summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/i915_gem_execbuffer.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/i915_gem_execbuffer.c')
-rw-r--r--drivers/gpu/drm/i915/i915_gem_execbuffer.c2683
1 files changed, 2683 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/i915_gem_execbuffer.c b/drivers/gpu/drm/i915/i915_gem_execbuffer.c
new file mode 100644
index 000000000..8b5b147cd
--- /dev/null
+++ b/drivers/gpu/drm/i915/i915_gem_execbuffer.c
@@ -0,0 +1,2683 @@
+/*
+ * Copyright © 2008,2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ * Eric Anholt <eric@anholt.net>
+ * Chris Wilson <chris@chris-wilson.co.uk>
+ *
+ */
+
+#include <linux/dma_remapping.h>
+#include <linux/reservation.h>
+#include <linux/sync_file.h>
+#include <linux/uaccess.h>
+
+#include <drm/drmP.h>
+#include <drm/drm_syncobj.h>
+#include <drm/i915_drm.h>
+
+#include "i915_drv.h"
+#include "i915_gem_clflush.h"
+#include "i915_trace.h"
+#include "intel_drv.h"
+#include "intel_frontbuffer.h"
+
+enum {
+ FORCE_CPU_RELOC = 1,
+ FORCE_GTT_RELOC,
+ FORCE_GPU_RELOC,
+#define DBG_FORCE_RELOC 0 /* choose one of the above! */
+};
+
+#define __EXEC_OBJECT_HAS_REF BIT(31)
+#define __EXEC_OBJECT_HAS_PIN BIT(30)
+#define __EXEC_OBJECT_HAS_FENCE BIT(29)
+#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
+#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
+#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
+#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
+
+#define __EXEC_HAS_RELOC BIT(31)
+#define __EXEC_VALIDATED BIT(30)
+#define __EXEC_INTERNAL_FLAGS (~0u << 30)
+#define UPDATE PIN_OFFSET_FIXED
+
+#define BATCH_OFFSET_BIAS (256*1024)
+
+#define __I915_EXEC_ILLEGAL_FLAGS \
+ (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
+
+/* Catch emission of unexpected errors for CI! */
+#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
+#undef EINVAL
+#define EINVAL ({ \
+ DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
+ 22; \
+})
+#endif
+
+/**
+ * DOC: User command execution
+ *
+ * Userspace submits commands to be executed on the GPU as an instruction
+ * stream within a GEM object we call a batchbuffer. This instructions may
+ * refer to other GEM objects containing auxiliary state such as kernels,
+ * samplers, render targets and even secondary batchbuffers. Userspace does
+ * not know where in the GPU memory these objects reside and so before the
+ * batchbuffer is passed to the GPU for execution, those addresses in the
+ * batchbuffer and auxiliary objects are updated. This is known as relocation,
+ * or patching. To try and avoid having to relocate each object on the next
+ * execution, userspace is told the location of those objects in this pass,
+ * but this remains just a hint as the kernel may choose a new location for
+ * any object in the future.
+ *
+ * At the level of talking to the hardware, submitting a batchbuffer for the
+ * GPU to execute is to add content to a buffer from which the HW
+ * command streamer is reading.
+ *
+ * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
+ * Execlists, this command is not placed on the same buffer as the
+ * remaining items.
+ *
+ * 2. Add a command to invalidate caches to the buffer.
+ *
+ * 3. Add a batchbuffer start command to the buffer; the start command is
+ * essentially a token together with the GPU address of the batchbuffer
+ * to be executed.
+ *
+ * 4. Add a pipeline flush to the buffer.
+ *
+ * 5. Add a memory write command to the buffer to record when the GPU
+ * is done executing the batchbuffer. The memory write writes the
+ * global sequence number of the request, ``i915_request::global_seqno``;
+ * the i915 driver uses the current value in the register to determine
+ * if the GPU has completed the batchbuffer.
+ *
+ * 6. Add a user interrupt command to the buffer. This command instructs
+ * the GPU to issue an interrupt when the command, pipeline flush and
+ * memory write are completed.
+ *
+ * 7. Inform the hardware of the additional commands added to the buffer
+ * (by updating the tail pointer).
+ *
+ * Processing an execbuf ioctl is conceptually split up into a few phases.
+ *
+ * 1. Validation - Ensure all the pointers, handles and flags are valid.
+ * 2. Reservation - Assign GPU address space for every object
+ * 3. Relocation - Update any addresses to point to the final locations
+ * 4. Serialisation - Order the request with respect to its dependencies
+ * 5. Construction - Construct a request to execute the batchbuffer
+ * 6. Submission (at some point in the future execution)
+ *
+ * Reserving resources for the execbuf is the most complicated phase. We
+ * neither want to have to migrate the object in the address space, nor do
+ * we want to have to update any relocations pointing to this object. Ideally,
+ * we want to leave the object where it is and for all the existing relocations
+ * to match. If the object is given a new address, or if userspace thinks the
+ * object is elsewhere, we have to parse all the relocation entries and update
+ * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
+ * all the target addresses in all of its objects match the value in the
+ * relocation entries and that they all match the presumed offsets given by the
+ * list of execbuffer objects. Using this knowledge, we know that if we haven't
+ * moved any buffers, all the relocation entries are valid and we can skip
+ * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
+ * hang.) The requirement for using I915_EXEC_NO_RELOC are:
+ *
+ * The addresses written in the objects must match the corresponding
+ * reloc.presumed_offset which in turn must match the corresponding
+ * execobject.offset.
+ *
+ * Any render targets written to in the batch must be flagged with
+ * EXEC_OBJECT_WRITE.
+ *
+ * To avoid stalling, execobject.offset should match the current
+ * address of that object within the active context.
+ *
+ * The reservation is done is multiple phases. First we try and keep any
+ * object already bound in its current location - so as long as meets the
+ * constraints imposed by the new execbuffer. Any object left unbound after the
+ * first pass is then fitted into any available idle space. If an object does
+ * not fit, all objects are removed from the reservation and the process rerun
+ * after sorting the objects into a priority order (more difficult to fit
+ * objects are tried first). Failing that, the entire VM is cleared and we try
+ * to fit the execbuf once last time before concluding that it simply will not
+ * fit.
+ *
+ * A small complication to all of this is that we allow userspace not only to
+ * specify an alignment and a size for the object in the address space, but
+ * we also allow userspace to specify the exact offset. This objects are
+ * simpler to place (the location is known a priori) all we have to do is make
+ * sure the space is available.
+ *
+ * Once all the objects are in place, patching up the buried pointers to point
+ * to the final locations is a fairly simple job of walking over the relocation
+ * entry arrays, looking up the right address and rewriting the value into
+ * the object. Simple! ... The relocation entries are stored in user memory
+ * and so to access them we have to copy them into a local buffer. That copy
+ * has to avoid taking any pagefaults as they may lead back to a GEM object
+ * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
+ * the relocation into multiple passes. First we try to do everything within an
+ * atomic context (avoid the pagefaults) which requires that we never wait. If
+ * we detect that we may wait, or if we need to fault, then we have to fallback
+ * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
+ * bells yet?) Dropping the mutex means that we lose all the state we have
+ * built up so far for the execbuf and we must reset any global data. However,
+ * we do leave the objects pinned in their final locations - which is a
+ * potential issue for concurrent execbufs. Once we have left the mutex, we can
+ * allocate and copy all the relocation entries into a large array at our
+ * leisure, reacquire the mutex, reclaim all the objects and other state and
+ * then proceed to update any incorrect addresses with the objects.
+ *
+ * As we process the relocation entries, we maintain a record of whether the
+ * object is being written to. Using NORELOC, we expect userspace to provide
+ * this information instead. We also check whether we can skip the relocation
+ * by comparing the expected value inside the relocation entry with the target's
+ * final address. If they differ, we have to map the current object and rewrite
+ * the 4 or 8 byte pointer within.
+ *
+ * Serialising an execbuf is quite simple according to the rules of the GEM
+ * ABI. Execution within each context is ordered by the order of submission.
+ * Writes to any GEM object are in order of submission and are exclusive. Reads
+ * from a GEM object are unordered with respect to other reads, but ordered by
+ * writes. A write submitted after a read cannot occur before the read, and
+ * similarly any read submitted after a write cannot occur before the write.
+ * Writes are ordered between engines such that only one write occurs at any
+ * time (completing any reads beforehand) - using semaphores where available
+ * and CPU serialisation otherwise. Other GEM access obey the same rules, any
+ * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
+ * reads before starting, and any read (either using set-domain or pread) must
+ * flush all GPU writes before starting. (Note we only employ a barrier before,
+ * we currently rely on userspace not concurrently starting a new execution
+ * whilst reading or writing to an object. This may be an advantage or not
+ * depending on how much you trust userspace not to shoot themselves in the
+ * foot.) Serialisation may just result in the request being inserted into
+ * a DAG awaiting its turn, but most simple is to wait on the CPU until
+ * all dependencies are resolved.
+ *
+ * After all of that, is just a matter of closing the request and handing it to
+ * the hardware (well, leaving it in a queue to be executed). However, we also
+ * offer the ability for batchbuffers to be run with elevated privileges so
+ * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
+ * Before any batch is given extra privileges we first must check that it
+ * contains no nefarious instructions, we check that each instruction is from
+ * our whitelist and all registers are also from an allowed list. We first
+ * copy the user's batchbuffer to a shadow (so that the user doesn't have
+ * access to it, either by the CPU or GPU as we scan it) and then parse each
+ * instruction. If everything is ok, we set a flag telling the hardware to run
+ * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
+ */
+
+struct i915_execbuffer {
+ struct drm_i915_private *i915; /** i915 backpointer */
+ struct drm_file *file; /** per-file lookup tables and limits */
+ struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
+ struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
+ struct i915_vma **vma;
+ unsigned int *flags;
+
+ struct intel_engine_cs *engine; /** engine to queue the request to */
+ struct i915_gem_context *ctx; /** context for building the request */
+ struct i915_address_space *vm; /** GTT and vma for the request */
+
+ struct i915_request *request; /** our request to build */
+ struct i915_vma *batch; /** identity of the batch obj/vma */
+
+ /** actual size of execobj[] as we may extend it for the cmdparser */
+ unsigned int buffer_count;
+
+ /** list of vma not yet bound during reservation phase */
+ struct list_head unbound;
+
+ /** list of vma that have execobj.relocation_count */
+ struct list_head relocs;
+
+ /**
+ * Track the most recently used object for relocations, as we
+ * frequently have to perform multiple relocations within the same
+ * obj/page
+ */
+ struct reloc_cache {
+ struct drm_mm_node node; /** temporary GTT binding */
+ unsigned long vaddr; /** Current kmap address */
+ unsigned long page; /** Currently mapped page index */
+ unsigned int gen; /** Cached value of INTEL_GEN */
+ bool use_64bit_reloc : 1;
+ bool has_llc : 1;
+ bool has_fence : 1;
+ bool needs_unfenced : 1;
+
+ struct i915_request *rq;
+ u32 *rq_cmd;
+ unsigned int rq_size;
+ } reloc_cache;
+
+ u64 invalid_flags; /** Set of execobj.flags that are invalid */
+ u32 context_flags; /** Set of execobj.flags to insert from the ctx */
+
+ u32 batch_start_offset; /** Location within object of batch */
+ u32 batch_len; /** Length of batch within object */
+ u32 batch_flags; /** Flags composed for emit_bb_start() */
+
+ /**
+ * Indicate either the size of the hastable used to resolve
+ * relocation handles, or if negative that we are using a direct
+ * index into the execobj[].
+ */
+ int lut_size;
+ struct hlist_head *buckets; /** ht for relocation handles */
+};
+
+#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
+
+/*
+ * Used to convert any address to canonical form.
+ * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
+ * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
+ * addresses to be in a canonical form:
+ * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
+ * canonical form [63:48] == [47]."
+ */
+#define GEN8_HIGH_ADDRESS_BIT 47
+static inline u64 gen8_canonical_addr(u64 address)
+{
+ return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
+}
+
+static inline u64 gen8_noncanonical_addr(u64 address)
+{
+ return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
+}
+
+static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
+{
+ return intel_engine_requires_cmd_parser(eb->engine) ||
+ (intel_engine_using_cmd_parser(eb->engine) &&
+ eb->args->batch_len);
+}
+
+static int eb_create(struct i915_execbuffer *eb)
+{
+ if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
+ unsigned int size = 1 + ilog2(eb->buffer_count);
+
+ /*
+ * Without a 1:1 association between relocation handles and
+ * the execobject[] index, we instead create a hashtable.
+ * We size it dynamically based on available memory, starting
+ * first with 1:1 assocative hash and scaling back until
+ * the allocation succeeds.
+ *
+ * Later on we use a positive lut_size to indicate we are
+ * using this hashtable, and a negative value to indicate a
+ * direct lookup.
+ */
+ do {
+ gfp_t flags;
+
+ /* While we can still reduce the allocation size, don't
+ * raise a warning and allow the allocation to fail.
+ * On the last pass though, we want to try as hard
+ * as possible to perform the allocation and warn
+ * if it fails.
+ */
+ flags = GFP_KERNEL;
+ if (size > 1)
+ flags |= __GFP_NORETRY | __GFP_NOWARN;
+
+ eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
+ flags);
+ if (eb->buckets)
+ break;
+ } while (--size);
+
+ if (unlikely(!size))
+ return -ENOMEM;
+
+ eb->lut_size = size;
+ } else {
+ eb->lut_size = -eb->buffer_count;
+ }
+
+ return 0;
+}
+
+static bool
+eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
+ const struct i915_vma *vma,
+ unsigned int flags)
+{
+ if (vma->node.size < entry->pad_to_size)
+ return true;
+
+ if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
+ return true;
+
+ if (flags & EXEC_OBJECT_PINNED &&
+ vma->node.start != entry->offset)
+ return true;
+
+ if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
+ vma->node.start < BATCH_OFFSET_BIAS)
+ return true;
+
+ if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
+ (vma->node.start + vma->node.size + 4095) >> 32)
+ return true;
+
+ if (flags & __EXEC_OBJECT_NEEDS_MAP &&
+ !i915_vma_is_map_and_fenceable(vma))
+ return true;
+
+ return false;
+}
+
+static inline bool
+eb_pin_vma(struct i915_execbuffer *eb,
+ const struct drm_i915_gem_exec_object2 *entry,
+ struct i915_vma *vma)
+{
+ unsigned int exec_flags = *vma->exec_flags;
+ u64 pin_flags;
+
+ if (vma->node.size)
+ pin_flags = vma->node.start;
+ else
+ pin_flags = entry->offset & PIN_OFFSET_MASK;
+
+ pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
+ if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
+ pin_flags |= PIN_GLOBAL;
+
+ if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
+ return false;
+
+ if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
+ if (unlikely(i915_vma_pin_fence(vma))) {
+ i915_vma_unpin(vma);
+ return false;
+ }
+
+ if (vma->fence)
+ exec_flags |= __EXEC_OBJECT_HAS_FENCE;
+ }
+
+ *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
+ return !eb_vma_misplaced(entry, vma, exec_flags);
+}
+
+static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
+{
+ GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
+
+ if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
+ __i915_vma_unpin_fence(vma);
+
+ __i915_vma_unpin(vma);
+}
+
+static inline void
+eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
+{
+ if (!(*flags & __EXEC_OBJECT_HAS_PIN))
+ return;
+
+ __eb_unreserve_vma(vma, *flags);
+ *flags &= ~__EXEC_OBJECT_RESERVED;
+}
+
+static int
+eb_validate_vma(struct i915_execbuffer *eb,
+ struct drm_i915_gem_exec_object2 *entry,
+ struct i915_vma *vma)
+{
+ if (unlikely(entry->flags & eb->invalid_flags))
+ return -EINVAL;
+
+ if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
+ return -EINVAL;
+
+ /*
+ * Offset can be used as input (EXEC_OBJECT_PINNED), reject
+ * any non-page-aligned or non-canonical addresses.
+ */
+ if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
+ entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
+ return -EINVAL;
+
+ /* pad_to_size was once a reserved field, so sanitize it */
+ if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
+ if (unlikely(offset_in_page(entry->pad_to_size)))
+ return -EINVAL;
+ } else {
+ entry->pad_to_size = 0;
+ }
+
+ if (unlikely(vma->exec_flags)) {
+ DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
+ entry->handle, (int)(entry - eb->exec));
+ return -EINVAL;
+ }
+
+ /*
+ * From drm_mm perspective address space is continuous,
+ * so from this point we're always using non-canonical
+ * form internally.
+ */
+ entry->offset = gen8_noncanonical_addr(entry->offset);
+
+ if (!eb->reloc_cache.has_fence) {
+ entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
+ } else {
+ if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
+ eb->reloc_cache.needs_unfenced) &&
+ i915_gem_object_is_tiled(vma->obj))
+ entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
+ }
+
+ if (!(entry->flags & EXEC_OBJECT_PINNED))
+ entry->flags |= eb->context_flags;
+
+ return 0;
+}
+
+static int
+eb_add_vma(struct i915_execbuffer *eb,
+ unsigned int i, unsigned batch_idx,
+ struct i915_vma *vma)
+{
+ struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
+ int err;
+
+ GEM_BUG_ON(i915_vma_is_closed(vma));
+
+ if (!(eb->args->flags & __EXEC_VALIDATED)) {
+ err = eb_validate_vma(eb, entry, vma);
+ if (unlikely(err))
+ return err;
+ }
+
+ if (eb->lut_size > 0) {
+ vma->exec_handle = entry->handle;
+ hlist_add_head(&vma->exec_node,
+ &eb->buckets[hash_32(entry->handle,
+ eb->lut_size)]);
+ }
+
+ if (entry->relocation_count)
+ list_add_tail(&vma->reloc_link, &eb->relocs);
+
+ /*
+ * Stash a pointer from the vma to execobj, so we can query its flags,
+ * size, alignment etc as provided by the user. Also we stash a pointer
+ * to the vma inside the execobj so that we can use a direct lookup
+ * to find the right target VMA when doing relocations.
+ */
+ eb->vma[i] = vma;
+ eb->flags[i] = entry->flags;
+ vma->exec_flags = &eb->flags[i];
+
+ /*
+ * SNA is doing fancy tricks with compressing batch buffers, which leads
+ * to negative relocation deltas. Usually that works out ok since the
+ * relocate address is still positive, except when the batch is placed
+ * very low in the GTT. Ensure this doesn't happen.
+ *
+ * Note that actual hangs have only been observed on gen7, but for
+ * paranoia do it everywhere.
+ */
+ if (i == batch_idx) {
+ if (entry->relocation_count &&
+ !(eb->flags[i] & EXEC_OBJECT_PINNED))
+ eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
+ if (eb->reloc_cache.has_fence)
+ eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
+
+ eb->batch = vma;
+ }
+
+ err = 0;
+ if (eb_pin_vma(eb, entry, vma)) {
+ if (entry->offset != vma->node.start) {
+ entry->offset = vma->node.start | UPDATE;
+ eb->args->flags |= __EXEC_HAS_RELOC;
+ }
+ } else {
+ eb_unreserve_vma(vma, vma->exec_flags);
+
+ list_add_tail(&vma->exec_link, &eb->unbound);
+ if (drm_mm_node_allocated(&vma->node))
+ err = i915_vma_unbind(vma);
+ if (unlikely(err))
+ vma->exec_flags = NULL;
+ }
+ return err;
+}
+
+static inline int use_cpu_reloc(const struct reloc_cache *cache,
+ const struct drm_i915_gem_object *obj)
+{
+ if (!i915_gem_object_has_struct_page(obj))
+ return false;
+
+ if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
+ return true;
+
+ if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
+ return false;
+
+ return (cache->has_llc ||
+ obj->cache_dirty ||
+ obj->cache_level != I915_CACHE_NONE);
+}
+
+static int eb_reserve_vma(const struct i915_execbuffer *eb,
+ struct i915_vma *vma)
+{
+ struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
+ unsigned int exec_flags = *vma->exec_flags;
+ u64 pin_flags;
+ int err;
+
+ pin_flags = PIN_USER | PIN_NONBLOCK;
+ if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
+ pin_flags |= PIN_GLOBAL;
+
+ /*
+ * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
+ * limit address to the first 4GBs for unflagged objects.
+ */
+ if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
+ pin_flags |= PIN_ZONE_4G;
+
+ if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
+ pin_flags |= PIN_MAPPABLE;
+
+ if (exec_flags & EXEC_OBJECT_PINNED) {
+ pin_flags |= entry->offset | PIN_OFFSET_FIXED;
+ pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
+ } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
+ pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
+ }
+
+ err = i915_vma_pin(vma,
+ entry->pad_to_size, entry->alignment,
+ pin_flags);
+ if (err)
+ return err;
+
+ if (entry->offset != vma->node.start) {
+ entry->offset = vma->node.start | UPDATE;
+ eb->args->flags |= __EXEC_HAS_RELOC;
+ }
+
+ if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
+ err = i915_vma_pin_fence(vma);
+ if (unlikely(err)) {
+ i915_vma_unpin(vma);
+ return err;
+ }
+
+ if (vma->fence)
+ exec_flags |= __EXEC_OBJECT_HAS_FENCE;
+ }
+
+ *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
+ GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
+
+ return 0;
+}
+
+static int eb_reserve(struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ struct list_head last;
+ struct i915_vma *vma;
+ unsigned int i, pass;
+ int err;
+
+ /*
+ * Attempt to pin all of the buffers into the GTT.
+ * This is done in 3 phases:
+ *
+ * 1a. Unbind all objects that do not match the GTT constraints for
+ * the execbuffer (fenceable, mappable, alignment etc).
+ * 1b. Increment pin count for already bound objects.
+ * 2. Bind new objects.
+ * 3. Decrement pin count.
+ *
+ * This avoid unnecessary unbinding of later objects in order to make
+ * room for the earlier objects *unless* we need to defragment.
+ */
+
+ pass = 0;
+ err = 0;
+ do {
+ list_for_each_entry(vma, &eb->unbound, exec_link) {
+ err = eb_reserve_vma(eb, vma);
+ if (err)
+ break;
+ }
+ if (err != -ENOSPC)
+ return err;
+
+ /* Resort *all* the objects into priority order */
+ INIT_LIST_HEAD(&eb->unbound);
+ INIT_LIST_HEAD(&last);
+ for (i = 0; i < count; i++) {
+ unsigned int flags = eb->flags[i];
+ struct i915_vma *vma = eb->vma[i];
+
+ if (flags & EXEC_OBJECT_PINNED &&
+ flags & __EXEC_OBJECT_HAS_PIN)
+ continue;
+
+ eb_unreserve_vma(vma, &eb->flags[i]);
+
+ if (flags & EXEC_OBJECT_PINNED)
+ list_add(&vma->exec_link, &eb->unbound);
+ else if (flags & __EXEC_OBJECT_NEEDS_MAP)
+ list_add_tail(&vma->exec_link, &eb->unbound);
+ else
+ list_add_tail(&vma->exec_link, &last);
+ }
+ list_splice_tail(&last, &eb->unbound);
+
+ switch (pass++) {
+ case 0:
+ break;
+
+ case 1:
+ /* Too fragmented, unbind everything and retry */
+ err = i915_gem_evict_vm(eb->vm);
+ if (err)
+ return err;
+ break;
+
+ default:
+ return -ENOSPC;
+ }
+ } while (1);
+}
+
+static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
+{
+ if (eb->args->flags & I915_EXEC_BATCH_FIRST)
+ return 0;
+ else
+ return eb->buffer_count - 1;
+}
+
+static int eb_select_context(struct i915_execbuffer *eb)
+{
+ struct i915_gem_context *ctx;
+
+ ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
+ if (unlikely(!ctx))
+ return -ENOENT;
+
+ eb->ctx = ctx;
+ eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
+
+ eb->context_flags = 0;
+ if (ctx->flags & CONTEXT_NO_ZEROMAP)
+ eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
+
+ return 0;
+}
+
+static int eb_lookup_vmas(struct i915_execbuffer *eb)
+{
+ struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
+ struct drm_i915_gem_object *obj;
+ unsigned int i, batch;
+ int err;
+
+ if (unlikely(i915_gem_context_is_closed(eb->ctx)))
+ return -ENOENT;
+
+ if (unlikely(i915_gem_context_is_banned(eb->ctx)))
+ return -EIO;
+
+ INIT_LIST_HEAD(&eb->relocs);
+ INIT_LIST_HEAD(&eb->unbound);
+
+ batch = eb_batch_index(eb);
+
+ for (i = 0; i < eb->buffer_count; i++) {
+ u32 handle = eb->exec[i].handle;
+ struct i915_lut_handle *lut;
+ struct i915_vma *vma;
+
+ vma = radix_tree_lookup(handles_vma, handle);
+ if (likely(vma))
+ goto add_vma;
+
+ obj = i915_gem_object_lookup(eb->file, handle);
+ if (unlikely(!obj)) {
+ err = -ENOENT;
+ goto err_vma;
+ }
+
+ vma = i915_vma_instance(obj, eb->vm, NULL);
+ if (unlikely(IS_ERR(vma))) {
+ err = PTR_ERR(vma);
+ goto err_obj;
+ }
+
+ lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
+ if (unlikely(!lut)) {
+ err = -ENOMEM;
+ goto err_obj;
+ }
+
+ err = radix_tree_insert(handles_vma, handle, vma);
+ if (unlikely(err)) {
+ kmem_cache_free(eb->i915->luts, lut);
+ goto err_obj;
+ }
+
+ /* transfer ref to ctx */
+ if (!vma->open_count++)
+ i915_vma_reopen(vma);
+ list_add(&lut->obj_link, &obj->lut_list);
+ list_add(&lut->ctx_link, &eb->ctx->handles_list);
+ lut->ctx = eb->ctx;
+ lut->handle = handle;
+
+add_vma:
+ err = eb_add_vma(eb, i, batch, vma);
+ if (unlikely(err))
+ goto err_vma;
+
+ GEM_BUG_ON(vma != eb->vma[i]);
+ GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
+ GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
+ eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
+ }
+
+ eb->args->flags |= __EXEC_VALIDATED;
+ return eb_reserve(eb);
+
+err_obj:
+ i915_gem_object_put(obj);
+err_vma:
+ eb->vma[i] = NULL;
+ return err;
+}
+
+static struct i915_vma *
+eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
+{
+ if (eb->lut_size < 0) {
+ if (handle >= -eb->lut_size)
+ return NULL;
+ return eb->vma[handle];
+ } else {
+ struct hlist_head *head;
+ struct i915_vma *vma;
+
+ head = &eb->buckets[hash_32(handle, eb->lut_size)];
+ hlist_for_each_entry(vma, head, exec_node) {
+ if (vma->exec_handle == handle)
+ return vma;
+ }
+ return NULL;
+ }
+}
+
+static void eb_release_vmas(const struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ struct i915_vma *vma = eb->vma[i];
+ unsigned int flags = eb->flags[i];
+
+ if (!vma)
+ break;
+
+ GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
+ vma->exec_flags = NULL;
+ eb->vma[i] = NULL;
+
+ if (flags & __EXEC_OBJECT_HAS_PIN)
+ __eb_unreserve_vma(vma, flags);
+
+ if (flags & __EXEC_OBJECT_HAS_REF)
+ i915_vma_put(vma);
+ }
+}
+
+static void eb_reset_vmas(const struct i915_execbuffer *eb)
+{
+ eb_release_vmas(eb);
+ if (eb->lut_size > 0)
+ memset(eb->buckets, 0,
+ sizeof(struct hlist_head) << eb->lut_size);
+}
+
+static void eb_destroy(const struct i915_execbuffer *eb)
+{
+ GEM_BUG_ON(eb->reloc_cache.rq);
+
+ if (eb->lut_size > 0)
+ kfree(eb->buckets);
+}
+
+static inline u64
+relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
+ const struct i915_vma *target)
+{
+ return gen8_canonical_addr((int)reloc->delta + target->node.start);
+}
+
+static void reloc_cache_init(struct reloc_cache *cache,
+ struct drm_i915_private *i915)
+{
+ cache->page = -1;
+ cache->vaddr = 0;
+ /* Must be a variable in the struct to allow GCC to unroll. */
+ cache->gen = INTEL_GEN(i915);
+ cache->has_llc = HAS_LLC(i915);
+ cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
+ cache->has_fence = cache->gen < 4;
+ cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
+ cache->node.allocated = false;
+ cache->rq = NULL;
+ cache->rq_size = 0;
+}
+
+static inline void *unmask_page(unsigned long p)
+{
+ return (void *)(uintptr_t)(p & PAGE_MASK);
+}
+
+static inline unsigned int unmask_flags(unsigned long p)
+{
+ return p & ~PAGE_MASK;
+}
+
+#define KMAP 0x4 /* after CLFLUSH_FLAGS */
+
+static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
+{
+ struct drm_i915_private *i915 =
+ container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
+ return &i915->ggtt;
+}
+
+static void reloc_gpu_flush(struct reloc_cache *cache)
+{
+ GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
+ cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
+ i915_gem_object_unpin_map(cache->rq->batch->obj);
+ i915_gem_chipset_flush(cache->rq->i915);
+
+ i915_request_add(cache->rq);
+ cache->rq = NULL;
+}
+
+static void reloc_cache_reset(struct reloc_cache *cache)
+{
+ void *vaddr;
+
+ if (cache->rq)
+ reloc_gpu_flush(cache);
+
+ if (!cache->vaddr)
+ return;
+
+ vaddr = unmask_page(cache->vaddr);
+ if (cache->vaddr & KMAP) {
+ if (cache->vaddr & CLFLUSH_AFTER)
+ mb();
+
+ kunmap_atomic(vaddr);
+ i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
+ } else {
+ wmb();
+ io_mapping_unmap_atomic((void __iomem *)vaddr);
+ if (cache->node.allocated) {
+ struct i915_ggtt *ggtt = cache_to_ggtt(cache);
+
+ ggtt->vm.clear_range(&ggtt->vm,
+ cache->node.start,
+ cache->node.size);
+ drm_mm_remove_node(&cache->node);
+ } else {
+ i915_vma_unpin((struct i915_vma *)cache->node.mm);
+ }
+ }
+
+ cache->vaddr = 0;
+ cache->page = -1;
+}
+
+static void *reloc_kmap(struct drm_i915_gem_object *obj,
+ struct reloc_cache *cache,
+ unsigned long page)
+{
+ void *vaddr;
+
+ if (cache->vaddr) {
+ kunmap_atomic(unmask_page(cache->vaddr));
+ } else {
+ unsigned int flushes;
+ int err;
+
+ err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
+ if (err)
+ return ERR_PTR(err);
+
+ BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
+ BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
+
+ cache->vaddr = flushes | KMAP;
+ cache->node.mm = (void *)obj;
+ if (flushes)
+ mb();
+ }
+
+ vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
+ cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
+ cache->page = page;
+
+ return vaddr;
+}
+
+static void *reloc_iomap(struct drm_i915_gem_object *obj,
+ struct reloc_cache *cache,
+ unsigned long page)
+{
+ struct i915_ggtt *ggtt = cache_to_ggtt(cache);
+ unsigned long offset;
+ void *vaddr;
+
+ if (cache->vaddr) {
+ io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
+ } else {
+ struct i915_vma *vma;
+ int err;
+
+ if (use_cpu_reloc(cache, obj))
+ return NULL;
+
+ err = i915_gem_object_set_to_gtt_domain(obj, true);
+ if (err)
+ return ERR_PTR(err);
+
+ vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
+ PIN_MAPPABLE |
+ PIN_NONBLOCK |
+ PIN_NONFAULT);
+ if (IS_ERR(vma)) {
+ memset(&cache->node, 0, sizeof(cache->node));
+ err = drm_mm_insert_node_in_range
+ (&ggtt->vm.mm, &cache->node,
+ PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
+ 0, ggtt->mappable_end,
+ DRM_MM_INSERT_LOW);
+ if (err) /* no inactive aperture space, use cpu reloc */
+ return NULL;
+ } else {
+ err = i915_vma_put_fence(vma);
+ if (err) {
+ i915_vma_unpin(vma);
+ return ERR_PTR(err);
+ }
+
+ cache->node.start = vma->node.start;
+ cache->node.mm = (void *)vma;
+ }
+ }
+
+ offset = cache->node.start;
+ if (cache->node.allocated) {
+ wmb();
+ ggtt->vm.insert_page(&ggtt->vm,
+ i915_gem_object_get_dma_address(obj, page),
+ offset, I915_CACHE_NONE, 0);
+ } else {
+ offset += page << PAGE_SHIFT;
+ }
+
+ vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
+ offset);
+ cache->page = page;
+ cache->vaddr = (unsigned long)vaddr;
+
+ return vaddr;
+}
+
+static void *reloc_vaddr(struct drm_i915_gem_object *obj,
+ struct reloc_cache *cache,
+ unsigned long page)
+{
+ void *vaddr;
+
+ if (cache->page == page) {
+ vaddr = unmask_page(cache->vaddr);
+ } else {
+ vaddr = NULL;
+ if ((cache->vaddr & KMAP) == 0)
+ vaddr = reloc_iomap(obj, cache, page);
+ if (!vaddr)
+ vaddr = reloc_kmap(obj, cache, page);
+ }
+
+ return vaddr;
+}
+
+static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
+{
+ if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
+ if (flushes & CLFLUSH_BEFORE) {
+ clflushopt(addr);
+ mb();
+ }
+
+ *addr = value;
+
+ /*
+ * Writes to the same cacheline are serialised by the CPU
+ * (including clflush). On the write path, we only require
+ * that it hits memory in an orderly fashion and place
+ * mb barriers at the start and end of the relocation phase
+ * to ensure ordering of clflush wrt to the system.
+ */
+ if (flushes & CLFLUSH_AFTER)
+ clflushopt(addr);
+ } else
+ *addr = value;
+}
+
+static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
+ struct i915_vma *vma,
+ unsigned int len)
+{
+ struct reloc_cache *cache = &eb->reloc_cache;
+ struct drm_i915_gem_object *obj;
+ struct i915_request *rq;
+ struct i915_vma *batch;
+ u32 *cmd;
+ int err;
+
+ GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
+
+ obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
+ if (IS_ERR(obj))
+ return PTR_ERR(obj);
+
+ cmd = i915_gem_object_pin_map(obj,
+ cache->has_llc ?
+ I915_MAP_FORCE_WB :
+ I915_MAP_FORCE_WC);
+ i915_gem_object_unpin_pages(obj);
+ if (IS_ERR(cmd))
+ return PTR_ERR(cmd);
+
+ err = i915_gem_object_set_to_wc_domain(obj, false);
+ if (err)
+ goto err_unmap;
+
+ batch = i915_vma_instance(obj, vma->vm, NULL);
+ if (IS_ERR(batch)) {
+ err = PTR_ERR(batch);
+ goto err_unmap;
+ }
+
+ err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
+ if (err)
+ goto err_unmap;
+
+ rq = i915_request_alloc(eb->engine, eb->ctx);
+ if (IS_ERR(rq)) {
+ err = PTR_ERR(rq);
+ goto err_unpin;
+ }
+
+ err = i915_request_await_object(rq, vma->obj, true);
+ if (err)
+ goto err_request;
+
+ err = eb->engine->emit_bb_start(rq,
+ batch->node.start, PAGE_SIZE,
+ cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
+ if (err)
+ goto err_request;
+
+ GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
+ err = i915_vma_move_to_active(batch, rq, 0);
+ if (err)
+ goto skip_request;
+
+ err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
+ if (err)
+ goto skip_request;
+
+ rq->batch = batch;
+ i915_vma_unpin(batch);
+
+ cache->rq = rq;
+ cache->rq_cmd = cmd;
+ cache->rq_size = 0;
+
+ /* Return with batch mapping (cmd) still pinned */
+ return 0;
+
+skip_request:
+ i915_request_skip(rq, err);
+err_request:
+ i915_request_add(rq);
+err_unpin:
+ i915_vma_unpin(batch);
+err_unmap:
+ i915_gem_object_unpin_map(obj);
+ return err;
+}
+
+static u32 *reloc_gpu(struct i915_execbuffer *eb,
+ struct i915_vma *vma,
+ unsigned int len)
+{
+ struct reloc_cache *cache = &eb->reloc_cache;
+ u32 *cmd;
+
+ if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
+ reloc_gpu_flush(cache);
+
+ if (unlikely(!cache->rq)) {
+ int err;
+
+ /* If we need to copy for the cmdparser, we will stall anyway */
+ if (eb_use_cmdparser(eb))
+ return ERR_PTR(-EWOULDBLOCK);
+
+ if (!intel_engine_can_store_dword(eb->engine))
+ return ERR_PTR(-ENODEV);
+
+ err = __reloc_gpu_alloc(eb, vma, len);
+ if (unlikely(err))
+ return ERR_PTR(err);
+ }
+
+ cmd = cache->rq_cmd + cache->rq_size;
+ cache->rq_size += len;
+
+ return cmd;
+}
+
+static u64
+relocate_entry(struct i915_vma *vma,
+ const struct drm_i915_gem_relocation_entry *reloc,
+ struct i915_execbuffer *eb,
+ const struct i915_vma *target)
+{
+ u64 offset = reloc->offset;
+ u64 target_offset = relocation_target(reloc, target);
+ bool wide = eb->reloc_cache.use_64bit_reloc;
+ void *vaddr;
+
+ if (!eb->reloc_cache.vaddr &&
+ (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
+ !reservation_object_test_signaled_rcu(vma->resv, true))) {
+ const unsigned int gen = eb->reloc_cache.gen;
+ unsigned int len;
+ u32 *batch;
+ u64 addr;
+
+ if (wide)
+ len = offset & 7 ? 8 : 5;
+ else if (gen >= 4)
+ len = 4;
+ else
+ len = 3;
+
+ batch = reloc_gpu(eb, vma, len);
+ if (IS_ERR(batch))
+ goto repeat;
+
+ addr = gen8_canonical_addr(vma->node.start + offset);
+ if (wide) {
+ if (offset & 7) {
+ *batch++ = MI_STORE_DWORD_IMM_GEN4;
+ *batch++ = lower_32_bits(addr);
+ *batch++ = upper_32_bits(addr);
+ *batch++ = lower_32_bits(target_offset);
+
+ addr = gen8_canonical_addr(addr + 4);
+
+ *batch++ = MI_STORE_DWORD_IMM_GEN4;
+ *batch++ = lower_32_bits(addr);
+ *batch++ = upper_32_bits(addr);
+ *batch++ = upper_32_bits(target_offset);
+ } else {
+ *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
+ *batch++ = lower_32_bits(addr);
+ *batch++ = upper_32_bits(addr);
+ *batch++ = lower_32_bits(target_offset);
+ *batch++ = upper_32_bits(target_offset);
+ }
+ } else if (gen >= 6) {
+ *batch++ = MI_STORE_DWORD_IMM_GEN4;
+ *batch++ = 0;
+ *batch++ = addr;
+ *batch++ = target_offset;
+ } else if (gen >= 4) {
+ *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
+ *batch++ = 0;
+ *batch++ = addr;
+ *batch++ = target_offset;
+ } else {
+ *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
+ *batch++ = addr;
+ *batch++ = target_offset;
+ }
+
+ goto out;
+ }
+
+repeat:
+ vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
+ if (IS_ERR(vaddr))
+ return PTR_ERR(vaddr);
+
+ clflush_write32(vaddr + offset_in_page(offset),
+ lower_32_bits(target_offset),
+ eb->reloc_cache.vaddr);
+
+ if (wide) {
+ offset += sizeof(u32);
+ target_offset >>= 32;
+ wide = false;
+ goto repeat;
+ }
+
+out:
+ return target->node.start | UPDATE;
+}
+
+static u64
+eb_relocate_entry(struct i915_execbuffer *eb,
+ struct i915_vma *vma,
+ const struct drm_i915_gem_relocation_entry *reloc)
+{
+ struct i915_vma *target;
+ int err;
+
+ /* we've already hold a reference to all valid objects */
+ target = eb_get_vma(eb, reloc->target_handle);
+ if (unlikely(!target))
+ return -ENOENT;
+
+ /* Validate that the target is in a valid r/w GPU domain */
+ if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
+ DRM_DEBUG("reloc with multiple write domains: "
+ "target %d offset %d "
+ "read %08x write %08x",
+ reloc->target_handle,
+ (int) reloc->offset,
+ reloc->read_domains,
+ reloc->write_domain);
+ return -EINVAL;
+ }
+ if (unlikely((reloc->write_domain | reloc->read_domains)
+ & ~I915_GEM_GPU_DOMAINS)) {
+ DRM_DEBUG("reloc with read/write non-GPU domains: "
+ "target %d offset %d "
+ "read %08x write %08x",
+ reloc->target_handle,
+ (int) reloc->offset,
+ reloc->read_domains,
+ reloc->write_domain);
+ return -EINVAL;
+ }
+
+ if (reloc->write_domain) {
+ *target->exec_flags |= EXEC_OBJECT_WRITE;
+
+ /*
+ * Sandybridge PPGTT errata: We need a global gtt mapping
+ * for MI and pipe_control writes because the gpu doesn't
+ * properly redirect them through the ppgtt for non_secure
+ * batchbuffers.
+ */
+ if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
+ IS_GEN6(eb->i915)) {
+ err = i915_vma_bind(target, target->obj->cache_level,
+ PIN_GLOBAL);
+ if (WARN_ONCE(err,
+ "Unexpected failure to bind target VMA!"))
+ return err;
+ }
+ }
+
+ /*
+ * If the relocation already has the right value in it, no
+ * more work needs to be done.
+ */
+ if (!DBG_FORCE_RELOC &&
+ gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
+ return 0;
+
+ /* Check that the relocation address is valid... */
+ if (unlikely(reloc->offset >
+ vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
+ DRM_DEBUG("Relocation beyond object bounds: "
+ "target %d offset %d size %d.\n",
+ reloc->target_handle,
+ (int)reloc->offset,
+ (int)vma->size);
+ return -EINVAL;
+ }
+ if (unlikely(reloc->offset & 3)) {
+ DRM_DEBUG("Relocation not 4-byte aligned: "
+ "target %d offset %d.\n",
+ reloc->target_handle,
+ (int)reloc->offset);
+ return -EINVAL;
+ }
+
+ /*
+ * If we write into the object, we need to force the synchronisation
+ * barrier, either with an asynchronous clflush or if we executed the
+ * patching using the GPU (though that should be serialised by the
+ * timeline). To be completely sure, and since we are required to
+ * do relocations we are already stalling, disable the user's opt
+ * out of our synchronisation.
+ */
+ *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
+
+ /* and update the user's relocation entry */
+ return relocate_entry(vma, reloc, eb, target);
+}
+
+static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
+{
+#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
+ struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
+ struct drm_i915_gem_relocation_entry __user *urelocs;
+ const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
+ unsigned int remain;
+
+ urelocs = u64_to_user_ptr(entry->relocs_ptr);
+ remain = entry->relocation_count;
+ if (unlikely(remain > N_RELOC(ULONG_MAX)))
+ return -EINVAL;
+
+ /*
+ * We must check that the entire relocation array is safe
+ * to read. However, if the array is not writable the user loses
+ * the updated relocation values.
+ */
+ if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
+ return -EFAULT;
+
+ do {
+ struct drm_i915_gem_relocation_entry *r = stack;
+ unsigned int count =
+ min_t(unsigned int, remain, ARRAY_SIZE(stack));
+ unsigned int copied;
+
+ /*
+ * This is the fast path and we cannot handle a pagefault
+ * whilst holding the struct mutex lest the user pass in the
+ * relocations contained within a mmaped bo. For in such a case
+ * we, the page fault handler would call i915_gem_fault() and
+ * we would try to acquire the struct mutex again. Obviously
+ * this is bad and so lockdep complains vehemently.
+ */
+ pagefault_disable();
+ copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
+ pagefault_enable();
+ if (unlikely(copied)) {
+ remain = -EFAULT;
+ goto out;
+ }
+
+ remain -= count;
+ do {
+ u64 offset = eb_relocate_entry(eb, vma, r);
+
+ if (likely(offset == 0)) {
+ } else if ((s64)offset < 0) {
+ remain = (int)offset;
+ goto out;
+ } else {
+ /*
+ * Note that reporting an error now
+ * leaves everything in an inconsistent
+ * state as we have *already* changed
+ * the relocation value inside the
+ * object. As we have not changed the
+ * reloc.presumed_offset or will not
+ * change the execobject.offset, on the
+ * call we may not rewrite the value
+ * inside the object, leaving it
+ * dangling and causing a GPU hang. Unless
+ * userspace dynamically rebuilds the
+ * relocations on each execbuf rather than
+ * presume a static tree.
+ *
+ * We did previously check if the relocations
+ * were writable (access_ok), an error now
+ * would be a strange race with mprotect,
+ * having already demonstrated that we
+ * can read from this userspace address.
+ */
+ offset = gen8_canonical_addr(offset & ~UPDATE);
+ __put_user(offset,
+ &urelocs[r-stack].presumed_offset);
+ }
+ } while (r++, --count);
+ urelocs += ARRAY_SIZE(stack);
+ } while (remain);
+out:
+ reloc_cache_reset(&eb->reloc_cache);
+ return remain;
+}
+
+static int
+eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
+{
+ const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
+ struct drm_i915_gem_relocation_entry *relocs =
+ u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
+ unsigned int i;
+ int err;
+
+ for (i = 0; i < entry->relocation_count; i++) {
+ u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
+
+ if ((s64)offset < 0) {
+ err = (int)offset;
+ goto err;
+ }
+ }
+ err = 0;
+err:
+ reloc_cache_reset(&eb->reloc_cache);
+ return err;
+}
+
+static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
+{
+ const char __user *addr, *end;
+ unsigned long size;
+ char __maybe_unused c;
+
+ size = entry->relocation_count;
+ if (size == 0)
+ return 0;
+
+ if (size > N_RELOC(ULONG_MAX))
+ return -EINVAL;
+
+ addr = u64_to_user_ptr(entry->relocs_ptr);
+ size *= sizeof(struct drm_i915_gem_relocation_entry);
+ if (!access_ok(VERIFY_READ, addr, size))
+ return -EFAULT;
+
+ end = addr + size;
+ for (; addr < end; addr += PAGE_SIZE) {
+ int err = __get_user(c, addr);
+ if (err)
+ return err;
+ }
+ return __get_user(c, end - 1);
+}
+
+static int eb_copy_relocations(const struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+ int err;
+
+ for (i = 0; i < count; i++) {
+ const unsigned int nreloc = eb->exec[i].relocation_count;
+ struct drm_i915_gem_relocation_entry __user *urelocs;
+ struct drm_i915_gem_relocation_entry *relocs;
+ unsigned long size;
+ unsigned long copied;
+
+ if (nreloc == 0)
+ continue;
+
+ err = check_relocations(&eb->exec[i]);
+ if (err)
+ goto err;
+
+ urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
+ size = nreloc * sizeof(*relocs);
+
+ relocs = kvmalloc_array(size, 1, GFP_KERNEL);
+ if (!relocs) {
+ kvfree(relocs);
+ err = -ENOMEM;
+ goto err;
+ }
+
+ /* copy_from_user is limited to < 4GiB */
+ copied = 0;
+ do {
+ unsigned int len =
+ min_t(u64, BIT_ULL(31), size - copied);
+
+ if (__copy_from_user((char *)relocs + copied,
+ (char __user *)urelocs + copied,
+ len)) {
+ kvfree(relocs);
+ err = -EFAULT;
+ goto err;
+ }
+
+ copied += len;
+ } while (copied < size);
+
+ /*
+ * As we do not update the known relocation offsets after
+ * relocating (due to the complexities in lock handling),
+ * we need to mark them as invalid now so that we force the
+ * relocation processing next time. Just in case the target
+ * object is evicted and then rebound into its old
+ * presumed_offset before the next execbuffer - if that
+ * happened we would make the mistake of assuming that the
+ * relocations were valid.
+ */
+ if (!user_access_begin(VERIFY_WRITE, urelocs, size))
+ goto end_user;
+
+ for (copied = 0; copied < nreloc; copied++)
+ unsafe_put_user(-1,
+ &urelocs[copied].presumed_offset,
+ end_user);
+end_user:
+ user_access_end();
+
+ eb->exec[i].relocs_ptr = (uintptr_t)relocs;
+ }
+
+ return 0;
+
+err:
+ while (i--) {
+ struct drm_i915_gem_relocation_entry *relocs =
+ u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
+ if (eb->exec[i].relocation_count)
+ kvfree(relocs);
+ }
+ return err;
+}
+
+static int eb_prefault_relocations(const struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+
+ if (unlikely(i915_modparams.prefault_disable))
+ return 0;
+
+ for (i = 0; i < count; i++) {
+ int err;
+
+ err = check_relocations(&eb->exec[i]);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
+{
+ struct drm_device *dev = &eb->i915->drm;
+ bool have_copy = false;
+ struct i915_vma *vma;
+ int err = 0;
+
+repeat:
+ if (signal_pending(current)) {
+ err = -ERESTARTSYS;
+ goto out;
+ }
+
+ /* We may process another execbuffer during the unlock... */
+ eb_reset_vmas(eb);
+ mutex_unlock(&dev->struct_mutex);
+
+ /*
+ * We take 3 passes through the slowpatch.
+ *
+ * 1 - we try to just prefault all the user relocation entries and
+ * then attempt to reuse the atomic pagefault disabled fast path again.
+ *
+ * 2 - we copy the user entries to a local buffer here outside of the
+ * local and allow ourselves to wait upon any rendering before
+ * relocations
+ *
+ * 3 - we already have a local copy of the relocation entries, but
+ * were interrupted (EAGAIN) whilst waiting for the objects, try again.
+ */
+ if (!err) {
+ err = eb_prefault_relocations(eb);
+ } else if (!have_copy) {
+ err = eb_copy_relocations(eb);
+ have_copy = err == 0;
+ } else {
+ cond_resched();
+ err = 0;
+ }
+ if (err) {
+ mutex_lock(&dev->struct_mutex);
+ goto out;
+ }
+
+ /* A frequent cause for EAGAIN are currently unavailable client pages */
+ flush_workqueue(eb->i915->mm.userptr_wq);
+
+ err = i915_mutex_lock_interruptible(dev);
+ if (err) {
+ mutex_lock(&dev->struct_mutex);
+ goto out;
+ }
+
+ /* reacquire the objects */
+ err = eb_lookup_vmas(eb);
+ if (err)
+ goto err;
+
+ GEM_BUG_ON(!eb->batch);
+
+ list_for_each_entry(vma, &eb->relocs, reloc_link) {
+ if (!have_copy) {
+ pagefault_disable();
+ err = eb_relocate_vma(eb, vma);
+ pagefault_enable();
+ if (err)
+ goto repeat;
+ } else {
+ err = eb_relocate_vma_slow(eb, vma);
+ if (err)
+ goto err;
+ }
+ }
+
+ /*
+ * Leave the user relocations as are, this is the painfully slow path,
+ * and we want to avoid the complication of dropping the lock whilst
+ * having buffers reserved in the aperture and so causing spurious
+ * ENOSPC for random operations.
+ */
+
+err:
+ if (err == -EAGAIN)
+ goto repeat;
+
+out:
+ if (have_copy) {
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ const struct drm_i915_gem_exec_object2 *entry =
+ &eb->exec[i];
+ struct drm_i915_gem_relocation_entry *relocs;
+
+ if (!entry->relocation_count)
+ continue;
+
+ relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
+ kvfree(relocs);
+ }
+ }
+
+ return err;
+}
+
+static int eb_relocate(struct i915_execbuffer *eb)
+{
+ if (eb_lookup_vmas(eb))
+ goto slow;
+
+ /* The objects are in their final locations, apply the relocations. */
+ if (eb->args->flags & __EXEC_HAS_RELOC) {
+ struct i915_vma *vma;
+
+ list_for_each_entry(vma, &eb->relocs, reloc_link) {
+ if (eb_relocate_vma(eb, vma))
+ goto slow;
+ }
+ }
+
+ return 0;
+
+slow:
+ return eb_relocate_slow(eb);
+}
+
+static int eb_move_to_gpu(struct i915_execbuffer *eb)
+{
+ const unsigned int count = eb->buffer_count;
+ unsigned int i;
+ int err;
+
+ for (i = 0; i < count; i++) {
+ unsigned int flags = eb->flags[i];
+ struct i915_vma *vma = eb->vma[i];
+ struct drm_i915_gem_object *obj = vma->obj;
+
+ if (flags & EXEC_OBJECT_CAPTURE) {
+ struct i915_capture_list *capture;
+
+ capture = kmalloc(sizeof(*capture), GFP_KERNEL);
+ if (unlikely(!capture))
+ return -ENOMEM;
+
+ capture->next = eb->request->capture_list;
+ capture->vma = eb->vma[i];
+ eb->request->capture_list = capture;
+ }
+
+ /*
+ * If the GPU is not _reading_ through the CPU cache, we need
+ * to make sure that any writes (both previous GPU writes from
+ * before a change in snooping levels and normal CPU writes)
+ * caught in that cache are flushed to main memory.
+ *
+ * We want to say
+ * obj->cache_dirty &&
+ * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
+ * but gcc's optimiser doesn't handle that as well and emits
+ * two jumps instead of one. Maybe one day...
+ */
+ if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
+ if (i915_gem_clflush_object(obj, 0))
+ flags &= ~EXEC_OBJECT_ASYNC;
+ }
+
+ if (flags & EXEC_OBJECT_ASYNC)
+ continue;
+
+ err = i915_request_await_object
+ (eb->request, obj, flags & EXEC_OBJECT_WRITE);
+ if (err)
+ return err;
+ }
+
+ for (i = 0; i < count; i++) {
+ unsigned int flags = eb->flags[i];
+ struct i915_vma *vma = eb->vma[i];
+
+ err = i915_vma_move_to_active(vma, eb->request, flags);
+ if (unlikely(err)) {
+ i915_request_skip(eb->request, err);
+ return err;
+ }
+
+ __eb_unreserve_vma(vma, flags);
+ vma->exec_flags = NULL;
+
+ if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
+ i915_vma_put(vma);
+ }
+ eb->exec = NULL;
+
+ /* Unconditionally flush any chipset caches (for streaming writes). */
+ i915_gem_chipset_flush(eb->i915);
+
+ return 0;
+}
+
+static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
+{
+ if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
+ return false;
+
+ /* Kernel clipping was a DRI1 misfeature */
+ if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
+ if (exec->num_cliprects || exec->cliprects_ptr)
+ return false;
+ }
+
+ if (exec->DR4 == 0xffffffff) {
+ DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
+ exec->DR4 = 0;
+ }
+ if (exec->DR1 || exec->DR4)
+ return false;
+
+ if ((exec->batch_start_offset | exec->batch_len) & 0x7)
+ return false;
+
+ return true;
+}
+
+static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
+{
+ u32 *cs;
+ int i;
+
+ if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
+ DRM_DEBUG("sol reset is gen7/rcs only\n");
+ return -EINVAL;
+ }
+
+ cs = intel_ring_begin(rq, 4 * 2 + 2);
+ if (IS_ERR(cs))
+ return PTR_ERR(cs);
+
+ *cs++ = MI_LOAD_REGISTER_IMM(4);
+ for (i = 0; i < 4; i++) {
+ *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
+ *cs++ = 0;
+ }
+ *cs++ = MI_NOOP;
+ intel_ring_advance(rq, cs);
+
+ return 0;
+}
+
+static struct i915_vma *
+shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
+{
+ struct drm_i915_private *dev_priv = eb->i915;
+ struct i915_address_space *vm;
+ u64 flags;
+
+ /*
+ * PPGTT backed shadow buffers must be mapped RO, to prevent
+ * post-scan tampering
+ */
+ if (CMDPARSER_USES_GGTT(dev_priv)) {
+ flags = PIN_GLOBAL;
+ vm = &dev_priv->ggtt.vm;
+ } else if (eb->vm->has_read_only) {
+ flags = PIN_USER;
+ vm = eb->vm;
+ i915_gem_object_set_readonly(obj);
+ } else {
+ DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
+ return ERR_PTR(-EINVAL);
+ }
+
+ return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
+}
+
+static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
+{
+ struct drm_i915_gem_object *shadow_batch_obj;
+ struct i915_vma *vma;
+ u64 batch_start;
+ u64 shadow_batch_start;
+ int err;
+
+ shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
+ PAGE_ALIGN(eb->batch_len));
+ if (IS_ERR(shadow_batch_obj))
+ return ERR_CAST(shadow_batch_obj);
+
+ vma = shadow_batch_pin(eb, shadow_batch_obj);
+ if (IS_ERR(vma))
+ goto out;
+
+ batch_start = gen8_canonical_addr(eb->batch->node.start) +
+ eb->batch_start_offset;
+
+ shadow_batch_start = gen8_canonical_addr(vma->node.start);
+
+ err = intel_engine_cmd_parser(eb->ctx,
+ eb->engine,
+ eb->batch->obj,
+ batch_start,
+ eb->batch_start_offset,
+ eb->batch_len,
+ shadow_batch_obj,
+ shadow_batch_start);
+
+ if (err) {
+ i915_vma_unpin(vma);
+
+ /*
+ * Unsafe GGTT-backed buffers can still be submitted safely
+ * as non-secure.
+ * For PPGTT backing however, we have no choice but to forcibly
+ * reject unsafe buffers
+ */
+ if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
+ /* Execute original buffer non-secure */
+ vma = NULL;
+ else
+ vma = ERR_PTR(err);
+
+ goto out;
+ }
+
+ eb->vma[eb->buffer_count] = i915_vma_get(vma);
+ eb->flags[eb->buffer_count] =
+ __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
+ vma->exec_flags = &eb->flags[eb->buffer_count];
+ eb->buffer_count++;
+ eb->batch_start_offset = 0;
+ eb->batch = vma;
+
+ /* eb->batch_len unchanged */
+
+ if (CMDPARSER_USES_GGTT(eb->i915))
+ eb->batch_flags |= I915_DISPATCH_SECURE;
+
+out:
+ i915_gem_object_unpin_pages(shadow_batch_obj);
+ return vma;
+}
+
+static void
+add_to_client(struct i915_request *rq, struct drm_file *file)
+{
+ rq->file_priv = file->driver_priv;
+ list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
+}
+
+static int eb_submit(struct i915_execbuffer *eb)
+{
+ int err;
+
+ err = eb_move_to_gpu(eb);
+ if (err)
+ return err;
+
+ if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
+ err = i915_reset_gen7_sol_offsets(eb->request);
+ if (err)
+ return err;
+ }
+
+ err = eb->engine->emit_bb_start(eb->request,
+ eb->batch->node.start +
+ eb->batch_start_offset,
+ eb->batch_len,
+ eb->batch_flags);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+/*
+ * Find one BSD ring to dispatch the corresponding BSD command.
+ * The engine index is returned.
+ */
+static unsigned int
+gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
+ struct drm_file *file)
+{
+ struct drm_i915_file_private *file_priv = file->driver_priv;
+
+ /* Check whether the file_priv has already selected one ring. */
+ if ((int)file_priv->bsd_engine < 0)
+ file_priv->bsd_engine = atomic_fetch_xor(1,
+ &dev_priv->mm.bsd_engine_dispatch_index);
+
+ return file_priv->bsd_engine;
+}
+
+#define I915_USER_RINGS (4)
+
+static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
+ [I915_EXEC_DEFAULT] = RCS,
+ [I915_EXEC_RENDER] = RCS,
+ [I915_EXEC_BLT] = BCS,
+ [I915_EXEC_BSD] = VCS,
+ [I915_EXEC_VEBOX] = VECS
+};
+
+static struct intel_engine_cs *
+eb_select_engine(struct drm_i915_private *dev_priv,
+ struct drm_file *file,
+ struct drm_i915_gem_execbuffer2 *args)
+{
+ unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
+ struct intel_engine_cs *engine;
+
+ if (user_ring_id > I915_USER_RINGS) {
+ DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
+ return NULL;
+ }
+
+ if ((user_ring_id != I915_EXEC_BSD) &&
+ ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
+ DRM_DEBUG("execbuf with non bsd ring but with invalid "
+ "bsd dispatch flags: %d\n", (int)(args->flags));
+ return NULL;
+ }
+
+ if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
+ unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
+
+ if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
+ bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
+ } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
+ bsd_idx <= I915_EXEC_BSD_RING2) {
+ bsd_idx >>= I915_EXEC_BSD_SHIFT;
+ bsd_idx--;
+ } else {
+ DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
+ bsd_idx);
+ return NULL;
+ }
+
+ engine = dev_priv->engine[_VCS(bsd_idx)];
+ } else {
+ engine = dev_priv->engine[user_ring_map[user_ring_id]];
+ }
+
+ if (!engine) {
+ DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
+ return NULL;
+ }
+
+ return engine;
+}
+
+static void
+__free_fence_array(struct drm_syncobj **fences, unsigned int n)
+{
+ while (n--)
+ drm_syncobj_put(ptr_mask_bits(fences[n], 2));
+ kvfree(fences);
+}
+
+static struct drm_syncobj **
+get_fence_array(struct drm_i915_gem_execbuffer2 *args,
+ struct drm_file *file)
+{
+ const unsigned long nfences = args->num_cliprects;
+ struct drm_i915_gem_exec_fence __user *user;
+ struct drm_syncobj **fences;
+ unsigned long n;
+ int err;
+
+ if (!(args->flags & I915_EXEC_FENCE_ARRAY))
+ return NULL;
+
+ /* Check multiplication overflow for access_ok() and kvmalloc_array() */
+ BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
+ if (nfences > min_t(unsigned long,
+ ULONG_MAX / sizeof(*user),
+ SIZE_MAX / sizeof(*fences)))
+ return ERR_PTR(-EINVAL);
+
+ user = u64_to_user_ptr(args->cliprects_ptr);
+ if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
+ return ERR_PTR(-EFAULT);
+
+ fences = kvmalloc_array(nfences, sizeof(*fences),
+ __GFP_NOWARN | GFP_KERNEL);
+ if (!fences)
+ return ERR_PTR(-ENOMEM);
+
+ for (n = 0; n < nfences; n++) {
+ struct drm_i915_gem_exec_fence fence;
+ struct drm_syncobj *syncobj;
+
+ if (__copy_from_user(&fence, user++, sizeof(fence))) {
+ err = -EFAULT;
+ goto err;
+ }
+
+ if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
+ err = -EINVAL;
+ goto err;
+ }
+
+ syncobj = drm_syncobj_find(file, fence.handle);
+ if (!syncobj) {
+ DRM_DEBUG("Invalid syncobj handle provided\n");
+ err = -ENOENT;
+ goto err;
+ }
+
+ BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
+ ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
+
+ fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
+ }
+
+ return fences;
+
+err:
+ __free_fence_array(fences, n);
+ return ERR_PTR(err);
+}
+
+static void
+put_fence_array(struct drm_i915_gem_execbuffer2 *args,
+ struct drm_syncobj **fences)
+{
+ if (fences)
+ __free_fence_array(fences, args->num_cliprects);
+}
+
+static int
+await_fence_array(struct i915_execbuffer *eb,
+ struct drm_syncobj **fences)
+{
+ const unsigned int nfences = eb->args->num_cliprects;
+ unsigned int n;
+ int err;
+
+ for (n = 0; n < nfences; n++) {
+ struct drm_syncobj *syncobj;
+ struct dma_fence *fence;
+ unsigned int flags;
+
+ syncobj = ptr_unpack_bits(fences[n], &flags, 2);
+ if (!(flags & I915_EXEC_FENCE_WAIT))
+ continue;
+
+ fence = drm_syncobj_fence_get(syncobj);
+ if (!fence)
+ return -EINVAL;
+
+ err = i915_request_await_dma_fence(eb->request, fence);
+ dma_fence_put(fence);
+ if (err < 0)
+ return err;
+ }
+
+ return 0;
+}
+
+static void
+signal_fence_array(struct i915_execbuffer *eb,
+ struct drm_syncobj **fences)
+{
+ const unsigned int nfences = eb->args->num_cliprects;
+ struct dma_fence * const fence = &eb->request->fence;
+ unsigned int n;
+
+ for (n = 0; n < nfences; n++) {
+ struct drm_syncobj *syncobj;
+ unsigned int flags;
+
+ syncobj = ptr_unpack_bits(fences[n], &flags, 2);
+ if (!(flags & I915_EXEC_FENCE_SIGNAL))
+ continue;
+
+ drm_syncobj_replace_fence(syncobj, fence);
+ }
+}
+
+static int
+i915_gem_do_execbuffer(struct drm_device *dev,
+ struct drm_file *file,
+ struct drm_i915_gem_execbuffer2 *args,
+ struct drm_i915_gem_exec_object2 *exec,
+ struct drm_syncobj **fences)
+{
+ struct drm_i915_private *i915 = to_i915(dev);
+ struct i915_execbuffer eb;
+ struct dma_fence *in_fence = NULL;
+ struct sync_file *out_fence = NULL;
+ int out_fence_fd = -1;
+ int err;
+
+ BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
+ BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
+ ~__EXEC_OBJECT_UNKNOWN_FLAGS);
+
+ eb.i915 = i915;
+ eb.file = file;
+ eb.args = args;
+ if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
+ args->flags |= __EXEC_HAS_RELOC;
+
+ eb.exec = exec;
+ eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
+ eb.vma[0] = NULL;
+ eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
+
+ eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
+ if (USES_FULL_PPGTT(eb.i915))
+ eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
+ reloc_cache_init(&eb.reloc_cache, eb.i915);
+
+ eb.buffer_count = args->buffer_count;
+ eb.batch_start_offset = args->batch_start_offset;
+ eb.batch_len = args->batch_len;
+
+ eb.batch_flags = 0;
+ if (args->flags & I915_EXEC_SECURE) {
+ if (INTEL_GEN(i915) >= 11)
+ return -ENODEV;
+
+ /* Return -EPERM to trigger fallback code on old binaries. */
+ if (!HAS_SECURE_BATCHES(i915))
+ return -EPERM;
+
+ if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ eb.batch_flags |= I915_DISPATCH_SECURE;
+ }
+ if (args->flags & I915_EXEC_IS_PINNED)
+ eb.batch_flags |= I915_DISPATCH_PINNED;
+
+ eb.engine = eb_select_engine(eb.i915, file, args);
+ if (!eb.engine)
+ return -EINVAL;
+
+ if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
+ if (!HAS_RESOURCE_STREAMER(eb.i915)) {
+ DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
+ return -EINVAL;
+ }
+ if (eb.engine->id != RCS) {
+ DRM_DEBUG("RS is not available on %s\n",
+ eb.engine->name);
+ return -EINVAL;
+ }
+
+ eb.batch_flags |= I915_DISPATCH_RS;
+ }
+
+ if (args->flags & I915_EXEC_FENCE_IN) {
+ in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
+ if (!in_fence)
+ return -EINVAL;
+ }
+
+ if (args->flags & I915_EXEC_FENCE_OUT) {
+ out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
+ if (out_fence_fd < 0) {
+ err = out_fence_fd;
+ goto err_in_fence;
+ }
+ }
+
+ err = eb_create(&eb);
+ if (err)
+ goto err_out_fence;
+
+ GEM_BUG_ON(!eb.lut_size);
+
+ err = eb_select_context(&eb);
+ if (unlikely(err))
+ goto err_destroy;
+
+ /*
+ * Take a local wakeref for preparing to dispatch the execbuf as
+ * we expect to access the hardware fairly frequently in the
+ * process. Upon first dispatch, we acquire another prolonged
+ * wakeref that we hold until the GPU has been idle for at least
+ * 100ms.
+ */
+ intel_runtime_pm_get(eb.i915);
+
+ err = i915_mutex_lock_interruptible(dev);
+ if (err)
+ goto err_rpm;
+
+ err = eb_relocate(&eb);
+ if (err) {
+ /*
+ * If the user expects the execobject.offset and
+ * reloc.presumed_offset to be an exact match,
+ * as for using NO_RELOC, then we cannot update
+ * the execobject.offset until we have completed
+ * relocation.
+ */
+ args->flags &= ~__EXEC_HAS_RELOC;
+ goto err_vma;
+ }
+
+ if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
+ DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
+ err = -EINVAL;
+ goto err_vma;
+ }
+ if (eb.batch_start_offset > eb.batch->size ||
+ eb.batch_len > eb.batch->size - eb.batch_start_offset) {
+ DRM_DEBUG("Attempting to use out-of-bounds batch\n");
+ err = -EINVAL;
+ goto err_vma;
+ }
+
+ if (eb.batch_len == 0)
+ eb.batch_len = eb.batch->size - eb.batch_start_offset;
+
+ if (eb_use_cmdparser(&eb)) {
+ struct i915_vma *vma;
+
+ vma = eb_parse(&eb);
+ if (IS_ERR(vma)) {
+ err = PTR_ERR(vma);
+ goto err_vma;
+ }
+ }
+
+ /*
+ * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
+ * batch" bit. Hence we need to pin secure batches into the global gtt.
+ * hsw should have this fixed, but bdw mucks it up again. */
+ if (eb.batch_flags & I915_DISPATCH_SECURE) {
+ struct i915_vma *vma;
+
+ /*
+ * So on first glance it looks freaky that we pin the batch here
+ * outside of the reservation loop. But:
+ * - The batch is already pinned into the relevant ppgtt, so we
+ * already have the backing storage fully allocated.
+ * - No other BO uses the global gtt (well contexts, but meh),
+ * so we don't really have issues with multiple objects not
+ * fitting due to fragmentation.
+ * So this is actually safe.
+ */
+ vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
+ if (IS_ERR(vma)) {
+ err = PTR_ERR(vma);
+ goto err_vma;
+ }
+
+ eb.batch = vma;
+ }
+
+ /* All GPU relocation batches must be submitted prior to the user rq */
+ GEM_BUG_ON(eb.reloc_cache.rq);
+
+ /* Allocate a request for this batch buffer nice and early. */
+ eb.request = i915_request_alloc(eb.engine, eb.ctx);
+ if (IS_ERR(eb.request)) {
+ err = PTR_ERR(eb.request);
+ goto err_batch_unpin;
+ }
+
+ if (in_fence) {
+ err = i915_request_await_dma_fence(eb.request, in_fence);
+ if (err < 0)
+ goto err_request;
+ }
+
+ if (fences) {
+ err = await_fence_array(&eb, fences);
+ if (err)
+ goto err_request;
+ }
+
+ if (out_fence_fd != -1) {
+ out_fence = sync_file_create(&eb.request->fence);
+ if (!out_fence) {
+ err = -ENOMEM;
+ goto err_request;
+ }
+ }
+
+ /*
+ * Whilst this request exists, batch_obj will be on the
+ * active_list, and so will hold the active reference. Only when this
+ * request is retired will the the batch_obj be moved onto the
+ * inactive_list and lose its active reference. Hence we do not need
+ * to explicitly hold another reference here.
+ */
+ eb.request->batch = eb.batch;
+
+ trace_i915_request_queue(eb.request, eb.batch_flags);
+ err = eb_submit(&eb);
+err_request:
+ i915_request_add(eb.request);
+ add_to_client(eb.request, file);
+
+ if (fences)
+ signal_fence_array(&eb, fences);
+
+ if (out_fence) {
+ if (err == 0) {
+ fd_install(out_fence_fd, out_fence->file);
+ args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
+ args->rsvd2 |= (u64)out_fence_fd << 32;
+ out_fence_fd = -1;
+ } else {
+ fput(out_fence->file);
+ }
+ }
+
+err_batch_unpin:
+ if (eb.batch_flags & I915_DISPATCH_SECURE)
+ i915_vma_unpin(eb.batch);
+err_vma:
+ if (eb.exec)
+ eb_release_vmas(&eb);
+ mutex_unlock(&dev->struct_mutex);
+err_rpm:
+ intel_runtime_pm_put(eb.i915);
+ i915_gem_context_put(eb.ctx);
+err_destroy:
+ eb_destroy(&eb);
+err_out_fence:
+ if (out_fence_fd != -1)
+ put_unused_fd(out_fence_fd);
+err_in_fence:
+ dma_fence_put(in_fence);
+ return err;
+}
+
+static size_t eb_element_size(void)
+{
+ return (sizeof(struct drm_i915_gem_exec_object2) +
+ sizeof(struct i915_vma *) +
+ sizeof(unsigned int));
+}
+
+static bool check_buffer_count(size_t count)
+{
+ const size_t sz = eb_element_size();
+
+ /*
+ * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
+ * array size (see eb_create()). Otherwise, we can accept an array as
+ * large as can be addressed (though use large arrays at your peril)!
+ */
+
+ return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
+}
+
+/*
+ * Legacy execbuffer just creates an exec2 list from the original exec object
+ * list array and passes it to the real function.
+ */
+int
+i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
+ struct drm_file *file)
+{
+ struct drm_i915_gem_execbuffer *args = data;
+ struct drm_i915_gem_execbuffer2 exec2;
+ struct drm_i915_gem_exec_object *exec_list = NULL;
+ struct drm_i915_gem_exec_object2 *exec2_list = NULL;
+ const size_t count = args->buffer_count;
+ unsigned int i;
+ int err;
+
+ if (!check_buffer_count(count)) {
+ DRM_DEBUG("execbuf2 with %zd buffers\n", count);
+ return -EINVAL;
+ }
+
+ exec2.buffers_ptr = args->buffers_ptr;
+ exec2.buffer_count = args->buffer_count;
+ exec2.batch_start_offset = args->batch_start_offset;
+ exec2.batch_len = args->batch_len;
+ exec2.DR1 = args->DR1;
+ exec2.DR4 = args->DR4;
+ exec2.num_cliprects = args->num_cliprects;
+ exec2.cliprects_ptr = args->cliprects_ptr;
+ exec2.flags = I915_EXEC_RENDER;
+ i915_execbuffer2_set_context_id(exec2, 0);
+
+ if (!i915_gem_check_execbuffer(&exec2))
+ return -EINVAL;
+
+ /* Copy in the exec list from userland */
+ exec_list = kvmalloc_array(count, sizeof(*exec_list),
+ __GFP_NOWARN | GFP_KERNEL);
+ exec2_list = kvmalloc_array(count + 1, eb_element_size(),
+ __GFP_NOWARN | GFP_KERNEL);
+ if (exec_list == NULL || exec2_list == NULL) {
+ DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
+ args->buffer_count);
+ kvfree(exec_list);
+ kvfree(exec2_list);
+ return -ENOMEM;
+ }
+ err = copy_from_user(exec_list,
+ u64_to_user_ptr(args->buffers_ptr),
+ sizeof(*exec_list) * count);
+ if (err) {
+ DRM_DEBUG("copy %d exec entries failed %d\n",
+ args->buffer_count, err);
+ kvfree(exec_list);
+ kvfree(exec2_list);
+ return -EFAULT;
+ }
+
+ for (i = 0; i < args->buffer_count; i++) {
+ exec2_list[i].handle = exec_list[i].handle;
+ exec2_list[i].relocation_count = exec_list[i].relocation_count;
+ exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
+ exec2_list[i].alignment = exec_list[i].alignment;
+ exec2_list[i].offset = exec_list[i].offset;
+ if (INTEL_GEN(to_i915(dev)) < 4)
+ exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
+ else
+ exec2_list[i].flags = 0;
+ }
+
+ err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
+ if (exec2.flags & __EXEC_HAS_RELOC) {
+ struct drm_i915_gem_exec_object __user *user_exec_list =
+ u64_to_user_ptr(args->buffers_ptr);
+
+ /* Copy the new buffer offsets back to the user's exec list. */
+ for (i = 0; i < args->buffer_count; i++) {
+ if (!(exec2_list[i].offset & UPDATE))
+ continue;
+
+ exec2_list[i].offset =
+ gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
+ exec2_list[i].offset &= PIN_OFFSET_MASK;
+ if (__copy_to_user(&user_exec_list[i].offset,
+ &exec2_list[i].offset,
+ sizeof(user_exec_list[i].offset)))
+ break;
+ }
+ }
+
+ kvfree(exec_list);
+ kvfree(exec2_list);
+ return err;
+}
+
+int
+i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
+ struct drm_file *file)
+{
+ struct drm_i915_gem_execbuffer2 *args = data;
+ struct drm_i915_gem_exec_object2 *exec2_list;
+ struct drm_syncobj **fences = NULL;
+ const size_t count = args->buffer_count;
+ int err;
+
+ if (!check_buffer_count(count)) {
+ DRM_DEBUG("execbuf2 with %zd buffers\n", count);
+ return -EINVAL;
+ }
+
+ if (!i915_gem_check_execbuffer(args))
+ return -EINVAL;
+
+ /* Allocate an extra slot for use by the command parser */
+ exec2_list = kvmalloc_array(count + 1, eb_element_size(),
+ __GFP_NOWARN | GFP_KERNEL);
+ if (exec2_list == NULL) {
+ DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
+ count);
+ return -ENOMEM;
+ }
+ if (copy_from_user(exec2_list,
+ u64_to_user_ptr(args->buffers_ptr),
+ sizeof(*exec2_list) * count)) {
+ DRM_DEBUG("copy %zd exec entries failed\n", count);
+ kvfree(exec2_list);
+ return -EFAULT;
+ }
+
+ if (args->flags & I915_EXEC_FENCE_ARRAY) {
+ fences = get_fence_array(args, file);
+ if (IS_ERR(fences)) {
+ kvfree(exec2_list);
+ return PTR_ERR(fences);
+ }
+ }
+
+ err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
+
+ /*
+ * Now that we have begun execution of the batchbuffer, we ignore
+ * any new error after this point. Also given that we have already
+ * updated the associated relocations, we try to write out the current
+ * object locations irrespective of any error.
+ */
+ if (args->flags & __EXEC_HAS_RELOC) {
+ struct drm_i915_gem_exec_object2 __user *user_exec_list =
+ u64_to_user_ptr(args->buffers_ptr);
+ unsigned int i;
+
+ /* Copy the new buffer offsets back to the user's exec list. */
+ /*
+ * Note: count * sizeof(*user_exec_list) does not overflow,
+ * because we checked 'count' in check_buffer_count().
+ *
+ * And this range already got effectively checked earlier
+ * when we did the "copy_from_user()" above.
+ */
+ if (!user_access_begin(VERIFY_WRITE, user_exec_list,
+ count * sizeof(*user_exec_list)))
+ goto end_user;
+
+ for (i = 0; i < args->buffer_count; i++) {
+ if (!(exec2_list[i].offset & UPDATE))
+ continue;
+
+ exec2_list[i].offset =
+ gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
+ unsafe_put_user(exec2_list[i].offset,
+ &user_exec_list[i].offset,
+ end_user);
+ }
+end_user:
+ user_access_end();
+ }
+
+ args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
+ put_fence_array(args, fences);
+ kvfree(exec2_list);
+ return err;
+}