summaryrefslogtreecommitdiffstats
path: root/arch/ia64/mm/discontig.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ia64/mm/discontig.c')
-rw-r--r--arch/ia64/mm/discontig.c665
1 files changed, 665 insertions, 0 deletions
diff --git a/arch/ia64/mm/discontig.c b/arch/ia64/mm/discontig.c
new file mode 100644
index 000000000..db3104c9f
--- /dev/null
+++ b/arch/ia64/mm/discontig.c
@@ -0,0 +1,665 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (c) 2001 Intel Corp.
+ * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
+ * Copyright (c) 2002 NEC Corp.
+ * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
+ * Copyright (c) 2004 Silicon Graphics, Inc
+ * Russ Anderson <rja@sgi.com>
+ * Jesse Barnes <jbarnes@sgi.com>
+ * Jack Steiner <steiner@sgi.com>
+ */
+
+/*
+ * Platform initialization for Discontig Memory
+ */
+
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/nmi.h>
+#include <linux/swap.h>
+#include <linux/bootmem.h>
+#include <linux/memblock.h>
+#include <linux/acpi.h>
+#include <linux/efi.h>
+#include <linux/nodemask.h>
+#include <linux/slab.h>
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+#include <asm/meminit.h>
+#include <asm/numa.h>
+#include <asm/sections.h>
+
+/*
+ * Track per-node information needed to setup the boot memory allocator, the
+ * per-node areas, and the real VM.
+ */
+struct early_node_data {
+ struct ia64_node_data *node_data;
+ unsigned long pernode_addr;
+ unsigned long pernode_size;
+ unsigned long min_pfn;
+ unsigned long max_pfn;
+};
+
+static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
+static nodemask_t memory_less_mask __initdata;
+
+pg_data_t *pgdat_list[MAX_NUMNODES];
+
+/*
+ * To prevent cache aliasing effects, align per-node structures so that they
+ * start at addresses that are strided by node number.
+ */
+#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
+#define NODEDATA_ALIGN(addr, node) \
+ ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
+ (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
+
+/**
+ * build_node_maps - callback to setup mem_data structs for each node
+ * @start: physical start of range
+ * @len: length of range
+ * @node: node where this range resides
+ *
+ * Detect extents of each piece of memory that we wish to
+ * treat as a virtually contiguous block (i.e. each node). Each such block
+ * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
+ * if necessary. Any non-existent pages will simply be part of the virtual
+ * memmap.
+ */
+static int __init build_node_maps(unsigned long start, unsigned long len,
+ int node)
+{
+ unsigned long spfn, epfn, end = start + len;
+
+ epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
+ spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
+
+ if (!mem_data[node].min_pfn) {
+ mem_data[node].min_pfn = spfn;
+ mem_data[node].max_pfn = epfn;
+ } else {
+ mem_data[node].min_pfn = min(spfn, mem_data[node].min_pfn);
+ mem_data[node].max_pfn = max(epfn, mem_data[node].max_pfn);
+ }
+
+ return 0;
+}
+
+/**
+ * early_nr_cpus_node - return number of cpus on a given node
+ * @node: node to check
+ *
+ * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
+ * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
+ * called yet. Note that node 0 will also count all non-existent cpus.
+ */
+static int early_nr_cpus_node(int node)
+{
+ int cpu, n = 0;
+
+ for_each_possible_early_cpu(cpu)
+ if (node == node_cpuid[cpu].nid)
+ n++;
+
+ return n;
+}
+
+/**
+ * compute_pernodesize - compute size of pernode data
+ * @node: the node id.
+ */
+static unsigned long compute_pernodesize(int node)
+{
+ unsigned long pernodesize = 0, cpus;
+
+ cpus = early_nr_cpus_node(node);
+ pernodesize += PERCPU_PAGE_SIZE * cpus;
+ pernodesize += node * L1_CACHE_BYTES;
+ pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
+ pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
+ pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
+ pernodesize = PAGE_ALIGN(pernodesize);
+ return pernodesize;
+}
+
+/**
+ * per_cpu_node_setup - setup per-cpu areas on each node
+ * @cpu_data: per-cpu area on this node
+ * @node: node to setup
+ *
+ * Copy the static per-cpu data into the region we just set aside and then
+ * setup __per_cpu_offset for each CPU on this node. Return a pointer to
+ * the end of the area.
+ */
+static void *per_cpu_node_setup(void *cpu_data, int node)
+{
+#ifdef CONFIG_SMP
+ int cpu;
+
+ for_each_possible_early_cpu(cpu) {
+ void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
+
+ if (node != node_cpuid[cpu].nid)
+ continue;
+
+ memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
+ __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
+ __per_cpu_start;
+
+ /*
+ * percpu area for cpu0 is moved from the __init area
+ * which is setup by head.S and used till this point.
+ * Update ar.k3. This move is ensures that percpu
+ * area for cpu0 is on the correct node and its
+ * virtual address isn't insanely far from other
+ * percpu areas which is important for congruent
+ * percpu allocator.
+ */
+ if (cpu == 0)
+ ia64_set_kr(IA64_KR_PER_CPU_DATA,
+ (unsigned long)cpu_data -
+ (unsigned long)__per_cpu_start);
+
+ cpu_data += PERCPU_PAGE_SIZE;
+ }
+#endif
+ return cpu_data;
+}
+
+#ifdef CONFIG_SMP
+/**
+ * setup_per_cpu_areas - setup percpu areas
+ *
+ * Arch code has already allocated and initialized percpu areas. All
+ * this function has to do is to teach the determined layout to the
+ * dynamic percpu allocator, which happens to be more complex than
+ * creating whole new ones using helpers.
+ */
+void __init setup_per_cpu_areas(void)
+{
+ struct pcpu_alloc_info *ai;
+ struct pcpu_group_info *uninitialized_var(gi);
+ unsigned int *cpu_map;
+ void *base;
+ unsigned long base_offset;
+ unsigned int cpu;
+ ssize_t static_size, reserved_size, dyn_size;
+ int node, prev_node, unit, nr_units, rc;
+
+ ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
+ if (!ai)
+ panic("failed to allocate pcpu_alloc_info");
+ cpu_map = ai->groups[0].cpu_map;
+
+ /* determine base */
+ base = (void *)ULONG_MAX;
+ for_each_possible_cpu(cpu)
+ base = min(base,
+ (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
+ base_offset = (void *)__per_cpu_start - base;
+
+ /* build cpu_map, units are grouped by node */
+ unit = 0;
+ for_each_node(node)
+ for_each_possible_cpu(cpu)
+ if (node == node_cpuid[cpu].nid)
+ cpu_map[unit++] = cpu;
+ nr_units = unit;
+
+ /* set basic parameters */
+ static_size = __per_cpu_end - __per_cpu_start;
+ reserved_size = PERCPU_MODULE_RESERVE;
+ dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
+ if (dyn_size < 0)
+ panic("percpu area overflow static=%zd reserved=%zd\n",
+ static_size, reserved_size);
+
+ ai->static_size = static_size;
+ ai->reserved_size = reserved_size;
+ ai->dyn_size = dyn_size;
+ ai->unit_size = PERCPU_PAGE_SIZE;
+ ai->atom_size = PAGE_SIZE;
+ ai->alloc_size = PERCPU_PAGE_SIZE;
+
+ /*
+ * CPUs are put into groups according to node. Walk cpu_map
+ * and create new groups at node boundaries.
+ */
+ prev_node = -1;
+ ai->nr_groups = 0;
+ for (unit = 0; unit < nr_units; unit++) {
+ cpu = cpu_map[unit];
+ node = node_cpuid[cpu].nid;
+
+ if (node == prev_node) {
+ gi->nr_units++;
+ continue;
+ }
+ prev_node = node;
+
+ gi = &ai->groups[ai->nr_groups++];
+ gi->nr_units = 1;
+ gi->base_offset = __per_cpu_offset[cpu] + base_offset;
+ gi->cpu_map = &cpu_map[unit];
+ }
+
+ rc = pcpu_setup_first_chunk(ai, base);
+ if (rc)
+ panic("failed to setup percpu area (err=%d)", rc);
+
+ pcpu_free_alloc_info(ai);
+}
+#endif
+
+/**
+ * fill_pernode - initialize pernode data.
+ * @node: the node id.
+ * @pernode: physical address of pernode data
+ * @pernodesize: size of the pernode data
+ */
+static void __init fill_pernode(int node, unsigned long pernode,
+ unsigned long pernodesize)
+{
+ void *cpu_data;
+ int cpus = early_nr_cpus_node(node);
+
+ mem_data[node].pernode_addr = pernode;
+ mem_data[node].pernode_size = pernodesize;
+ memset(__va(pernode), 0, pernodesize);
+
+ cpu_data = (void *)pernode;
+ pernode += PERCPU_PAGE_SIZE * cpus;
+ pernode += node * L1_CACHE_BYTES;
+
+ pgdat_list[node] = __va(pernode);
+ pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
+
+ mem_data[node].node_data = __va(pernode);
+ pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
+ pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
+
+ cpu_data = per_cpu_node_setup(cpu_data, node);
+
+ return;
+}
+
+/**
+ * find_pernode_space - allocate memory for memory map and per-node structures
+ * @start: physical start of range
+ * @len: length of range
+ * @node: node where this range resides
+ *
+ * This routine reserves space for the per-cpu data struct, the list of
+ * pg_data_ts and the per-node data struct. Each node will have something like
+ * the following in the first chunk of addr. space large enough to hold it.
+ *
+ * ________________________
+ * | |
+ * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
+ * | PERCPU_PAGE_SIZE * | start and length big enough
+ * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
+ * |------------------------|
+ * | local pg_data_t * |
+ * |------------------------|
+ * | local ia64_node_data |
+ * |------------------------|
+ * | ??? |
+ * |________________________|
+ *
+ * Once this space has been set aside, the bootmem maps are initialized. We
+ * could probably move the allocation of the per-cpu and ia64_node_data space
+ * outside of this function and use alloc_bootmem_node(), but doing it here
+ * is straightforward and we get the alignments we want so...
+ */
+static int __init find_pernode_space(unsigned long start, unsigned long len,
+ int node)
+{
+ unsigned long spfn, epfn;
+ unsigned long pernodesize = 0, pernode;
+
+ spfn = start >> PAGE_SHIFT;
+ epfn = (start + len) >> PAGE_SHIFT;
+
+ /*
+ * Make sure this memory falls within this node's usable memory
+ * since we may have thrown some away in build_maps().
+ */
+ if (spfn < mem_data[node].min_pfn || epfn > mem_data[node].max_pfn)
+ return 0;
+
+ /* Don't setup this node's local space twice... */
+ if (mem_data[node].pernode_addr)
+ return 0;
+
+ /*
+ * Calculate total size needed, incl. what's necessary
+ * for good alignment and alias prevention.
+ */
+ pernodesize = compute_pernodesize(node);
+ pernode = NODEDATA_ALIGN(start, node);
+
+ /* Is this range big enough for what we want to store here? */
+ if (start + len > (pernode + pernodesize))
+ fill_pernode(node, pernode, pernodesize);
+
+ return 0;
+}
+
+/**
+ * reserve_pernode_space - reserve memory for per-node space
+ *
+ * Reserve the space used by the bootmem maps & per-node space in the boot
+ * allocator so that when we actually create the real mem maps we don't
+ * use their memory.
+ */
+static void __init reserve_pernode_space(void)
+{
+ unsigned long base, size;
+ int node;
+
+ for_each_online_node(node) {
+ if (node_isset(node, memory_less_mask))
+ continue;
+
+ /* Now the per-node space */
+ size = mem_data[node].pernode_size;
+ base = __pa(mem_data[node].pernode_addr);
+ memblock_reserve(base, size);
+ }
+}
+
+static void scatter_node_data(void)
+{
+ pg_data_t **dst;
+ int node;
+
+ /*
+ * for_each_online_node() can't be used at here.
+ * node_online_map is not set for hot-added nodes at this time,
+ * because we are halfway through initialization of the new node's
+ * structures. If for_each_online_node() is used, a new node's
+ * pg_data_ptrs will be not initialized. Instead of using it,
+ * pgdat_list[] is checked.
+ */
+ for_each_node(node) {
+ if (pgdat_list[node]) {
+ dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
+ memcpy(dst, pgdat_list, sizeof(pgdat_list));
+ }
+ }
+}
+
+/**
+ * initialize_pernode_data - fixup per-cpu & per-node pointers
+ *
+ * Each node's per-node area has a copy of the global pg_data_t list, so
+ * we copy that to each node here, as well as setting the per-cpu pointer
+ * to the local node data structure. The active_cpus field of the per-node
+ * structure gets setup by the platform_cpu_init() function later.
+ */
+static void __init initialize_pernode_data(void)
+{
+ int cpu, node;
+
+ scatter_node_data();
+
+#ifdef CONFIG_SMP
+ /* Set the node_data pointer for each per-cpu struct */
+ for_each_possible_early_cpu(cpu) {
+ node = node_cpuid[cpu].nid;
+ per_cpu(ia64_cpu_info, cpu).node_data =
+ mem_data[node].node_data;
+ }
+#else
+ {
+ struct cpuinfo_ia64 *cpu0_cpu_info;
+ cpu = 0;
+ node = node_cpuid[cpu].nid;
+ cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
+ ((char *)&ia64_cpu_info - __per_cpu_start));
+ cpu0_cpu_info->node_data = mem_data[node].node_data;
+ }
+#endif /* CONFIG_SMP */
+}
+
+/**
+ * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
+ * node but fall back to any other node when __alloc_bootmem_node fails
+ * for best.
+ * @nid: node id
+ * @pernodesize: size of this node's pernode data
+ */
+static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
+{
+ void *ptr = NULL;
+ u8 best = 0xff;
+ int bestnode = -1, node, anynode = 0;
+
+ for_each_online_node(node) {
+ if (node_isset(node, memory_less_mask))
+ continue;
+ else if (node_distance(nid, node) < best) {
+ best = node_distance(nid, node);
+ bestnode = node;
+ }
+ anynode = node;
+ }
+
+ if (bestnode == -1)
+ bestnode = anynode;
+
+ ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
+ PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
+
+ return ptr;
+}
+
+/**
+ * memory_less_nodes - allocate and initialize CPU only nodes pernode
+ * information.
+ */
+static void __init memory_less_nodes(void)
+{
+ unsigned long pernodesize;
+ void *pernode;
+ int node;
+
+ for_each_node_mask(node, memory_less_mask) {
+ pernodesize = compute_pernodesize(node);
+ pernode = memory_less_node_alloc(node, pernodesize);
+ fill_pernode(node, __pa(pernode), pernodesize);
+ }
+
+ return;
+}
+
+/**
+ * find_memory - walk the EFI memory map and setup the bootmem allocator
+ *
+ * Called early in boot to setup the bootmem allocator, and to
+ * allocate the per-cpu and per-node structures.
+ */
+void __init find_memory(void)
+{
+ int node;
+
+ reserve_memory();
+ efi_memmap_walk(filter_memory, register_active_ranges);
+
+ if (num_online_nodes() == 0) {
+ printk(KERN_ERR "node info missing!\n");
+ node_set_online(0);
+ }
+
+ nodes_or(memory_less_mask, memory_less_mask, node_online_map);
+ min_low_pfn = -1;
+ max_low_pfn = 0;
+
+ /* These actually end up getting called by call_pernode_memory() */
+ efi_memmap_walk(filter_rsvd_memory, build_node_maps);
+ efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
+ efi_memmap_walk(find_max_min_low_pfn, NULL);
+
+ for_each_online_node(node)
+ if (mem_data[node].min_pfn)
+ node_clear(node, memory_less_mask);
+
+ reserve_pernode_space();
+ memory_less_nodes();
+ initialize_pernode_data();
+
+ max_pfn = max_low_pfn;
+
+ find_initrd();
+}
+
+#ifdef CONFIG_SMP
+/**
+ * per_cpu_init - setup per-cpu variables
+ *
+ * find_pernode_space() does most of this already, we just need to set
+ * local_per_cpu_offset
+ */
+void *per_cpu_init(void)
+{
+ int cpu;
+ static int first_time = 1;
+
+ if (first_time) {
+ first_time = 0;
+ for_each_possible_early_cpu(cpu)
+ per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
+ }
+
+ return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
+}
+#endif /* CONFIG_SMP */
+
+/**
+ * call_pernode_memory - use SRAT to call callback functions with node info
+ * @start: physical start of range
+ * @len: length of range
+ * @arg: function to call for each range
+ *
+ * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
+ * out to which node a block of memory belongs. Ignore memory that we cannot
+ * identify, and split blocks that run across multiple nodes.
+ *
+ * Take this opportunity to round the start address up and the end address
+ * down to page boundaries.
+ */
+void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
+{
+ unsigned long rs, re, end = start + len;
+ void (*func)(unsigned long, unsigned long, int);
+ int i;
+
+ start = PAGE_ALIGN(start);
+ end &= PAGE_MASK;
+ if (start >= end)
+ return;
+
+ func = arg;
+
+ if (!num_node_memblks) {
+ /* No SRAT table, so assume one node (node 0) */
+ if (start < end)
+ (*func)(start, end - start, 0);
+ return;
+ }
+
+ for (i = 0; i < num_node_memblks; i++) {
+ rs = max(start, node_memblk[i].start_paddr);
+ re = min(end, node_memblk[i].start_paddr +
+ node_memblk[i].size);
+
+ if (rs < re)
+ (*func)(rs, re - rs, node_memblk[i].nid);
+
+ if (re == end)
+ break;
+ }
+}
+
+/**
+ * paging_init - setup page tables
+ *
+ * paging_init() sets up the page tables for each node of the system and frees
+ * the bootmem allocator memory for general use.
+ */
+void __init paging_init(void)
+{
+ unsigned long max_dma;
+ unsigned long pfn_offset = 0;
+ unsigned long max_pfn = 0;
+ int node;
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+
+ max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
+
+ sparse_memory_present_with_active_regions(MAX_NUMNODES);
+ sparse_init();
+
+#ifdef CONFIG_VIRTUAL_MEM_MAP
+ VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
+ sizeof(struct page));
+ vmem_map = (struct page *) VMALLOC_END;
+ efi_memmap_walk(create_mem_map_page_table, NULL);
+ printk("Virtual mem_map starts at 0x%p\n", vmem_map);
+#endif
+
+ for_each_online_node(node) {
+ pfn_offset = mem_data[node].min_pfn;
+
+#ifdef CONFIG_VIRTUAL_MEM_MAP
+ NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
+#endif
+ if (mem_data[node].max_pfn > max_pfn)
+ max_pfn = mem_data[node].max_pfn;
+ }
+
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+#ifdef CONFIG_ZONE_DMA32
+ max_zone_pfns[ZONE_DMA32] = max_dma;
+#endif
+ max_zone_pfns[ZONE_NORMAL] = max_pfn;
+ free_area_init_nodes(max_zone_pfns);
+
+ zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+pg_data_t *arch_alloc_nodedata(int nid)
+{
+ unsigned long size = compute_pernodesize(nid);
+
+ return kzalloc(size, GFP_KERNEL);
+}
+
+void arch_free_nodedata(pg_data_t *pgdat)
+{
+ kfree(pgdat);
+}
+
+void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
+{
+ pgdat_list[update_node] = update_pgdat;
+ scatter_node_data();
+}
+#endif
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
+ struct vmem_altmap *altmap)
+{
+ return vmemmap_populate_basepages(start, end, node);
+}
+
+void vmemmap_free(unsigned long start, unsigned long end,
+ struct vmem_altmap *altmap)
+{
+}
+#endif