diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /tools/testing/radix-tree/multiorder.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/testing/radix-tree/multiorder.c')
-rw-r--r-- | tools/testing/radix-tree/multiorder.c | 719 |
1 files changed, 719 insertions, 0 deletions
diff --git a/tools/testing/radix-tree/multiorder.c b/tools/testing/radix-tree/multiorder.c new file mode 100644 index 000000000..7bf405638 --- /dev/null +++ b/tools/testing/radix-tree/multiorder.c @@ -0,0 +1,719 @@ +/* + * multiorder.c: Multi-order radix tree entry testing + * Copyright (c) 2016 Intel Corporation + * Author: Ross Zwisler <ross.zwisler@linux.intel.com> + * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ +#include <linux/radix-tree.h> +#include <linux/slab.h> +#include <linux/errno.h> +#include <pthread.h> + +#include "test.h" + +#define for_each_index(i, base, order) \ + for (i = base; i < base + (1 << order); i++) + +static void __multiorder_tag_test(int index, int order) +{ + RADIX_TREE(tree, GFP_KERNEL); + int base, err, i; + + /* our canonical entry */ + base = index & ~((1 << order) - 1); + + printv(2, "Multiorder tag test with index %d, canonical entry %d\n", + index, base); + + err = item_insert_order(&tree, index, order); + assert(!err); + + /* + * Verify we get collisions for covered indices. We try and fail to + * insert an exceptional entry so we don't leak memory via + * item_insert_order(). + */ + for_each_index(i, base, order) { + err = __radix_tree_insert(&tree, i, order, + (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY)); + assert(err == -EEXIST); + } + + for_each_index(i, base, order) { + assert(!radix_tree_tag_get(&tree, i, 0)); + assert(!radix_tree_tag_get(&tree, i, 1)); + } + + assert(radix_tree_tag_set(&tree, index, 0)); + + for_each_index(i, base, order) { + assert(radix_tree_tag_get(&tree, i, 0)); + assert(!radix_tree_tag_get(&tree, i, 1)); + } + + assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1); + assert(radix_tree_tag_clear(&tree, index, 0)); + + for_each_index(i, base, order) { + assert(!radix_tree_tag_get(&tree, i, 0)); + assert(radix_tree_tag_get(&tree, i, 1)); + } + + assert(radix_tree_tag_clear(&tree, index, 1)); + + assert(!radix_tree_tagged(&tree, 0)); + assert(!radix_tree_tagged(&tree, 1)); + + item_kill_tree(&tree); +} + +static void __multiorder_tag_test2(unsigned order, unsigned long index2) +{ + RADIX_TREE(tree, GFP_KERNEL); + unsigned long index = (1 << order); + index2 += index; + + assert(item_insert_order(&tree, 0, order) == 0); + assert(item_insert(&tree, index2) == 0); + + assert(radix_tree_tag_set(&tree, 0, 0)); + assert(radix_tree_tag_set(&tree, index2, 0)); + + assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2); + + item_kill_tree(&tree); +} + +static void multiorder_tag_tests(void) +{ + int i, j; + + /* test multi-order entry for indices 0-7 with no sibling pointers */ + __multiorder_tag_test(0, 3); + __multiorder_tag_test(5, 3); + + /* test multi-order entry for indices 8-15 with no sibling pointers */ + __multiorder_tag_test(8, 3); + __multiorder_tag_test(15, 3); + + /* + * Our order 5 entry covers indices 0-31 in a tree with height=2. + * This is broken up as follows: + * 0-7: canonical entry + * 8-15: sibling 1 + * 16-23: sibling 2 + * 24-31: sibling 3 + */ + __multiorder_tag_test(0, 5); + __multiorder_tag_test(29, 5); + + /* same test, but with indices 32-63 */ + __multiorder_tag_test(32, 5); + __multiorder_tag_test(44, 5); + + /* + * Our order 8 entry covers indices 0-255 in a tree with height=3. + * This is broken up as follows: + * 0-63: canonical entry + * 64-127: sibling 1 + * 128-191: sibling 2 + * 192-255: sibling 3 + */ + __multiorder_tag_test(0, 8); + __multiorder_tag_test(190, 8); + + /* same test, but with indices 256-511 */ + __multiorder_tag_test(256, 8); + __multiorder_tag_test(300, 8); + + __multiorder_tag_test(0x12345678UL, 8); + + for (i = 1; i < 10; i++) + for (j = 0; j < (10 << i); j++) + __multiorder_tag_test2(i, j); +} + +static void multiorder_check(unsigned long index, int order) +{ + unsigned long i; + unsigned long min = index & ~((1UL << order) - 1); + unsigned long max = min + (1UL << order); + void **slot; + struct item *item2 = item_create(min, order); + RADIX_TREE(tree, GFP_KERNEL); + + printv(2, "Multiorder index %ld, order %d\n", index, order); + + assert(item_insert_order(&tree, index, order) == 0); + + for (i = min; i < max; i++) { + struct item *item = item_lookup(&tree, i); + assert(item != 0); + assert(item->index == index); + } + for (i = 0; i < min; i++) + item_check_absent(&tree, i); + for (i = max; i < 2*max; i++) + item_check_absent(&tree, i); + for (i = min; i < max; i++) + assert(radix_tree_insert(&tree, i, item2) == -EEXIST); + + slot = radix_tree_lookup_slot(&tree, index); + free(*slot); + radix_tree_replace_slot(&tree, slot, item2); + for (i = min; i < max; i++) { + struct item *item = item_lookup(&tree, i); + assert(item != 0); + assert(item->index == min); + } + + assert(item_delete(&tree, min) != 0); + + for (i = 0; i < 2*max; i++) + item_check_absent(&tree, i); +} + +static void multiorder_shrink(unsigned long index, int order) +{ + unsigned long i; + unsigned long max = 1 << order; + RADIX_TREE(tree, GFP_KERNEL); + struct radix_tree_node *node; + + printv(2, "Multiorder shrink index %ld, order %d\n", index, order); + + assert(item_insert_order(&tree, 0, order) == 0); + + node = tree.rnode; + + assert(item_insert(&tree, index) == 0); + assert(node != tree.rnode); + + assert(item_delete(&tree, index) != 0); + assert(node == tree.rnode); + + for (i = 0; i < max; i++) { + struct item *item = item_lookup(&tree, i); + assert(item != 0); + assert(item->index == 0); + } + for (i = max; i < 2*max; i++) + item_check_absent(&tree, i); + + if (!item_delete(&tree, 0)) { + printv(2, "failed to delete index %ld (order %d)\n", index, order); + abort(); + } + + for (i = 0; i < 2*max; i++) + item_check_absent(&tree, i); +} + +static void multiorder_insert_bug(void) +{ + RADIX_TREE(tree, GFP_KERNEL); + + item_insert(&tree, 0); + radix_tree_tag_set(&tree, 0, 0); + item_insert_order(&tree, 3 << 6, 6); + + item_kill_tree(&tree); +} + +void multiorder_iteration(void) +{ + RADIX_TREE(tree, GFP_KERNEL); + struct radix_tree_iter iter; + void **slot; + int i, j, err; + + printv(1, "Multiorder iteration test\n"); + +#define NUM_ENTRIES 11 + int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; + int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; + + for (i = 0; i < NUM_ENTRIES; i++) { + err = item_insert_order(&tree, index[i], order[i]); + assert(!err); + } + + for (j = 0; j < 256; j++) { + for (i = 0; i < NUM_ENTRIES; i++) + if (j <= (index[i] | ((1 << order[i]) - 1))) + break; + + radix_tree_for_each_slot(slot, &tree, &iter, j) { + int height = order[i] / RADIX_TREE_MAP_SHIFT; + int shift = height * RADIX_TREE_MAP_SHIFT; + unsigned long mask = (1UL << order[i]) - 1; + struct item *item = *slot; + + assert((iter.index | mask) == (index[i] | mask)); + assert(iter.shift == shift); + assert(!radix_tree_is_internal_node(item)); + assert((item->index | mask) == (index[i] | mask)); + assert(item->order == order[i]); + i++; + } + } + + item_kill_tree(&tree); +} + +void multiorder_tagged_iteration(void) +{ + RADIX_TREE(tree, GFP_KERNEL); + struct radix_tree_iter iter; + void **slot; + int i, j; + + printv(1, "Multiorder tagged iteration test\n"); + +#define MT_NUM_ENTRIES 9 + int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; + int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; + +#define TAG_ENTRIES 7 + int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; + + for (i = 0; i < MT_NUM_ENTRIES; i++) + assert(!item_insert_order(&tree, index[i], order[i])); + + assert(!radix_tree_tagged(&tree, 1)); + + for (i = 0; i < TAG_ENTRIES; i++) + assert(radix_tree_tag_set(&tree, tag_index[i], 1)); + + for (j = 0; j < 256; j++) { + int k; + + for (i = 0; i < TAG_ENTRIES; i++) { + for (k = i; index[k] < tag_index[i]; k++) + ; + if (j <= (index[k] | ((1 << order[k]) - 1))) + break; + } + + radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) { + unsigned long mask; + struct item *item = *slot; + for (k = i; index[k] < tag_index[i]; k++) + ; + mask = (1UL << order[k]) - 1; + + assert((iter.index | mask) == (tag_index[i] | mask)); + assert(!radix_tree_is_internal_node(item)); + assert((item->index | mask) == (tag_index[i] | mask)); + assert(item->order == order[k]); + i++; + } + } + + assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) == + TAG_ENTRIES); + + for (j = 0; j < 256; j++) { + int mask, k; + + for (i = 0; i < TAG_ENTRIES; i++) { + for (k = i; index[k] < tag_index[i]; k++) + ; + if (j <= (index[k] | ((1 << order[k]) - 1))) + break; + } + + radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) { + struct item *item = *slot; + for (k = i; index[k] < tag_index[i]; k++) + ; + mask = (1 << order[k]) - 1; + + assert((iter.index | mask) == (tag_index[i] | mask)); + assert(!radix_tree_is_internal_node(item)); + assert((item->index | mask) == (tag_index[i] | mask)); + assert(item->order == order[k]); + i++; + } + } + + assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0) + == TAG_ENTRIES); + i = 0; + radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) { + assert(iter.index == tag_index[i]); + i++; + } + + item_kill_tree(&tree); +} + +/* + * Basic join checks: make sure we can't find an entry in the tree after + * a larger entry has replaced it + */ +static void multiorder_join1(unsigned long index, + unsigned order1, unsigned order2) +{ + unsigned long loc; + void *item, *item2 = item_create(index + 1, order1); + RADIX_TREE(tree, GFP_KERNEL); + + item_insert_order(&tree, index, order2); + item = radix_tree_lookup(&tree, index); + radix_tree_join(&tree, index + 1, order1, item2); + loc = find_item(&tree, item); + if (loc == -1) + free(item); + item = radix_tree_lookup(&tree, index + 1); + assert(item == item2); + item_kill_tree(&tree); +} + +/* + * Check that the accounting of exceptional entries is handled correctly + * by joining an exceptional entry to a normal pointer. + */ +static void multiorder_join2(unsigned order1, unsigned order2) +{ + RADIX_TREE(tree, GFP_KERNEL); + struct radix_tree_node *node; + void *item1 = item_create(0, order1); + void *item2; + + item_insert_order(&tree, 0, order2); + radix_tree_insert(&tree, 1 << order2, (void *)0x12UL); + item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); + assert(item2 == (void *)0x12UL); + assert(node->exceptional == 1); + + item2 = radix_tree_lookup(&tree, 0); + free(item2); + + radix_tree_join(&tree, 0, order1, item1); + item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL); + assert(item2 == item1); + assert(node->exceptional == 0); + item_kill_tree(&tree); +} + +/* + * This test revealed an accounting bug for exceptional entries at one point. + * Nodes were being freed back into the pool with an elevated exception count + * by radix_tree_join() and then radix_tree_split() was failing to zero the + * count of exceptional entries. + */ +static void multiorder_join3(unsigned int order) +{ + RADIX_TREE(tree, GFP_KERNEL); + struct radix_tree_node *node; + void **slot; + struct radix_tree_iter iter; + unsigned long i; + + for (i = 0; i < (1 << order); i++) { + radix_tree_insert(&tree, i, (void *)0x12UL); + } + + radix_tree_join(&tree, 0, order, (void *)0x16UL); + rcu_barrier(); + + radix_tree_split(&tree, 0, 0); + + radix_tree_for_each_slot(slot, &tree, &iter, 0) { + radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL); + } + + __radix_tree_lookup(&tree, 0, &node, NULL); + assert(node->exceptional == node->count); + + item_kill_tree(&tree); +} + +static void multiorder_join(void) +{ + int i, j, idx; + + for (idx = 0; idx < 1024; idx = idx * 2 + 3) { + for (i = 1; i < 15; i++) { + for (j = 0; j < i; j++) { + multiorder_join1(idx, i, j); + } + } + } + + for (i = 1; i < 15; i++) { + for (j = 0; j < i; j++) { + multiorder_join2(i, j); + } + } + + for (i = 3; i < 10; i++) { + multiorder_join3(i); + } +} + +static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc) +{ + struct radix_tree_preload *rtp = &radix_tree_preloads; + if (rtp->nr != 0) + printv(2, "split(%u %u) remaining %u\n", old_order, new_order, + rtp->nr); + /* + * Can't check for equality here as some nodes may have been + * RCU-freed while we ran. But we should never finish with more + * nodes allocated since they should have all been preloaded. + */ + if (nr_allocated > alloc) + printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order, + alloc, nr_allocated); +} + +static void __multiorder_split(int old_order, int new_order) +{ + RADIX_TREE(tree, GFP_ATOMIC); + void **slot; + struct radix_tree_iter iter; + unsigned alloc; + struct item *item; + + radix_tree_preload(GFP_KERNEL); + assert(item_insert_order(&tree, 0, old_order) == 0); + radix_tree_preload_end(); + + /* Wipe out the preloaded cache or it'll confuse check_mem() */ + radix_tree_cpu_dead(0); + + item = radix_tree_tag_set(&tree, 0, 2); + + radix_tree_split_preload(old_order, new_order, GFP_KERNEL); + alloc = nr_allocated; + radix_tree_split(&tree, 0, new_order); + check_mem(old_order, new_order, alloc); + radix_tree_for_each_slot(slot, &tree, &iter, 0) { + radix_tree_iter_replace(&tree, &iter, slot, + item_create(iter.index, new_order)); + } + radix_tree_preload_end(); + + item_kill_tree(&tree); + free(item); +} + +static void __multiorder_split2(int old_order, int new_order) +{ + RADIX_TREE(tree, GFP_KERNEL); + void **slot; + struct radix_tree_iter iter; + struct radix_tree_node *node; + void *item; + + __radix_tree_insert(&tree, 0, old_order, (void *)0x12); + + item = __radix_tree_lookup(&tree, 0, &node, NULL); + assert(item == (void *)0x12); + assert(node->exceptional > 0); + + radix_tree_split(&tree, 0, new_order); + radix_tree_for_each_slot(slot, &tree, &iter, 0) { + radix_tree_iter_replace(&tree, &iter, slot, + item_create(iter.index, new_order)); + } + + item = __radix_tree_lookup(&tree, 0, &node, NULL); + assert(item != (void *)0x12); + assert(node->exceptional == 0); + + item_kill_tree(&tree); +} + +static void __multiorder_split3(int old_order, int new_order) +{ + RADIX_TREE(tree, GFP_KERNEL); + void **slot; + struct radix_tree_iter iter; + struct radix_tree_node *node; + void *item; + + __radix_tree_insert(&tree, 0, old_order, (void *)0x12); + + item = __radix_tree_lookup(&tree, 0, &node, NULL); + assert(item == (void *)0x12); + assert(node->exceptional > 0); + + radix_tree_split(&tree, 0, new_order); + radix_tree_for_each_slot(slot, &tree, &iter, 0) { + radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16); + } + + item = __radix_tree_lookup(&tree, 0, &node, NULL); + assert(item == (void *)0x16); + assert(node->exceptional > 0); + + item_kill_tree(&tree); + + __radix_tree_insert(&tree, 0, old_order, (void *)0x12); + + item = __radix_tree_lookup(&tree, 0, &node, NULL); + assert(item == (void *)0x12); + assert(node->exceptional > 0); + + radix_tree_split(&tree, 0, new_order); + radix_tree_for_each_slot(slot, &tree, &iter, 0) { + if (iter.index == (1 << new_order)) + radix_tree_iter_replace(&tree, &iter, slot, + (void *)0x16); + else + radix_tree_iter_replace(&tree, &iter, slot, NULL); + } + + item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL); + assert(item == (void *)0x16); + assert(node->count == node->exceptional); + do { + node = node->parent; + if (!node) + break; + assert(node->count == 1); + assert(node->exceptional == 0); + } while (1); + + item_kill_tree(&tree); +} + +static void multiorder_split(void) +{ + int i, j; + + for (i = 3; i < 11; i++) + for (j = 0; j < i; j++) { + __multiorder_split(i, j); + __multiorder_split2(i, j); + __multiorder_split3(i, j); + } +} + +static void multiorder_account(void) +{ + RADIX_TREE(tree, GFP_KERNEL); + struct radix_tree_node *node; + void **slot; + + item_insert_order(&tree, 0, 5); + + __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); + __radix_tree_lookup(&tree, 0, &node, NULL); + assert(node->count == node->exceptional * 2); + radix_tree_delete(&tree, 1 << 5); + assert(node->exceptional == 0); + + __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12); + __radix_tree_lookup(&tree, 1 << 5, &node, &slot); + assert(node->count == node->exceptional * 2); + __radix_tree_replace(&tree, node, slot, NULL, NULL); + assert(node->exceptional == 0); + + item_kill_tree(&tree); +} + +bool stop_iteration = false; + +static void *creator_func(void *ptr) +{ + /* 'order' is set up to ensure we have sibling entries */ + unsigned int order = RADIX_TREE_MAP_SHIFT - 1; + struct radix_tree_root *tree = ptr; + int i; + + for (i = 0; i < 10000; i++) { + item_insert_order(tree, 0, order); + item_delete_rcu(tree, 0); + } + + stop_iteration = true; + return NULL; +} + +static void *iterator_func(void *ptr) +{ + struct radix_tree_root *tree = ptr; + struct radix_tree_iter iter; + struct item *item; + void **slot; + + while (!stop_iteration) { + rcu_read_lock(); + radix_tree_for_each_slot(slot, tree, &iter, 0) { + item = radix_tree_deref_slot(slot); + + if (!item) + continue; + if (radix_tree_deref_retry(item)) { + slot = radix_tree_iter_retry(&iter); + continue; + } + + item_sanity(item, iter.index); + } + rcu_read_unlock(); + } + return NULL; +} + +static void multiorder_iteration_race(void) +{ + const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); + pthread_t worker_thread[num_threads]; + RADIX_TREE(tree, GFP_KERNEL); + int i; + + pthread_create(&worker_thread[0], NULL, &creator_func, &tree); + for (i = 1; i < num_threads; i++) + pthread_create(&worker_thread[i], NULL, &iterator_func, &tree); + + for (i = 0; i < num_threads; i++) + pthread_join(worker_thread[i], NULL); + + item_kill_tree(&tree); +} + +void multiorder_checks(void) +{ + int i; + + for (i = 0; i < 20; i++) { + multiorder_check(200, i); + multiorder_check(0, i); + multiorder_check((1UL << i) + 1, i); + } + + for (i = 0; i < 15; i++) + multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i); + + multiorder_insert_bug(); + multiorder_tag_tests(); + multiorder_iteration(); + multiorder_tagged_iteration(); + multiorder_join(); + multiorder_split(); + multiorder_account(); + multiorder_iteration_race(); + + radix_tree_cpu_dead(0); +} + +int __weak main(void) +{ + radix_tree_init(); + multiorder_checks(); + return 0; +} |