summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/kprobes/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/kprobes/core.c')
-rw-r--r--arch/x86/kernel/kprobes/core.c1159
1 files changed, 1159 insertions, 0 deletions
diff --git a/arch/x86/kernel/kprobes/core.c b/arch/x86/kernel/kprobes/core.c
new file mode 100644
index 000000000..3334e1400
--- /dev/null
+++ b/arch/x86/kernel/kprobes/core.c
@@ -0,0 +1,1159 @@
+/*
+ * Kernel Probes (KProbes)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright (C) IBM Corporation, 2002, 2004
+ *
+ * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
+ * Probes initial implementation ( includes contributions from
+ * Rusty Russell).
+ * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
+ * interface to access function arguments.
+ * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
+ * <prasanna@in.ibm.com> adapted for x86_64 from i386.
+ * 2005-Mar Roland McGrath <roland@redhat.com>
+ * Fixed to handle %rip-relative addressing mode correctly.
+ * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
+ * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
+ * <prasanna@in.ibm.com> added function-return probes.
+ * 2005-May Rusty Lynch <rusty.lynch@intel.com>
+ * Added function return probes functionality
+ * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
+ * kprobe-booster and kretprobe-booster for i386.
+ * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
+ * and kretprobe-booster for x86-64
+ * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
+ * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
+ * unified x86 kprobes code.
+ */
+#include <linux/kprobes.h>
+#include <linux/ptrace.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/hardirq.h>
+#include <linux/preempt.h>
+#include <linux/sched/debug.h>
+#include <linux/extable.h>
+#include <linux/kdebug.h>
+#include <linux/kallsyms.h>
+#include <linux/ftrace.h>
+#include <linux/frame.h>
+#include <linux/kasan.h>
+#include <linux/moduleloader.h>
+
+#include <asm/text-patching.h>
+#include <asm/cacheflush.h>
+#include <asm/desc.h>
+#include <asm/pgtable.h>
+#include <linux/uaccess.h>
+#include <asm/alternative.h>
+#include <asm/insn.h>
+#include <asm/debugreg.h>
+#include <asm/set_memory.h>
+
+#include "common.h"
+
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
+
+#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
+
+#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
+ (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
+ (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
+ (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
+ (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
+ << (row % 32))
+ /*
+ * Undefined/reserved opcodes, conditional jump, Opcode Extension
+ * Groups, and some special opcodes can not boost.
+ * This is non-const and volatile to keep gcc from statically
+ * optimizing it out, as variable_test_bit makes gcc think only
+ * *(unsigned long*) is used.
+ */
+static volatile u32 twobyte_is_boostable[256 / 32] = {
+ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
+ /* ---------------------------------------------- */
+ W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
+ W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
+ W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
+ W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
+ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
+ W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
+ W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
+ W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
+ W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
+ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
+ W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
+ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
+ W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
+ W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
+ W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
+ W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
+ /* ----------------------------------------------- */
+ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
+};
+#undef W
+
+struct kretprobe_blackpoint kretprobe_blacklist[] = {
+ {"__switch_to", }, /* This function switches only current task, but
+ doesn't switch kernel stack.*/
+ {NULL, NULL} /* Terminator */
+};
+
+const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
+
+static nokprobe_inline void
+__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
+{
+ struct __arch_relative_insn {
+ u8 op;
+ s32 raddr;
+ } __packed *insn;
+
+ insn = (struct __arch_relative_insn *)dest;
+ insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
+ insn->op = op;
+}
+
+/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
+void synthesize_reljump(void *dest, void *from, void *to)
+{
+ __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
+}
+NOKPROBE_SYMBOL(synthesize_reljump);
+
+/* Insert a call instruction at address 'from', which calls address 'to'.*/
+void synthesize_relcall(void *dest, void *from, void *to)
+{
+ __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
+}
+NOKPROBE_SYMBOL(synthesize_relcall);
+
+/*
+ * Skip the prefixes of the instruction.
+ */
+static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
+{
+ insn_attr_t attr;
+
+ attr = inat_get_opcode_attribute((insn_byte_t)*insn);
+ while (inat_is_legacy_prefix(attr)) {
+ insn++;
+ attr = inat_get_opcode_attribute((insn_byte_t)*insn);
+ }
+#ifdef CONFIG_X86_64
+ if (inat_is_rex_prefix(attr))
+ insn++;
+#endif
+ return insn;
+}
+NOKPROBE_SYMBOL(skip_prefixes);
+
+/*
+ * Returns non-zero if INSN is boostable.
+ * RIP relative instructions are adjusted at copying time in 64 bits mode
+ */
+int can_boost(struct insn *insn, void *addr)
+{
+ kprobe_opcode_t opcode;
+ insn_byte_t prefix;
+ int i;
+
+ if (search_exception_tables((unsigned long)addr))
+ return 0; /* Page fault may occur on this address. */
+
+ /* 2nd-byte opcode */
+ if (insn->opcode.nbytes == 2)
+ return test_bit(insn->opcode.bytes[1],
+ (unsigned long *)twobyte_is_boostable);
+
+ if (insn->opcode.nbytes != 1)
+ return 0;
+
+ for_each_insn_prefix(insn, i, prefix) {
+ insn_attr_t attr;
+
+ attr = inat_get_opcode_attribute(prefix);
+ /* Can't boost Address-size override prefix and CS override prefix */
+ if (prefix == 0x2e || inat_is_address_size_prefix(attr))
+ return 0;
+ }
+
+ opcode = insn->opcode.bytes[0];
+
+ switch (opcode & 0xf0) {
+ case 0x60:
+ /* can't boost "bound" */
+ return (opcode != 0x62);
+ case 0x70:
+ return 0; /* can't boost conditional jump */
+ case 0x90:
+ return opcode != 0x9a; /* can't boost call far */
+ case 0xc0:
+ /* can't boost software-interruptions */
+ return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
+ case 0xd0:
+ /* can boost AA* and XLAT */
+ return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
+ case 0xe0:
+ /* can boost in/out and absolute jmps */
+ return ((opcode & 0x04) || opcode == 0xea);
+ case 0xf0:
+ /* clear and set flags are boostable */
+ return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
+ default:
+ /* call is not boostable */
+ return opcode != 0x9a;
+ }
+}
+
+static unsigned long
+__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
+{
+ struct kprobe *kp;
+ unsigned long faddr;
+
+ kp = get_kprobe((void *)addr);
+ faddr = ftrace_location(addr);
+ /*
+ * Addresses inside the ftrace location are refused by
+ * arch_check_ftrace_location(). Something went terribly wrong
+ * if such an address is checked here.
+ */
+ if (WARN_ON(faddr && faddr != addr))
+ return 0UL;
+ /*
+ * Use the current code if it is not modified by Kprobe
+ * and it cannot be modified by ftrace.
+ */
+ if (!kp && !faddr)
+ return addr;
+
+ /*
+ * Basically, kp->ainsn.insn has an original instruction.
+ * However, RIP-relative instruction can not do single-stepping
+ * at different place, __copy_instruction() tweaks the displacement of
+ * that instruction. In that case, we can't recover the instruction
+ * from the kp->ainsn.insn.
+ *
+ * On the other hand, in case on normal Kprobe, kp->opcode has a copy
+ * of the first byte of the probed instruction, which is overwritten
+ * by int3. And the instruction at kp->addr is not modified by kprobes
+ * except for the first byte, we can recover the original instruction
+ * from it and kp->opcode.
+ *
+ * In case of Kprobes using ftrace, we do not have a copy of
+ * the original instruction. In fact, the ftrace location might
+ * be modified at anytime and even could be in an inconsistent state.
+ * Fortunately, we know that the original code is the ideal 5-byte
+ * long NOP.
+ */
+ if (probe_kernel_read(buf, (void *)addr,
+ MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
+ return 0UL;
+
+ if (faddr)
+ memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
+ else
+ buf[0] = kp->opcode;
+ return (unsigned long)buf;
+}
+
+/*
+ * Recover the probed instruction at addr for further analysis.
+ * Caller must lock kprobes by kprobe_mutex, or disable preemption
+ * for preventing to release referencing kprobes.
+ * Returns zero if the instruction can not get recovered (or access failed).
+ */
+unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
+{
+ unsigned long __addr;
+
+ __addr = __recover_optprobed_insn(buf, addr);
+ if (__addr != addr)
+ return __addr;
+
+ return __recover_probed_insn(buf, addr);
+}
+
+/* Check if paddr is at an instruction boundary */
+static int can_probe(unsigned long paddr)
+{
+ unsigned long addr, __addr, offset = 0;
+ struct insn insn;
+ kprobe_opcode_t buf[MAX_INSN_SIZE];
+
+ if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
+ return 0;
+
+ /* Decode instructions */
+ addr = paddr - offset;
+ while (addr < paddr) {
+ /*
+ * Check if the instruction has been modified by another
+ * kprobe, in which case we replace the breakpoint by the
+ * original instruction in our buffer.
+ * Also, jump optimization will change the breakpoint to
+ * relative-jump. Since the relative-jump itself is
+ * normally used, we just go through if there is no kprobe.
+ */
+ __addr = recover_probed_instruction(buf, addr);
+ if (!__addr)
+ return 0;
+ kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
+ insn_get_length(&insn);
+
+ /*
+ * Another debugging subsystem might insert this breakpoint.
+ * In that case, we can't recover it.
+ */
+ if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
+ return 0;
+ addr += insn.length;
+ }
+
+ return (addr == paddr);
+}
+
+/*
+ * Returns non-zero if opcode modifies the interrupt flag.
+ */
+static int is_IF_modifier(kprobe_opcode_t *insn)
+{
+ /* Skip prefixes */
+ insn = skip_prefixes(insn);
+
+ switch (*insn) {
+ case 0xfa: /* cli */
+ case 0xfb: /* sti */
+ case 0xcf: /* iret/iretd */
+ case 0x9d: /* popf/popfd */
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Copy an instruction with recovering modified instruction by kprobes
+ * and adjust the displacement if the instruction uses the %rip-relative
+ * addressing mode. Note that since @real will be the final place of copied
+ * instruction, displacement must be adjust by @real, not @dest.
+ * This returns the length of copied instruction, or 0 if it has an error.
+ */
+int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
+{
+ kprobe_opcode_t buf[MAX_INSN_SIZE];
+ unsigned long recovered_insn =
+ recover_probed_instruction(buf, (unsigned long)src);
+
+ if (!recovered_insn || !insn)
+ return 0;
+
+ /* This can access kernel text if given address is not recovered */
+ if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
+ return 0;
+
+ kernel_insn_init(insn, dest, MAX_INSN_SIZE);
+ insn_get_length(insn);
+
+ /* Another subsystem puts a breakpoint, failed to recover */
+ if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
+ return 0;
+
+ /* We should not singlestep on the exception masking instructions */
+ if (insn_masking_exception(insn))
+ return 0;
+
+#ifdef CONFIG_X86_64
+ /* Only x86_64 has RIP relative instructions */
+ if (insn_rip_relative(insn)) {
+ s64 newdisp;
+ u8 *disp;
+ /*
+ * The copied instruction uses the %rip-relative addressing
+ * mode. Adjust the displacement for the difference between
+ * the original location of this instruction and the location
+ * of the copy that will actually be run. The tricky bit here
+ * is making sure that the sign extension happens correctly in
+ * this calculation, since we need a signed 32-bit result to
+ * be sign-extended to 64 bits when it's added to the %rip
+ * value and yield the same 64-bit result that the sign-
+ * extension of the original signed 32-bit displacement would
+ * have given.
+ */
+ newdisp = (u8 *) src + (s64) insn->displacement.value
+ - (u8 *) real;
+ if ((s64) (s32) newdisp != newdisp) {
+ pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
+ return 0;
+ }
+ disp = (u8 *) dest + insn_offset_displacement(insn);
+ *(s32 *) disp = (s32) newdisp;
+ }
+#endif
+ return insn->length;
+}
+
+/* Prepare reljump right after instruction to boost */
+static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
+ struct insn *insn)
+{
+ int len = insn->length;
+
+ if (can_boost(insn, p->addr) &&
+ MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
+ /*
+ * These instructions can be executed directly if it
+ * jumps back to correct address.
+ */
+ synthesize_reljump(buf + len, p->ainsn.insn + len,
+ p->addr + insn->length);
+ len += RELATIVEJUMP_SIZE;
+ p->ainsn.boostable = true;
+ } else {
+ p->ainsn.boostable = false;
+ }
+
+ return len;
+}
+
+/* Make page to RO mode when allocate it */
+void *alloc_insn_page(void)
+{
+ void *page;
+
+ page = module_alloc(PAGE_SIZE);
+ if (!page)
+ return NULL;
+
+ /*
+ * First make the page read-only, and only then make it executable to
+ * prevent it from being W+X in between.
+ */
+ set_memory_ro((unsigned long)page, 1);
+
+ /*
+ * TODO: Once additional kernel code protection mechanisms are set, ensure
+ * that the page was not maliciously altered and it is still zeroed.
+ */
+ set_memory_x((unsigned long)page, 1);
+
+ return page;
+}
+
+/* Recover page to RW mode before releasing it */
+void free_insn_page(void *page)
+{
+ /*
+ * First make the page non-executable, and only then make it writable to
+ * prevent it from being W+X in between.
+ */
+ set_memory_nx((unsigned long)page, 1);
+ set_memory_rw((unsigned long)page, 1);
+ module_memfree(page);
+}
+
+static int arch_copy_kprobe(struct kprobe *p)
+{
+ struct insn insn;
+ kprobe_opcode_t buf[MAX_INSN_SIZE];
+ int len;
+
+ /* Copy an instruction with recovering if other optprobe modifies it.*/
+ len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
+ if (!len)
+ return -EINVAL;
+
+ /*
+ * __copy_instruction can modify the displacement of the instruction,
+ * but it doesn't affect boostable check.
+ */
+ len = prepare_boost(buf, p, &insn);
+
+ /* Check whether the instruction modifies Interrupt Flag or not */
+ p->ainsn.if_modifier = is_IF_modifier(buf);
+
+ /* Also, displacement change doesn't affect the first byte */
+ p->opcode = buf[0];
+
+ /* OK, write back the instruction(s) into ROX insn buffer */
+ text_poke(p->ainsn.insn, buf, len);
+
+ return 0;
+}
+
+int arch_prepare_kprobe(struct kprobe *p)
+{
+ int ret;
+
+ if (alternatives_text_reserved(p->addr, p->addr))
+ return -EINVAL;
+
+ if (!can_probe((unsigned long)p->addr))
+ return -EILSEQ;
+ /* insn: must be on special executable page on x86. */
+ p->ainsn.insn = get_insn_slot();
+ if (!p->ainsn.insn)
+ return -ENOMEM;
+
+ ret = arch_copy_kprobe(p);
+ if (ret) {
+ free_insn_slot(p->ainsn.insn, 0);
+ p->ainsn.insn = NULL;
+ }
+
+ return ret;
+}
+
+void arch_arm_kprobe(struct kprobe *p)
+{
+ text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
+}
+
+void arch_disarm_kprobe(struct kprobe *p)
+{
+ text_poke(p->addr, &p->opcode, 1);
+}
+
+void arch_remove_kprobe(struct kprobe *p)
+{
+ if (p->ainsn.insn) {
+ free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
+ p->ainsn.insn = NULL;
+ }
+}
+
+static nokprobe_inline void
+save_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+ kcb->prev_kprobe.kp = kprobe_running();
+ kcb->prev_kprobe.status = kcb->kprobe_status;
+ kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
+ kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
+}
+
+static nokprobe_inline void
+restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+{
+ __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
+ kcb->kprobe_status = kcb->prev_kprobe.status;
+ kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
+ kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
+}
+
+static nokprobe_inline void
+set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ __this_cpu_write(current_kprobe, p);
+ kcb->kprobe_saved_flags = kcb->kprobe_old_flags
+ = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
+ if (p->ainsn.if_modifier)
+ kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
+}
+
+static nokprobe_inline void clear_btf(void)
+{
+ if (test_thread_flag(TIF_BLOCKSTEP)) {
+ unsigned long debugctl = get_debugctlmsr();
+
+ debugctl &= ~DEBUGCTLMSR_BTF;
+ update_debugctlmsr(debugctl);
+ }
+}
+
+static nokprobe_inline void restore_btf(void)
+{
+ if (test_thread_flag(TIF_BLOCKSTEP)) {
+ unsigned long debugctl = get_debugctlmsr();
+
+ debugctl |= DEBUGCTLMSR_BTF;
+ update_debugctlmsr(debugctl);
+ }
+}
+
+void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ unsigned long *sara = stack_addr(regs);
+
+ ri->ret_addr = (kprobe_opcode_t *) *sara;
+ ri->fp = sara;
+
+ /* Replace the return addr with trampoline addr */
+ *sara = (unsigned long) &kretprobe_trampoline;
+}
+NOKPROBE_SYMBOL(arch_prepare_kretprobe);
+
+static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb, int reenter)
+{
+ if (setup_detour_execution(p, regs, reenter))
+ return;
+
+#if !defined(CONFIG_PREEMPT)
+ if (p->ainsn.boostable && !p->post_handler) {
+ /* Boost up -- we can execute copied instructions directly */
+ if (!reenter)
+ reset_current_kprobe();
+ /*
+ * Reentering boosted probe doesn't reset current_kprobe,
+ * nor set current_kprobe, because it doesn't use single
+ * stepping.
+ */
+ regs->ip = (unsigned long)p->ainsn.insn;
+ return;
+ }
+#endif
+ if (reenter) {
+ save_previous_kprobe(kcb);
+ set_current_kprobe(p, regs, kcb);
+ kcb->kprobe_status = KPROBE_REENTER;
+ } else
+ kcb->kprobe_status = KPROBE_HIT_SS;
+ /* Prepare real single stepping */
+ clear_btf();
+ regs->flags |= X86_EFLAGS_TF;
+ regs->flags &= ~X86_EFLAGS_IF;
+ /* single step inline if the instruction is an int3 */
+ if (p->opcode == BREAKPOINT_INSTRUCTION)
+ regs->ip = (unsigned long)p->addr;
+ else
+ regs->ip = (unsigned long)p->ainsn.insn;
+}
+NOKPROBE_SYMBOL(setup_singlestep);
+
+/*
+ * We have reentered the kprobe_handler(), since another probe was hit while
+ * within the handler. We save the original kprobes variables and just single
+ * step on the instruction of the new probe without calling any user handlers.
+ */
+static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ switch (kcb->kprobe_status) {
+ case KPROBE_HIT_SSDONE:
+ case KPROBE_HIT_ACTIVE:
+ case KPROBE_HIT_SS:
+ kprobes_inc_nmissed_count(p);
+ setup_singlestep(p, regs, kcb, 1);
+ break;
+ case KPROBE_REENTER:
+ /* A probe has been hit in the codepath leading up to, or just
+ * after, single-stepping of a probed instruction. This entire
+ * codepath should strictly reside in .kprobes.text section.
+ * Raise a BUG or we'll continue in an endless reentering loop
+ * and eventually a stack overflow.
+ */
+ pr_err("Unrecoverable kprobe detected.\n");
+ dump_kprobe(p);
+ BUG();
+ default:
+ /* impossible cases */
+ WARN_ON(1);
+ return 0;
+ }
+
+ return 1;
+}
+NOKPROBE_SYMBOL(reenter_kprobe);
+
+/*
+ * Interrupts are disabled on entry as trap3 is an interrupt gate and they
+ * remain disabled throughout this function.
+ */
+int kprobe_int3_handler(struct pt_regs *regs)
+{
+ kprobe_opcode_t *addr;
+ struct kprobe *p;
+ struct kprobe_ctlblk *kcb;
+
+ if (user_mode(regs))
+ return 0;
+
+ addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
+ /*
+ * We don't want to be preempted for the entire duration of kprobe
+ * processing. Since int3 and debug trap disables irqs and we clear
+ * IF while singlestepping, it must be no preemptible.
+ */
+
+ kcb = get_kprobe_ctlblk();
+ p = get_kprobe(addr);
+
+ if (p) {
+ if (kprobe_running()) {
+ if (reenter_kprobe(p, regs, kcb))
+ return 1;
+ } else {
+ set_current_kprobe(p, regs, kcb);
+ kcb->kprobe_status = KPROBE_HIT_ACTIVE;
+
+ /*
+ * If we have no pre-handler or it returned 0, we
+ * continue with normal processing. If we have a
+ * pre-handler and it returned non-zero, that means
+ * user handler setup registers to exit to another
+ * instruction, we must skip the single stepping.
+ */
+ if (!p->pre_handler || !p->pre_handler(p, regs))
+ setup_singlestep(p, regs, kcb, 0);
+ else
+ reset_current_kprobe();
+ return 1;
+ }
+ } else if (*addr != BREAKPOINT_INSTRUCTION) {
+ /*
+ * The breakpoint instruction was removed right
+ * after we hit it. Another cpu has removed
+ * either a probepoint or a debugger breakpoint
+ * at this address. In either case, no further
+ * handling of this interrupt is appropriate.
+ * Back up over the (now missing) int3 and run
+ * the original instruction.
+ */
+ regs->ip = (unsigned long)addr;
+ return 1;
+ } /* else: not a kprobe fault; let the kernel handle it */
+
+ return 0;
+}
+NOKPROBE_SYMBOL(kprobe_int3_handler);
+
+/*
+ * When a retprobed function returns, this code saves registers and
+ * calls trampoline_handler() runs, which calls the kretprobe's handler.
+ */
+asm(
+ ".global kretprobe_trampoline\n"
+ ".type kretprobe_trampoline, @function\n"
+ "kretprobe_trampoline:\n"
+#ifdef CONFIG_X86_64
+ /* We don't bother saving the ss register */
+ " pushq %rsp\n"
+ " pushfq\n"
+ SAVE_REGS_STRING
+ " movq %rsp, %rdi\n"
+ " call trampoline_handler\n"
+ /* Replace saved sp with true return address. */
+ " movq %rax, 152(%rsp)\n"
+ RESTORE_REGS_STRING
+ " popfq\n"
+#else
+ " pushf\n"
+ SAVE_REGS_STRING
+ " movl %esp, %eax\n"
+ " call trampoline_handler\n"
+ /* Move flags to cs */
+ " movl 56(%esp), %edx\n"
+ " movl %edx, 52(%esp)\n"
+ /* Replace saved flags with true return address. */
+ " movl %eax, 56(%esp)\n"
+ RESTORE_REGS_STRING
+ " popf\n"
+#endif
+ " ret\n"
+ ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
+);
+NOKPROBE_SYMBOL(kretprobe_trampoline);
+STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
+
+/*
+ * Called from kretprobe_trampoline
+ */
+__visible __used void *trampoline_handler(struct pt_regs *regs)
+{
+ struct kretprobe_instance *ri = NULL;
+ struct hlist_head *head, empty_rp;
+ struct hlist_node *tmp;
+ unsigned long flags, orig_ret_address = 0;
+ unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
+ kprobe_opcode_t *correct_ret_addr = NULL;
+ void *frame_pointer;
+ bool skipped = false;
+
+ /*
+ * Set a dummy kprobe for avoiding kretprobe recursion.
+ * Since kretprobe never run in kprobe handler, kprobe must not
+ * be running at this point.
+ */
+ kprobe_busy_begin();
+
+ INIT_HLIST_HEAD(&empty_rp);
+ kretprobe_hash_lock(current, &head, &flags);
+ /* fixup registers */
+#ifdef CONFIG_X86_64
+ regs->cs = __KERNEL_CS;
+ /* On x86-64, we use pt_regs->sp for return address holder. */
+ frame_pointer = &regs->sp;
+#else
+ regs->cs = __KERNEL_CS | get_kernel_rpl();
+ regs->gs = 0;
+ /* On x86-32, we use pt_regs->flags for return address holder. */
+ frame_pointer = &regs->flags;
+#endif
+ regs->ip = trampoline_address;
+ regs->orig_ax = ~0UL;
+
+ /*
+ * It is possible to have multiple instances associated with a given
+ * task either because multiple functions in the call path have
+ * return probes installed on them, and/or more than one
+ * return probe was registered for a target function.
+ *
+ * We can handle this because:
+ * - instances are always pushed into the head of the list
+ * - when multiple return probes are registered for the same
+ * function, the (chronologically) first instance's ret_addr
+ * will be the real return address, and all the rest will
+ * point to kretprobe_trampoline.
+ */
+ hlist_for_each_entry(ri, head, hlist) {
+ if (ri->task != current)
+ /* another task is sharing our hash bucket */
+ continue;
+ /*
+ * Return probes must be pushed on this hash list correct
+ * order (same as return order) so that it can be poped
+ * correctly. However, if we find it is pushed it incorrect
+ * order, this means we find a function which should not be
+ * probed, because the wrong order entry is pushed on the
+ * path of processing other kretprobe itself.
+ */
+ if (ri->fp != frame_pointer) {
+ if (!skipped)
+ pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
+ skipped = true;
+ continue;
+ }
+
+ orig_ret_address = (unsigned long)ri->ret_addr;
+ if (skipped)
+ pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
+ ri->rp->kp.addr);
+
+ if (orig_ret_address != trampoline_address)
+ /*
+ * This is the real return address. Any other
+ * instances associated with this task are for
+ * other calls deeper on the call stack
+ */
+ break;
+ }
+
+ kretprobe_assert(ri, orig_ret_address, trampoline_address);
+
+ correct_ret_addr = ri->ret_addr;
+ hlist_for_each_entry_safe(ri, tmp, head, hlist) {
+ if (ri->task != current)
+ /* another task is sharing our hash bucket */
+ continue;
+ if (ri->fp != frame_pointer)
+ continue;
+
+ orig_ret_address = (unsigned long)ri->ret_addr;
+ if (ri->rp && ri->rp->handler) {
+ __this_cpu_write(current_kprobe, &ri->rp->kp);
+ ri->ret_addr = correct_ret_addr;
+ ri->rp->handler(ri, regs);
+ __this_cpu_write(current_kprobe, &kprobe_busy);
+ }
+
+ recycle_rp_inst(ri, &empty_rp);
+
+ if (orig_ret_address != trampoline_address)
+ /*
+ * This is the real return address. Any other
+ * instances associated with this task are for
+ * other calls deeper on the call stack
+ */
+ break;
+ }
+
+ kretprobe_hash_unlock(current, &flags);
+
+ kprobe_busy_end();
+
+ hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
+ hlist_del(&ri->hlist);
+ kfree(ri);
+ }
+ return (void *)orig_ret_address;
+}
+NOKPROBE_SYMBOL(trampoline_handler);
+
+/*
+ * Called after single-stepping. p->addr is the address of the
+ * instruction whose first byte has been replaced by the "int 3"
+ * instruction. To avoid the SMP problems that can occur when we
+ * temporarily put back the original opcode to single-step, we
+ * single-stepped a copy of the instruction. The address of this
+ * copy is p->ainsn.insn.
+ *
+ * This function prepares to return from the post-single-step
+ * interrupt. We have to fix up the stack as follows:
+ *
+ * 0) Except in the case of absolute or indirect jump or call instructions,
+ * the new ip is relative to the copied instruction. We need to make
+ * it relative to the original instruction.
+ *
+ * 1) If the single-stepped instruction was pushfl, then the TF and IF
+ * flags are set in the just-pushed flags, and may need to be cleared.
+ *
+ * 2) If the single-stepped instruction was a call, the return address
+ * that is atop the stack is the address following the copied instruction.
+ * We need to make it the address following the original instruction.
+ *
+ * If this is the first time we've single-stepped the instruction at
+ * this probepoint, and the instruction is boostable, boost it: add a
+ * jump instruction after the copied instruction, that jumps to the next
+ * instruction after the probepoint.
+ */
+static void resume_execution(struct kprobe *p, struct pt_regs *regs,
+ struct kprobe_ctlblk *kcb)
+{
+ unsigned long *tos = stack_addr(regs);
+ unsigned long copy_ip = (unsigned long)p->ainsn.insn;
+ unsigned long orig_ip = (unsigned long)p->addr;
+ kprobe_opcode_t *insn = p->ainsn.insn;
+
+ /* Skip prefixes */
+ insn = skip_prefixes(insn);
+
+ regs->flags &= ~X86_EFLAGS_TF;
+ switch (*insn) {
+ case 0x9c: /* pushfl */
+ *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
+ *tos |= kcb->kprobe_old_flags;
+ break;
+ case 0xc2: /* iret/ret/lret */
+ case 0xc3:
+ case 0xca:
+ case 0xcb:
+ case 0xcf:
+ case 0xea: /* jmp absolute -- ip is correct */
+ /* ip is already adjusted, no more changes required */
+ p->ainsn.boostable = true;
+ goto no_change;
+ case 0xe8: /* call relative - Fix return addr */
+ *tos = orig_ip + (*tos - copy_ip);
+ break;
+#ifdef CONFIG_X86_32
+ case 0x9a: /* call absolute -- same as call absolute, indirect */
+ *tos = orig_ip + (*tos - copy_ip);
+ goto no_change;
+#endif
+ case 0xff:
+ if ((insn[1] & 0x30) == 0x10) {
+ /*
+ * call absolute, indirect
+ * Fix return addr; ip is correct.
+ * But this is not boostable
+ */
+ *tos = orig_ip + (*tos - copy_ip);
+ goto no_change;
+ } else if (((insn[1] & 0x31) == 0x20) ||
+ ((insn[1] & 0x31) == 0x21)) {
+ /*
+ * jmp near and far, absolute indirect
+ * ip is correct. And this is boostable
+ */
+ p->ainsn.boostable = true;
+ goto no_change;
+ }
+ default:
+ break;
+ }
+
+ regs->ip += orig_ip - copy_ip;
+
+no_change:
+ restore_btf();
+}
+NOKPROBE_SYMBOL(resume_execution);
+
+/*
+ * Interrupts are disabled on entry as trap1 is an interrupt gate and they
+ * remain disabled throughout this function.
+ */
+int kprobe_debug_handler(struct pt_regs *regs)
+{
+ struct kprobe *cur = kprobe_running();
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+ if (!cur)
+ return 0;
+
+ resume_execution(cur, regs, kcb);
+ regs->flags |= kcb->kprobe_saved_flags;
+
+ if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
+ cur->post_handler(cur, regs, 0);
+ }
+
+ /* Restore back the original saved kprobes variables and continue. */
+ if (kcb->kprobe_status == KPROBE_REENTER) {
+ restore_previous_kprobe(kcb);
+ goto out;
+ }
+ reset_current_kprobe();
+out:
+ /*
+ * if somebody else is singlestepping across a probe point, flags
+ * will have TF set, in which case, continue the remaining processing
+ * of do_debug, as if this is not a probe hit.
+ */
+ if (regs->flags & X86_EFLAGS_TF)
+ return 0;
+
+ return 1;
+}
+NOKPROBE_SYMBOL(kprobe_debug_handler);
+
+int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+{
+ struct kprobe *cur = kprobe_running();
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
+
+ if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
+ /* This must happen on single-stepping */
+ WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
+ kcb->kprobe_status != KPROBE_REENTER);
+ /*
+ * We are here because the instruction being single
+ * stepped caused a page fault. We reset the current
+ * kprobe and the ip points back to the probe address
+ * and allow the page fault handler to continue as a
+ * normal page fault.
+ */
+ regs->ip = (unsigned long)cur->addr;
+ /*
+ * Trap flag (TF) has been set here because this fault
+ * happened where the single stepping will be done.
+ * So clear it by resetting the current kprobe:
+ */
+ regs->flags &= ~X86_EFLAGS_TF;
+ /*
+ * Since the single step (trap) has been cancelled,
+ * we need to restore BTF here.
+ */
+ restore_btf();
+
+ /*
+ * If the TF flag was set before the kprobe hit,
+ * don't touch it:
+ */
+ regs->flags |= kcb->kprobe_old_flags;
+
+ if (kcb->kprobe_status == KPROBE_REENTER)
+ restore_previous_kprobe(kcb);
+ else
+ reset_current_kprobe();
+ } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
+ kcb->kprobe_status == KPROBE_HIT_SSDONE) {
+ /*
+ * We increment the nmissed count for accounting,
+ * we can also use npre/npostfault count for accounting
+ * these specific fault cases.
+ */
+ kprobes_inc_nmissed_count(cur);
+
+ /*
+ * We come here because instructions in the pre/post
+ * handler caused the page_fault, this could happen
+ * if handler tries to access user space by
+ * copy_from_user(), get_user() etc. Let the
+ * user-specified handler try to fix it first.
+ */
+ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
+ return 1;
+
+ /*
+ * In case the user-specified fault handler returned
+ * zero, try to fix up.
+ */
+ if (fixup_exception(regs, trapnr))
+ return 1;
+
+ /*
+ * fixup routine could not handle it,
+ * Let do_page_fault() fix it.
+ */
+ }
+
+ return 0;
+}
+NOKPROBE_SYMBOL(kprobe_fault_handler);
+
+/*
+ * Wrapper routine for handling exceptions.
+ */
+int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
+ void *data)
+{
+ struct die_args *args = data;
+ int ret = NOTIFY_DONE;
+
+ if (args->regs && user_mode(args->regs))
+ return ret;
+
+ if (val == DIE_GPF) {
+ /*
+ * To be potentially processing a kprobe fault and to
+ * trust the result from kprobe_running(), we have
+ * be non-preemptible.
+ */
+ if (!preemptible() && kprobe_running() &&
+ kprobe_fault_handler(args->regs, args->trapnr))
+ ret = NOTIFY_STOP;
+ }
+ return ret;
+}
+NOKPROBE_SYMBOL(kprobe_exceptions_notify);
+
+bool arch_within_kprobe_blacklist(unsigned long addr)
+{
+ bool is_in_entry_trampoline_section = false;
+
+#ifdef CONFIG_X86_64
+ is_in_entry_trampoline_section =
+ (addr >= (unsigned long)__entry_trampoline_start &&
+ addr < (unsigned long)__entry_trampoline_end);
+#endif
+ return (addr >= (unsigned long)__kprobes_text_start &&
+ addr < (unsigned long)__kprobes_text_end) ||
+ (addr >= (unsigned long)__entry_text_start &&
+ addr < (unsigned long)__entry_text_end) ||
+ is_in_entry_trampoline_section;
+}
+
+int __init arch_populate_kprobe_blacklist(void)
+{
+ return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
+ (unsigned long)__entry_text_end);
+}
+
+int __init arch_init_kprobes(void)
+{
+ return 0;
+}
+
+int arch_trampoline_kprobe(struct kprobe *p)
+{
+ return 0;
+}