ }
+
+ /* Select Host Wakeup Registers page - caller now able to write
+ * registers on the Wakeup registers page
+ */
+ return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+}
+
+/**
+ * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
+ * @hw: pointer to the HW structure
+ * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
+ *
+ * Restore BM_WUC_ENABLE_REG to its original value.
+ *
+ * Assumes semaphore already acquired and *phy_reg is the contents of the
+ * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
+ * caller.
+ **/
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+ s32 ret_val;
+
+ /* Select Port Control Registers page */
+ ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+ if (ret_val) {
+ e_dbg("Could not set Port Control page\n");
+ return ret_val;
+ }
+
+ /* Restore 769.17 to its original value */
+ ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
+ if (ret_val)
+ e_dbg("Could not restore PHY register %d.%d\n",
+ BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+
+ return ret_val;
+}
+
+/**
+ * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to read or write
+ * @read: determines if operation is read or write
+ * @page_set: BM_WUC_PAGE already set and access enabled
+ *
+ * Read the PHY register at offset and store the retrieved information in
+ * data, or write data to PHY register at offset. Note the procedure to
+ * access the PHY wakeup registers is different than reading the other PHY
+ * registers. It works as such:
+ * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
+ * 2) Set page to 800 for host (801 if we were manageability)
+ * 3) Write the address using the address opcode (0x11)
+ * 4) Read or write the data using the data opcode (0x12)
+ * 5) Restore 769.17.2 to its original value
+ *
+ * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
+ * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
+ *
+ * Assumes semaphore is already acquired. When page_set==true, assumes
+ * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
+ * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
+ **/
+static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read, bool page_set)
+{
+ s32 ret_val;
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 phy_reg = 0;
+
+ /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
+ if ((hw->mac.type == e1000_pchlan) &&
+ (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+ e_dbg("Attempting to access page %d while gig enabled.\n",
+ page);
+
+ if (!page_set) {
+ /* Enable access to PHY wakeup registers */
+ ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+ if (ret_val) {
+ e_dbg("Could not enable PHY wakeup reg access\n");
+ return ret_val;
+ }
+ }
+
+ e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
+
+ /* Write the Wakeup register page offset value using opcode 0x11 */
+ ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+ if (ret_val) {
+ e_dbg("Could not write address opcode to page %d\n", page);
+ return ret_val;
+ }
+
+ if (read) {
+ /* Read the Wakeup register page value using opcode 0x12 */
+ ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+ data);
+ } else {
+ /* Write the Wakeup register page value using opcode 0x12 */
+ ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+ *data);
+ }
+
+ if (ret_val) {
+ e_dbg("Could not access PHY reg %d.%d\n", page, reg);
+ return ret_val;
+ }
+
+ if (!page_set)
+ ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+ return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ e1e_rphy(hw, MII_BMCR, &mii_reg);
+ mii_reg &= ~BMCR_PDOWN;
+ e1e_wphy(hw, MII_BMCR, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ e1e_rphy(hw, MII_BMCR, &mii_reg);
+ mii_reg |= BMCR_PDOWN;
+ e1e_wphy(hw, MII_BMCR, mii_reg);
+ usleep_range(1000, 2000);
+}
+
+/**
+ * __e1000_read_phy_reg_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and stores the retrieved information in data. Release any acquired
+ * semaphore before exiting.
+ **/
+static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool locked, bool page_set)
+{
+ s32 ret_val;
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+ if (!locked) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+ true, page_set);
+ goto out;
+ }
+
+ if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+ ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+ data, true);
+ goto out;
+ }
+
+ if (!page_set) {
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
+
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_set_page_igp(hw,
+ (page << IGP_PAGE_SHIFT));
+
+ hw->phy.addr = phy_addr;
+
+ if (ret_val)
+ goto out;
+ }
+ }
+
+ e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+ page << IGP_PAGE_SHIFT, reg);
+
+ ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
+out:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_read_phy_reg_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore then reads the PHY register at offset and stores
+ * the retrieved information in data. Release the acquired semaphore
+ * before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ * e1000_read_phy_reg_hv_locked - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ * e1000_read_phy_reg_page_hv - Read HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Reads the PHY register at offset and stores the retrieved information
+ * in data. Assumes semaphore already acquired and page already set.
+ **/
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ * __e1000_write_phy_reg_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ * @locked: semaphore has already been acquired or not
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ **/
+static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+ bool locked, bool page_set)
+{
+ s32 ret_val;
+ u16 page = BM_PHY_REG_PAGE(offset);
+ u16 reg = BM_PHY_REG_NUM(offset);
+ u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+ if (!locked) {
+ ret_val = hw->phy.ops.acquire(hw);
+ if (ret_val)
+ return ret_val;
+ }
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+ false, page_set);
+ goto out;
+ }
+
+ if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+ ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+ &data, false);
+ goto out;
+ }
+
+ if (!page_set) {
+ if (page == HV_INTC_FC_PAGE_START)
+ page = 0;
+
+ /* Workaround MDIO accesses being disabled after entering IEEE
+ * Power Down (when bit 11 of the PHY Control register is set)
+ */
+ if ((hw->phy.type == e1000_phy_82578) &&
+ (hw->phy.revision >= 1) &&
+ (hw->phy.addr == 2) &&
+ !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
+ u16 data2 = 0x7EFF;
+
+ ret_val = e1000_access_phy_debug_regs_hv(hw,
+ BIT(6) | 0x3,
+ &data2, false);
+ if (ret_val)
+ goto out;
+ }
+
+ if (reg > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_set_page_igp(hw,
+ (page << IGP_PAGE_SHIFT));
+
+ hw->phy.addr = phy_addr;
+
+ if (ret_val)
+ goto out;
+ }
+ }
+
+ e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+ page << IGP_PAGE_SHIFT, reg);
+
+ ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+ data);
+
+out:
+ if (!locked)
+ hw->phy.ops.release(hw);
+
+ return ret_val;
+}
+
+/**
+ * e1000_write_phy_reg_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore then writes the data to PHY register at the offset.
+ * Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ * e1000_write_phy_reg_hv_locked - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset. Assumes semaphore
+ * already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ * e1000_write_phy_reg_page_hv - Write HV PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset. Assumes semaphore
+ * already acquired and page already set.
+ **/
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
+ * @page: page to be accessed
+ **/
+static u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+ u32 phy_addr = 2;
+
+ if (page >= HV_INTC_FC_PAGE_START)
+ phy_addr = 1;
+
+ return phy_addr;
+}
+
+/**
+ * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to be read or written
+ * @read: determines if operation is read or write
+ *
+ * Reads the PHY register at offset and stores the retreived information
+ * in data. Assumes semaphore already acquired. Note that the procedure
+ * to access these regs uses the address port and data port to read/write.
+ * These accesses done with PHY address 2 and without using pages.
+ **/
+static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+ u16 *data, bool read)
+{
+ s32 ret_val;
+ u32 addr_reg;
+ u32 data_reg;
+
+ /* This takes care of the difference with desktop vs mobile phy */
+ addr_reg = ((hw->phy.type == e1000_phy_82578) ?
+ I82578_ADDR_REG : I82577_ADDR_REG);
+ data_reg = addr_reg + 1;
+
+ /* All operations in this function are phy address 2 */
+ hw->phy.addr = 2;
+
+ /* masking with 0x3F to remove the page from offset */
+ ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+ if (ret_val) {
+ e_dbg("Could not write the Address Offset port register\n");
+ return ret_val;
+ }
+
+ /* Read or write the data value next */
+ if (read)
+ ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
+ else
+ ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
+
+ if (ret_val)
+ e_dbg("Could not access the Data port register\n");
+
+ return ret_val;
+}
+
+/**
+ * e1000_link_stall_workaround_hv - Si workaround
+ * @hw: pointer to the HW structure
+ *
+ * This function works around a Si bug where the link partner can get
+ * a link up indication before the PHY does. If small packets are sent
+ * by the link partner they can be placed in the packet buffer without
+ * being properly accounted for by the PHY and will stall preventing
+ * further packets from being received. The workaround is to clear the
+ * packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+ s32 ret_val = 0;
+ u16 data;
+
+ if (hw->phy.type != e1000_phy_82578)
+ return 0;
+
+ /* Do not apply workaround if in PHY loopback bit 14 set */
+ e1e_rphy(hw, MII_BMCR, &data);
+ if (data & BMCR_LOOPBACK)
+ return 0;
+
+ /* check if link is up and at 1Gbps */
+ ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
+ if (ret_val)
+ return ret_val;
+
+ data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_MASK);
+
+ if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+ BM_CS_STATUS_SPEED_1000))
+ return 0;
+
+ msleep(200);
+
+ /* flush the packets in the fifo buffer */
+ ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
+ (HV_MUX_DATA_CTRL_GEN_TO_MAC |
+ HV_MUX_DATA_CTRL_FORCE_SPEED));
+ if (ret_val)
+ return ret_val;
+
+ return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
+}
+
+/**
+ * e1000_check_polarity_82577 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal);
+
+ return ret_val;
+}
+
+/**
+ * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
+ if (ret_val)
+ return ret_val;
+
+ udelay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
+
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link)
+ e_dbg("Link taking longer than expected.\n");
+
+ /* Try once more */
+ ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+ 100000, &link);
+ }
+
+ return ret_val;
+}
+
+/**
+ * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ return ret_val;
+
+ if (!link) {
+ e_dbg("Phy info is only valid if link is up\n");
+ return -E1000_ERR_CONFIG;
+ }
+
+ phy->polarity_correction = true;
+
+ ret_val = e1000_check_polarity_82577(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
+
+ if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+ I82577_PHY_STATUS2_SPEED_1000MBPS) {
+ ret_val = hw->phy.ops.get_cable_length(hw);
+ if (ret_val)
+ return ret_val;
+
+ ret_val = e1e_rphy(hw, MII_STAT1000, &data);
+ if (ret_val)
+ return ret_val;
+
+ phy->local_rx = (data & LPA_1000LOCALRXOK)
+ ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & LPA_1000REMRXOK)
+ ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+ return 0;
+}
+
+/**
+ * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, length;
+
+ ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+ if (ret_val)
+ return ret_val;
+
+ length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+ I82577_DSTATUS_CABLE_LENGTH_SHIFT);
+
+ if (length == E1000_CABLE_LENGTH_UNDEFINED)
+ return -E1000_ERR_PHY;
+
+ phy->cable_length = length;
+
+ return 0;
+}