diff options
Diffstat (limited to 'Documentation/admin-guide/mm/numa_memory_policy.rst')
-rw-r--r-- | Documentation/admin-guide/mm/numa_memory_policy.rst | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst new file mode 100644 index 000000000..d78c5b315 --- /dev/null +++ b/Documentation/admin-guide/mm/numa_memory_policy.rst @@ -0,0 +1,495 @@ +.. _numa_memory_policy: + +================== +NUMA Memory Policy +================== + +What is NUMA Memory Policy? +============================ + +In the Linux kernel, "memory policy" determines from which node the kernel will +allocate memory in a NUMA system or in an emulated NUMA system. Linux has +supported platforms with Non-Uniform Memory Access architectures since 2.4.?. +The current memory policy support was added to Linux 2.6 around May 2004. This +document attempts to describe the concepts and APIs of the 2.6 memory policy +support. + +Memory policies should not be confused with cpusets +(``Documentation/cgroup-v1/cpusets.txt``) +which is an administrative mechanism for restricting the nodes from which +memory may be allocated by a set of processes. Memory policies are a +programming interface that a NUMA-aware application can take advantage of. When +both cpusets and policies are applied to a task, the restrictions of the cpuset +takes priority. See :ref:`Memory Policies and cpusets <mem_pol_and_cpusets>` +below for more details. + +Memory Policy Concepts +====================== + +Scope of Memory Policies +------------------------ + +The Linux kernel supports _scopes_ of memory policy, described here from +most general to most specific: + +System Default Policy + this policy is "hard coded" into the kernel. It is the policy + that governs all page allocations that aren't controlled by + one of the more specific policy scopes discussed below. When + the system is "up and running", the system default policy will + use "local allocation" described below. However, during boot + up, the system default policy will be set to interleave + allocations across all nodes with "sufficient" memory, so as + not to overload the initial boot node with boot-time + allocations. + +Task/Process Policy + this is an optional, per-task policy. When defined for a + specific task, this policy controls all page allocations made + by or on behalf of the task that aren't controlled by a more + specific scope. If a task does not define a task policy, then + all page allocations that would have been controlled by the + task policy "fall back" to the System Default Policy. + + The task policy applies to the entire address space of a task. Thus, + it is inheritable, and indeed is inherited, across both fork() + [clone() w/o the CLONE_VM flag] and exec*(). This allows a parent task + to establish the task policy for a child task exec()'d from an + executable image that has no awareness of memory policy. See the + :ref:`Memory Policy APIs <memory_policy_apis>` section, + below, for an overview of the system call + that a task may use to set/change its task/process policy. + + In a multi-threaded task, task policies apply only to the thread + [Linux kernel task] that installs the policy and any threads + subsequently created by that thread. Any sibling threads existing + at the time a new task policy is installed retain their current + policy. + + A task policy applies only to pages allocated after the policy is + installed. Any pages already faulted in by the task when the task + changes its task policy remain where they were allocated based on + the policy at the time they were allocated. + +.. _vma_policy: + +VMA Policy + A "VMA" or "Virtual Memory Area" refers to a range of a task's + virtual address space. A task may define a specific policy for a range + of its virtual address space. See the + :ref:`Memory Policy APIs <memory_policy_apis>` section, + below, for an overview of the mbind() system call used to set a VMA + policy. + + A VMA policy will govern the allocation of pages that back + this region of the address space. Any regions of the task's + address space that don't have an explicit VMA policy will fall + back to the task policy, which may itself fall back to the + System Default Policy. + + VMA policies have a few complicating details: + + * VMA policy applies ONLY to anonymous pages. These include + pages allocated for anonymous segments, such as the task + stack and heap, and any regions of the address space + mmap()ed with the MAP_ANONYMOUS flag. If a VMA policy is + applied to a file mapping, it will be ignored if the mapping + used the MAP_SHARED flag. If the file mapping used the + MAP_PRIVATE flag, the VMA policy will only be applied when + an anonymous page is allocated on an attempt to write to the + mapping-- i.e., at Copy-On-Write. + + * VMA policies are shared between all tasks that share a + virtual address space--a.k.a. threads--independent of when + the policy is installed; and they are inherited across + fork(). However, because VMA policies refer to a specific + region of a task's address space, and because the address + space is discarded and recreated on exec*(), VMA policies + are NOT inheritable across exec(). Thus, only NUMA-aware + applications may use VMA policies. + + * A task may install a new VMA policy on a sub-range of a + previously mmap()ed region. When this happens, Linux splits + the existing virtual memory area into 2 or 3 VMAs, each with + it's own policy. + + * By default, VMA policy applies only to pages allocated after + the policy is installed. Any pages already faulted into the + VMA range remain where they were allocated based on the + policy at the time they were allocated. However, since + 2.6.16, Linux supports page migration via the mbind() system + call, so that page contents can be moved to match a newly + installed policy. + +Shared Policy + Conceptually, shared policies apply to "memory objects" mapped + shared into one or more tasks' distinct address spaces. An + application installs shared policies the same way as VMA + policies--using the mbind() system call specifying a range of + virtual addresses that map the shared object. However, unlike + VMA policies, which can be considered to be an attribute of a + range of a task's address space, shared policies apply + directly to the shared object. Thus, all tasks that attach to + the object share the policy, and all pages allocated for the + shared object, by any task, will obey the shared policy. + + As of 2.6.22, only shared memory segments, created by shmget() or + mmap(MAP_ANONYMOUS|MAP_SHARED), support shared policy. When shared + policy support was added to Linux, the associated data structures were + added to hugetlbfs shmem segments. At the time, hugetlbfs did not + support allocation at fault time--a.k.a lazy allocation--so hugetlbfs + shmem segments were never "hooked up" to the shared policy support. + Although hugetlbfs segments now support lazy allocation, their support + for shared policy has not been completed. + + As mentioned above in :ref:`VMA policies <vma_policy>` section, + allocations of page cache pages for regular files mmap()ed + with MAP_SHARED ignore any VMA policy installed on the virtual + address range backed by the shared file mapping. Rather, + shared page cache pages, including pages backing private + mappings that have not yet been written by the task, follow + task policy, if any, else System Default Policy. + + The shared policy infrastructure supports different policies on subset + ranges of the shared object. However, Linux still splits the VMA of + the task that installs the policy for each range of distinct policy. + Thus, different tasks that attach to a shared memory segment can have + different VMA configurations mapping that one shared object. This + can be seen by examining the /proc/<pid>/numa_maps of tasks sharing + a shared memory region, when one task has installed shared policy on + one or more ranges of the region. + +Components of Memory Policies +----------------------------- + +A NUMA memory policy consists of a "mode", optional mode flags, and +an optional set of nodes. The mode determines the behavior of the +policy, the optional mode flags determine the behavior of the mode, +and the optional set of nodes can be viewed as the arguments to the +policy behavior. + +Internally, memory policies are implemented by a reference counted +structure, struct mempolicy. Details of this structure will be +discussed in context, below, as required to explain the behavior. + +NUMA memory policy supports the following 4 behavioral modes: + +Default Mode--MPOL_DEFAULT + This mode is only used in the memory policy APIs. Internally, + MPOL_DEFAULT is converted to the NULL memory policy in all + policy scopes. Any existing non-default policy will simply be + removed when MPOL_DEFAULT is specified. As a result, + MPOL_DEFAULT means "fall back to the next most specific policy + scope." + + For example, a NULL or default task policy will fall back to the + system default policy. A NULL or default vma policy will fall + back to the task policy. + + When specified in one of the memory policy APIs, the Default mode + does not use the optional set of nodes. + + It is an error for the set of nodes specified for this policy to + be non-empty. + +MPOL_BIND + This mode specifies that memory must come from the set of + nodes specified by the policy. Memory will be allocated from + the node in the set with sufficient free memory that is + closest to the node where the allocation takes place. + +MPOL_PREFERRED + This mode specifies that the allocation should be attempted + from the single node specified in the policy. If that + allocation fails, the kernel will search other nodes, in order + of increasing distance from the preferred node based on + information provided by the platform firmware. + + Internally, the Preferred policy uses a single node--the + preferred_node member of struct mempolicy. When the internal + mode flag MPOL_F_LOCAL is set, the preferred_node is ignored + and the policy is interpreted as local allocation. "Local" + allocation policy can be viewed as a Preferred policy that + starts at the node containing the cpu where the allocation + takes place. + + It is possible for the user to specify that local allocation + is always preferred by passing an empty nodemask with this + mode. If an empty nodemask is passed, the policy cannot use + the MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES flags + described below. + +MPOL_INTERLEAVED + This mode specifies that page allocations be interleaved, on a + page granularity, across the nodes specified in the policy. + This mode also behaves slightly differently, based on the + context where it is used: + + For allocation of anonymous pages and shared memory pages, + Interleave mode indexes the set of nodes specified by the + policy using the page offset of the faulting address into the + segment [VMA] containing the address modulo the number of + nodes specified by the policy. It then attempts to allocate a + page, starting at the selected node, as if the node had been + specified by a Preferred policy or had been selected by a + local allocation. That is, allocation will follow the per + node zonelist. + + For allocation of page cache pages, Interleave mode indexes + the set of nodes specified by the policy using a node counter + maintained per task. This counter wraps around to the lowest + specified node after it reaches the highest specified node. + This will tend to spread the pages out over the nodes + specified by the policy based on the order in which they are + allocated, rather than based on any page offset into an + address range or file. During system boot up, the temporary + interleaved system default policy works in this mode. + +NUMA memory policy supports the following optional mode flags: + +MPOL_F_STATIC_NODES + This flag specifies that the nodemask passed by + the user should not be remapped if the task or VMA's set of allowed + nodes changes after the memory policy has been defined. + + Without this flag, any time a mempolicy is rebound because of a + change in the set of allowed nodes, the node (Preferred) or + nodemask (Bind, Interleave) is remapped to the new set of + allowed nodes. This may result in nodes being used that were + previously undesired. + + With this flag, if the user-specified nodes overlap with the + nodes allowed by the task's cpuset, then the memory policy is + applied to their intersection. If the two sets of nodes do not + overlap, the Default policy is used. + + For example, consider a task that is attached to a cpuset with + mems 1-3 that sets an Interleave policy over the same set. If + the cpuset's mems change to 3-5, the Interleave will now occur + over nodes 3, 4, and 5. With this flag, however, since only node + 3 is allowed from the user's nodemask, the "interleave" only + occurs over that node. If no nodes from the user's nodemask are + now allowed, the Default behavior is used. + + MPOL_F_STATIC_NODES cannot be combined with the + MPOL_F_RELATIVE_NODES flag. It also cannot be used for + MPOL_PREFERRED policies that were created with an empty nodemask + (local allocation). + +MPOL_F_RELATIVE_NODES + This flag specifies that the nodemask passed + by the user will be mapped relative to the set of the task or VMA's + set of allowed nodes. The kernel stores the user-passed nodemask, + and if the allowed nodes changes, then that original nodemask will + be remapped relative to the new set of allowed nodes. + + Without this flag (and without MPOL_F_STATIC_NODES), anytime a + mempolicy is rebound because of a change in the set of allowed + nodes, the node (Preferred) or nodemask (Bind, Interleave) is + remapped to the new set of allowed nodes. That remap may not + preserve the relative nature of the user's passed nodemask to its + set of allowed nodes upon successive rebinds: a nodemask of + 1,3,5 may be remapped to 7-9 and then to 1-3 if the set of + allowed nodes is restored to its original state. + + With this flag, the remap is done so that the node numbers from + the user's passed nodemask are relative to the set of allowed + nodes. In other words, if nodes 0, 2, and 4 are set in the user's + nodemask, the policy will be effected over the first (and in the + Bind or Interleave case, the third and fifth) nodes in the set of + allowed nodes. The nodemask passed by the user represents nodes + relative to task or VMA's set of allowed nodes. + + If the user's nodemask includes nodes that are outside the range + of the new set of allowed nodes (for example, node 5 is set in + the user's nodemask when the set of allowed nodes is only 0-3), + then the remap wraps around to the beginning of the nodemask and, + if not already set, sets the node in the mempolicy nodemask. + + For example, consider a task that is attached to a cpuset with + mems 2-5 that sets an Interleave policy over the same set with + MPOL_F_RELATIVE_NODES. If the cpuset's mems change to 3-7, the + interleave now occurs over nodes 3,5-7. If the cpuset's mems + then change to 0,2-3,5, then the interleave occurs over nodes + 0,2-3,5. + + Thanks to the consistent remapping, applications preparing + nodemasks to specify memory policies using this flag should + disregard their current, actual cpuset imposed memory placement + and prepare the nodemask as if they were always located on + memory nodes 0 to N-1, where N is the number of memory nodes the + policy is intended to manage. Let the kernel then remap to the + set of memory nodes allowed by the task's cpuset, as that may + change over time. + + MPOL_F_RELATIVE_NODES cannot be combined with the + MPOL_F_STATIC_NODES flag. It also cannot be used for + MPOL_PREFERRED policies that were created with an empty nodemask + (local allocation). + +Memory Policy Reference Counting +================================ + +To resolve use/free races, struct mempolicy contains an atomic reference +count field. Internal interfaces, mpol_get()/mpol_put() increment and +decrement this reference count, respectively. mpol_put() will only free +the structure back to the mempolicy kmem cache when the reference count +goes to zero. + +When a new memory policy is allocated, its reference count is initialized +to '1', representing the reference held by the task that is installing the +new policy. When a pointer to a memory policy structure is stored in another +structure, another reference is added, as the task's reference will be dropped +on completion of the policy installation. + +During run-time "usage" of the policy, we attempt to minimize atomic operations +on the reference count, as this can lead to cache lines bouncing between cpus +and NUMA nodes. "Usage" here means one of the following: + +1) querying of the policy, either by the task itself [using the get_mempolicy() + API discussed below] or by another task using the /proc/<pid>/numa_maps + interface. + +2) examination of the policy to determine the policy mode and associated node + or node lists, if any, for page allocation. This is considered a "hot + path". Note that for MPOL_BIND, the "usage" extends across the entire + allocation process, which may sleep during page reclaimation, because the + BIND policy nodemask is used, by reference, to filter ineligible nodes. + +We can avoid taking an extra reference during the usages listed above as +follows: + +1) we never need to get/free the system default policy as this is never + changed nor freed, once the system is up and running. + +2) for querying the policy, we do not need to take an extra reference on the + target task's task policy nor vma policies because we always acquire the + task's mm's mmap_sem for read during the query. The set_mempolicy() and + mbind() APIs [see below] always acquire the mmap_sem for write when + installing or replacing task or vma policies. Thus, there is no possibility + of a task or thread freeing a policy while another task or thread is + querying it. + +3) Page allocation usage of task or vma policy occurs in the fault path where + we hold them mmap_sem for read. Again, because replacing the task or vma + policy requires that the mmap_sem be held for write, the policy can't be + freed out from under us while we're using it for page allocation. + +4) Shared policies require special consideration. One task can replace a + shared memory policy while another task, with a distinct mmap_sem, is + querying or allocating a page based on the policy. To resolve this + potential race, the shared policy infrastructure adds an extra reference + to the shared policy during lookup while holding a spin lock on the shared + policy management structure. This requires that we drop this extra + reference when we're finished "using" the policy. We must drop the + extra reference on shared policies in the same query/allocation paths + used for non-shared policies. For this reason, shared policies are marked + as such, and the extra reference is dropped "conditionally"--i.e., only + for shared policies. + + Because of this extra reference counting, and because we must lookup + shared policies in a tree structure under spinlock, shared policies are + more expensive to use in the page allocation path. This is especially + true for shared policies on shared memory regions shared by tasks running + on different NUMA nodes. This extra overhead can be avoided by always + falling back to task or system default policy for shared memory regions, + or by prefaulting the entire shared memory region into memory and locking + it down. However, this might not be appropriate for all applications. + +.. _memory_policy_apis: + +Memory Policy APIs +================== + +Linux supports 3 system calls for controlling memory policy. These APIS +always affect only the calling task, the calling task's address space, or +some shared object mapped into the calling task's address space. + +.. note:: + the headers that define these APIs and the parameter data types for + user space applications reside in a package that is not part of the + Linux kernel. The kernel system call interfaces, with the 'sys\_' + prefix, are defined in <linux/syscalls.h>; the mode and flag + definitions are defined in <linux/mempolicy.h>. + +Set [Task] Memory Policy:: + + long set_mempolicy(int mode, const unsigned long *nmask, + unsigned long maxnode); + +Set's the calling task's "task/process memory policy" to mode +specified by the 'mode' argument and the set of nodes defined by +'nmask'. 'nmask' points to a bit mask of node ids containing at least +'maxnode' ids. Optional mode flags may be passed by combining the +'mode' argument with the flag (for example: MPOL_INTERLEAVE | +MPOL_F_STATIC_NODES). + +See the set_mempolicy(2) man page for more details + + +Get [Task] Memory Policy or Related Information:: + + long get_mempolicy(int *mode, + const unsigned long *nmask, unsigned long maxnode, + void *addr, int flags); + +Queries the "task/process memory policy" of the calling task, or the +policy or location of a specified virtual address, depending on the +'flags' argument. + +See the get_mempolicy(2) man page for more details + + +Install VMA/Shared Policy for a Range of Task's Address Space:: + + long mbind(void *start, unsigned long len, int mode, + const unsigned long *nmask, unsigned long maxnode, + unsigned flags); + +mbind() installs the policy specified by (mode, nmask, maxnodes) as a +VMA policy for the range of the calling task's address space specified +by the 'start' and 'len' arguments. Additional actions may be +requested via the 'flags' argument. + +See the mbind(2) man page for more details. + +Memory Policy Command Line Interface +==================================== + +Although not strictly part of the Linux implementation of memory policy, +a command line tool, numactl(8), exists that allows one to: + ++ set the task policy for a specified program via set_mempolicy(2), fork(2) and + exec(2) + ++ set the shared policy for a shared memory segment via mbind(2) + +The numactl(8) tool is packaged with the run-time version of the library +containing the memory policy system call wrappers. Some distributions +package the headers and compile-time libraries in a separate development +package. + +.. _mem_pol_and_cpusets: + +Memory Policies and cpusets +=========================== + +Memory policies work within cpusets as described above. For memory policies +that require a node or set of nodes, the nodes are restricted to the set of +nodes whose memories are allowed by the cpuset constraints. If the nodemask +specified for the policy contains nodes that are not allowed by the cpuset and +MPOL_F_RELATIVE_NODES is not used, the intersection of the set of nodes +specified for the policy and the set of nodes with memory is used. If the +result is the empty set, the policy is considered invalid and cannot be +installed. If MPOL_F_RELATIVE_NODES is used, the policy's nodes are mapped +onto and folded into the task's set of allowed nodes as previously described. + +The interaction of memory policies and cpusets can be problematic when tasks +in two cpusets share access to a memory region, such as shared memory segments +created by shmget() of mmap() with the MAP_ANONYMOUS and MAP_SHARED flags, and +any of the tasks install shared policy on the region, only nodes whose +memories are allowed in both cpusets may be used in the policies. Obtaining +this information requires "stepping outside" the memory policy APIs to use the +cpuset information and requires that one know in what cpusets other task might +be attaching to the shared region. Furthermore, if the cpusets' allowed +memory sets are disjoint, "local" allocation is the only valid policy. |