diff options
Diffstat (limited to 'drivers/gpu/drm/i915/i915_gem_execbuffer.c')
-rw-r--r-- | drivers/gpu/drm/i915/i915_gem_execbuffer.c | 2683 |
1 files changed, 2683 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/i915_gem_execbuffer.c b/drivers/gpu/drm/i915/i915_gem_execbuffer.c new file mode 100644 index 000000000..8b5b147cd --- /dev/null +++ b/drivers/gpu/drm/i915/i915_gem_execbuffer.c @@ -0,0 +1,2683 @@ +/* + * Copyright © 2008,2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Authors: + * Eric Anholt <eric@anholt.net> + * Chris Wilson <chris@chris-wilson.co.uk> + * + */ + +#include <linux/dma_remapping.h> +#include <linux/reservation.h> +#include <linux/sync_file.h> +#include <linux/uaccess.h> + +#include <drm/drmP.h> +#include <drm/drm_syncobj.h> +#include <drm/i915_drm.h> + +#include "i915_drv.h" +#include "i915_gem_clflush.h" +#include "i915_trace.h" +#include "intel_drv.h" +#include "intel_frontbuffer.h" + +enum { + FORCE_CPU_RELOC = 1, + FORCE_GTT_RELOC, + FORCE_GPU_RELOC, +#define DBG_FORCE_RELOC 0 /* choose one of the above! */ +}; + +#define __EXEC_OBJECT_HAS_REF BIT(31) +#define __EXEC_OBJECT_HAS_PIN BIT(30) +#define __EXEC_OBJECT_HAS_FENCE BIT(29) +#define __EXEC_OBJECT_NEEDS_MAP BIT(28) +#define __EXEC_OBJECT_NEEDS_BIAS BIT(27) +#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ +#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) + +#define __EXEC_HAS_RELOC BIT(31) +#define __EXEC_VALIDATED BIT(30) +#define __EXEC_INTERNAL_FLAGS (~0u << 30) +#define UPDATE PIN_OFFSET_FIXED + +#define BATCH_OFFSET_BIAS (256*1024) + +#define __I915_EXEC_ILLEGAL_FLAGS \ + (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK) + +/* Catch emission of unexpected errors for CI! */ +#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) +#undef EINVAL +#define EINVAL ({ \ + DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ + 22; \ +}) +#endif + +/** + * DOC: User command execution + * + * Userspace submits commands to be executed on the GPU as an instruction + * stream within a GEM object we call a batchbuffer. This instructions may + * refer to other GEM objects containing auxiliary state such as kernels, + * samplers, render targets and even secondary batchbuffers. Userspace does + * not know where in the GPU memory these objects reside and so before the + * batchbuffer is passed to the GPU for execution, those addresses in the + * batchbuffer and auxiliary objects are updated. This is known as relocation, + * or patching. To try and avoid having to relocate each object on the next + * execution, userspace is told the location of those objects in this pass, + * but this remains just a hint as the kernel may choose a new location for + * any object in the future. + * + * At the level of talking to the hardware, submitting a batchbuffer for the + * GPU to execute is to add content to a buffer from which the HW + * command streamer is reading. + * + * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. + * Execlists, this command is not placed on the same buffer as the + * remaining items. + * + * 2. Add a command to invalidate caches to the buffer. + * + * 3. Add a batchbuffer start command to the buffer; the start command is + * essentially a token together with the GPU address of the batchbuffer + * to be executed. + * + * 4. Add a pipeline flush to the buffer. + * + * 5. Add a memory write command to the buffer to record when the GPU + * is done executing the batchbuffer. The memory write writes the + * global sequence number of the request, ``i915_request::global_seqno``; + * the i915 driver uses the current value in the register to determine + * if the GPU has completed the batchbuffer. + * + * 6. Add a user interrupt command to the buffer. This command instructs + * the GPU to issue an interrupt when the command, pipeline flush and + * memory write are completed. + * + * 7. Inform the hardware of the additional commands added to the buffer + * (by updating the tail pointer). + * + * Processing an execbuf ioctl is conceptually split up into a few phases. + * + * 1. Validation - Ensure all the pointers, handles and flags are valid. + * 2. Reservation - Assign GPU address space for every object + * 3. Relocation - Update any addresses to point to the final locations + * 4. Serialisation - Order the request with respect to its dependencies + * 5. Construction - Construct a request to execute the batchbuffer + * 6. Submission (at some point in the future execution) + * + * Reserving resources for the execbuf is the most complicated phase. We + * neither want to have to migrate the object in the address space, nor do + * we want to have to update any relocations pointing to this object. Ideally, + * we want to leave the object where it is and for all the existing relocations + * to match. If the object is given a new address, or if userspace thinks the + * object is elsewhere, we have to parse all the relocation entries and update + * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that + * all the target addresses in all of its objects match the value in the + * relocation entries and that they all match the presumed offsets given by the + * list of execbuffer objects. Using this knowledge, we know that if we haven't + * moved any buffers, all the relocation entries are valid and we can skip + * the update. (If userspace is wrong, the likely outcome is an impromptu GPU + * hang.) The requirement for using I915_EXEC_NO_RELOC are: + * + * The addresses written in the objects must match the corresponding + * reloc.presumed_offset which in turn must match the corresponding + * execobject.offset. + * + * Any render targets written to in the batch must be flagged with + * EXEC_OBJECT_WRITE. + * + * To avoid stalling, execobject.offset should match the current + * address of that object within the active context. + * + * The reservation is done is multiple phases. First we try and keep any + * object already bound in its current location - so as long as meets the + * constraints imposed by the new execbuffer. Any object left unbound after the + * first pass is then fitted into any available idle space. If an object does + * not fit, all objects are removed from the reservation and the process rerun + * after sorting the objects into a priority order (more difficult to fit + * objects are tried first). Failing that, the entire VM is cleared and we try + * to fit the execbuf once last time before concluding that it simply will not + * fit. + * + * A small complication to all of this is that we allow userspace not only to + * specify an alignment and a size for the object in the address space, but + * we also allow userspace to specify the exact offset. This objects are + * simpler to place (the location is known a priori) all we have to do is make + * sure the space is available. + * + * Once all the objects are in place, patching up the buried pointers to point + * to the final locations is a fairly simple job of walking over the relocation + * entry arrays, looking up the right address and rewriting the value into + * the object. Simple! ... The relocation entries are stored in user memory + * and so to access them we have to copy them into a local buffer. That copy + * has to avoid taking any pagefaults as they may lead back to a GEM object + * requiring the struct_mutex (i.e. recursive deadlock). So once again we split + * the relocation into multiple passes. First we try to do everything within an + * atomic context (avoid the pagefaults) which requires that we never wait. If + * we detect that we may wait, or if we need to fault, then we have to fallback + * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm + * bells yet?) Dropping the mutex means that we lose all the state we have + * built up so far for the execbuf and we must reset any global data. However, + * we do leave the objects pinned in their final locations - which is a + * potential issue for concurrent execbufs. Once we have left the mutex, we can + * allocate and copy all the relocation entries into a large array at our + * leisure, reacquire the mutex, reclaim all the objects and other state and + * then proceed to update any incorrect addresses with the objects. + * + * As we process the relocation entries, we maintain a record of whether the + * object is being written to. Using NORELOC, we expect userspace to provide + * this information instead. We also check whether we can skip the relocation + * by comparing the expected value inside the relocation entry with the target's + * final address. If they differ, we have to map the current object and rewrite + * the 4 or 8 byte pointer within. + * + * Serialising an execbuf is quite simple according to the rules of the GEM + * ABI. Execution within each context is ordered by the order of submission. + * Writes to any GEM object are in order of submission and are exclusive. Reads + * from a GEM object are unordered with respect to other reads, but ordered by + * writes. A write submitted after a read cannot occur before the read, and + * similarly any read submitted after a write cannot occur before the write. + * Writes are ordered between engines such that only one write occurs at any + * time (completing any reads beforehand) - using semaphores where available + * and CPU serialisation otherwise. Other GEM access obey the same rules, any + * write (either via mmaps using set-domain, or via pwrite) must flush all GPU + * reads before starting, and any read (either using set-domain or pread) must + * flush all GPU writes before starting. (Note we only employ a barrier before, + * we currently rely on userspace not concurrently starting a new execution + * whilst reading or writing to an object. This may be an advantage or not + * depending on how much you trust userspace not to shoot themselves in the + * foot.) Serialisation may just result in the request being inserted into + * a DAG awaiting its turn, but most simple is to wait on the CPU until + * all dependencies are resolved. + * + * After all of that, is just a matter of closing the request and handing it to + * the hardware (well, leaving it in a queue to be executed). However, we also + * offer the ability for batchbuffers to be run with elevated privileges so + * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) + * Before any batch is given extra privileges we first must check that it + * contains no nefarious instructions, we check that each instruction is from + * our whitelist and all registers are also from an allowed list. We first + * copy the user's batchbuffer to a shadow (so that the user doesn't have + * access to it, either by the CPU or GPU as we scan it) and then parse each + * instruction. If everything is ok, we set a flag telling the hardware to run + * the batchbuffer in trusted mode, otherwise the ioctl is rejected. + */ + +struct i915_execbuffer { + struct drm_i915_private *i915; /** i915 backpointer */ + struct drm_file *file; /** per-file lookup tables and limits */ + struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ + struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ + struct i915_vma **vma; + unsigned int *flags; + + struct intel_engine_cs *engine; /** engine to queue the request to */ + struct i915_gem_context *ctx; /** context for building the request */ + struct i915_address_space *vm; /** GTT and vma for the request */ + + struct i915_request *request; /** our request to build */ + struct i915_vma *batch; /** identity of the batch obj/vma */ + + /** actual size of execobj[] as we may extend it for the cmdparser */ + unsigned int buffer_count; + + /** list of vma not yet bound during reservation phase */ + struct list_head unbound; + + /** list of vma that have execobj.relocation_count */ + struct list_head relocs; + + /** + * Track the most recently used object for relocations, as we + * frequently have to perform multiple relocations within the same + * obj/page + */ + struct reloc_cache { + struct drm_mm_node node; /** temporary GTT binding */ + unsigned long vaddr; /** Current kmap address */ + unsigned long page; /** Currently mapped page index */ + unsigned int gen; /** Cached value of INTEL_GEN */ + bool use_64bit_reloc : 1; + bool has_llc : 1; + bool has_fence : 1; + bool needs_unfenced : 1; + + struct i915_request *rq; + u32 *rq_cmd; + unsigned int rq_size; + } reloc_cache; + + u64 invalid_flags; /** Set of execobj.flags that are invalid */ + u32 context_flags; /** Set of execobj.flags to insert from the ctx */ + + u32 batch_start_offset; /** Location within object of batch */ + u32 batch_len; /** Length of batch within object */ + u32 batch_flags; /** Flags composed for emit_bb_start() */ + + /** + * Indicate either the size of the hastable used to resolve + * relocation handles, or if negative that we are using a direct + * index into the execobj[]. + */ + int lut_size; + struct hlist_head *buckets; /** ht for relocation handles */ +}; + +#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) + +/* + * Used to convert any address to canonical form. + * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, + * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the + * addresses to be in a canonical form: + * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct + * canonical form [63:48] == [47]." + */ +#define GEN8_HIGH_ADDRESS_BIT 47 +static inline u64 gen8_canonical_addr(u64 address) +{ + return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); +} + +static inline u64 gen8_noncanonical_addr(u64 address) +{ + return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); +} + +static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) +{ + return intel_engine_requires_cmd_parser(eb->engine) || + (intel_engine_using_cmd_parser(eb->engine) && + eb->args->batch_len); +} + +static int eb_create(struct i915_execbuffer *eb) +{ + if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { + unsigned int size = 1 + ilog2(eb->buffer_count); + + /* + * Without a 1:1 association between relocation handles and + * the execobject[] index, we instead create a hashtable. + * We size it dynamically based on available memory, starting + * first with 1:1 assocative hash and scaling back until + * the allocation succeeds. + * + * Later on we use a positive lut_size to indicate we are + * using this hashtable, and a negative value to indicate a + * direct lookup. + */ + do { + gfp_t flags; + + /* While we can still reduce the allocation size, don't + * raise a warning and allow the allocation to fail. + * On the last pass though, we want to try as hard + * as possible to perform the allocation and warn + * if it fails. + */ + flags = GFP_KERNEL; + if (size > 1) + flags |= __GFP_NORETRY | __GFP_NOWARN; + + eb->buckets = kzalloc(sizeof(struct hlist_head) << size, + flags); + if (eb->buckets) + break; + } while (--size); + + if (unlikely(!size)) + return -ENOMEM; + + eb->lut_size = size; + } else { + eb->lut_size = -eb->buffer_count; + } + + return 0; +} + +static bool +eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, + const struct i915_vma *vma, + unsigned int flags) +{ + if (vma->node.size < entry->pad_to_size) + return true; + + if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) + return true; + + if (flags & EXEC_OBJECT_PINNED && + vma->node.start != entry->offset) + return true; + + if (flags & __EXEC_OBJECT_NEEDS_BIAS && + vma->node.start < BATCH_OFFSET_BIAS) + return true; + + if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && + (vma->node.start + vma->node.size + 4095) >> 32) + return true; + + if (flags & __EXEC_OBJECT_NEEDS_MAP && + !i915_vma_is_map_and_fenceable(vma)) + return true; + + return false; +} + +static inline bool +eb_pin_vma(struct i915_execbuffer *eb, + const struct drm_i915_gem_exec_object2 *entry, + struct i915_vma *vma) +{ + unsigned int exec_flags = *vma->exec_flags; + u64 pin_flags; + + if (vma->node.size) + pin_flags = vma->node.start; + else + pin_flags = entry->offset & PIN_OFFSET_MASK; + + pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; + if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) + pin_flags |= PIN_GLOBAL; + + if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) + return false; + + if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { + if (unlikely(i915_vma_pin_fence(vma))) { + i915_vma_unpin(vma); + return false; + } + + if (vma->fence) + exec_flags |= __EXEC_OBJECT_HAS_FENCE; + } + + *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; + return !eb_vma_misplaced(entry, vma, exec_flags); +} + +static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) +{ + GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); + + if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) + __i915_vma_unpin_fence(vma); + + __i915_vma_unpin(vma); +} + +static inline void +eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) +{ + if (!(*flags & __EXEC_OBJECT_HAS_PIN)) + return; + + __eb_unreserve_vma(vma, *flags); + *flags &= ~__EXEC_OBJECT_RESERVED; +} + +static int +eb_validate_vma(struct i915_execbuffer *eb, + struct drm_i915_gem_exec_object2 *entry, + struct i915_vma *vma) +{ + if (unlikely(entry->flags & eb->invalid_flags)) + return -EINVAL; + + if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) + return -EINVAL; + + /* + * Offset can be used as input (EXEC_OBJECT_PINNED), reject + * any non-page-aligned or non-canonical addresses. + */ + if (unlikely(entry->flags & EXEC_OBJECT_PINNED && + entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) + return -EINVAL; + + /* pad_to_size was once a reserved field, so sanitize it */ + if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { + if (unlikely(offset_in_page(entry->pad_to_size))) + return -EINVAL; + } else { + entry->pad_to_size = 0; + } + + if (unlikely(vma->exec_flags)) { + DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", + entry->handle, (int)(entry - eb->exec)); + return -EINVAL; + } + + /* + * From drm_mm perspective address space is continuous, + * so from this point we're always using non-canonical + * form internally. + */ + entry->offset = gen8_noncanonical_addr(entry->offset); + + if (!eb->reloc_cache.has_fence) { + entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; + } else { + if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || + eb->reloc_cache.needs_unfenced) && + i915_gem_object_is_tiled(vma->obj)) + entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; + } + + if (!(entry->flags & EXEC_OBJECT_PINNED)) + entry->flags |= eb->context_flags; + + return 0; +} + +static int +eb_add_vma(struct i915_execbuffer *eb, + unsigned int i, unsigned batch_idx, + struct i915_vma *vma) +{ + struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; + int err; + + GEM_BUG_ON(i915_vma_is_closed(vma)); + + if (!(eb->args->flags & __EXEC_VALIDATED)) { + err = eb_validate_vma(eb, entry, vma); + if (unlikely(err)) + return err; + } + + if (eb->lut_size > 0) { + vma->exec_handle = entry->handle; + hlist_add_head(&vma->exec_node, + &eb->buckets[hash_32(entry->handle, + eb->lut_size)]); + } + + if (entry->relocation_count) + list_add_tail(&vma->reloc_link, &eb->relocs); + + /* + * Stash a pointer from the vma to execobj, so we can query its flags, + * size, alignment etc as provided by the user. Also we stash a pointer + * to the vma inside the execobj so that we can use a direct lookup + * to find the right target VMA when doing relocations. + */ + eb->vma[i] = vma; + eb->flags[i] = entry->flags; + vma->exec_flags = &eb->flags[i]; + + /* + * SNA is doing fancy tricks with compressing batch buffers, which leads + * to negative relocation deltas. Usually that works out ok since the + * relocate address is still positive, except when the batch is placed + * very low in the GTT. Ensure this doesn't happen. + * + * Note that actual hangs have only been observed on gen7, but for + * paranoia do it everywhere. + */ + if (i == batch_idx) { + if (entry->relocation_count && + !(eb->flags[i] & EXEC_OBJECT_PINNED)) + eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; + if (eb->reloc_cache.has_fence) + eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; + + eb->batch = vma; + } + + err = 0; + if (eb_pin_vma(eb, entry, vma)) { + if (entry->offset != vma->node.start) { + entry->offset = vma->node.start | UPDATE; + eb->args->flags |= __EXEC_HAS_RELOC; + } + } else { + eb_unreserve_vma(vma, vma->exec_flags); + + list_add_tail(&vma->exec_link, &eb->unbound); + if (drm_mm_node_allocated(&vma->node)) + err = i915_vma_unbind(vma); + if (unlikely(err)) + vma->exec_flags = NULL; + } + return err; +} + +static inline int use_cpu_reloc(const struct reloc_cache *cache, + const struct drm_i915_gem_object *obj) +{ + if (!i915_gem_object_has_struct_page(obj)) + return false; + + if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) + return true; + + if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) + return false; + + return (cache->has_llc || + obj->cache_dirty || + obj->cache_level != I915_CACHE_NONE); +} + +static int eb_reserve_vma(const struct i915_execbuffer *eb, + struct i915_vma *vma) +{ + struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); + unsigned int exec_flags = *vma->exec_flags; + u64 pin_flags; + int err; + + pin_flags = PIN_USER | PIN_NONBLOCK; + if (exec_flags & EXEC_OBJECT_NEEDS_GTT) + pin_flags |= PIN_GLOBAL; + + /* + * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, + * limit address to the first 4GBs for unflagged objects. + */ + if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) + pin_flags |= PIN_ZONE_4G; + + if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) + pin_flags |= PIN_MAPPABLE; + + if (exec_flags & EXEC_OBJECT_PINNED) { + pin_flags |= entry->offset | PIN_OFFSET_FIXED; + pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ + } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { + pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; + } + + err = i915_vma_pin(vma, + entry->pad_to_size, entry->alignment, + pin_flags); + if (err) + return err; + + if (entry->offset != vma->node.start) { + entry->offset = vma->node.start | UPDATE; + eb->args->flags |= __EXEC_HAS_RELOC; + } + + if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { + err = i915_vma_pin_fence(vma); + if (unlikely(err)) { + i915_vma_unpin(vma); + return err; + } + + if (vma->fence) + exec_flags |= __EXEC_OBJECT_HAS_FENCE; + } + + *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; + GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); + + return 0; +} + +static int eb_reserve(struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + struct list_head last; + struct i915_vma *vma; + unsigned int i, pass; + int err; + + /* + * Attempt to pin all of the buffers into the GTT. + * This is done in 3 phases: + * + * 1a. Unbind all objects that do not match the GTT constraints for + * the execbuffer (fenceable, mappable, alignment etc). + * 1b. Increment pin count for already bound objects. + * 2. Bind new objects. + * 3. Decrement pin count. + * + * This avoid unnecessary unbinding of later objects in order to make + * room for the earlier objects *unless* we need to defragment. + */ + + pass = 0; + err = 0; + do { + list_for_each_entry(vma, &eb->unbound, exec_link) { + err = eb_reserve_vma(eb, vma); + if (err) + break; + } + if (err != -ENOSPC) + return err; + + /* Resort *all* the objects into priority order */ + INIT_LIST_HEAD(&eb->unbound); + INIT_LIST_HEAD(&last); + for (i = 0; i < count; i++) { + unsigned int flags = eb->flags[i]; + struct i915_vma *vma = eb->vma[i]; + + if (flags & EXEC_OBJECT_PINNED && + flags & __EXEC_OBJECT_HAS_PIN) + continue; + + eb_unreserve_vma(vma, &eb->flags[i]); + + if (flags & EXEC_OBJECT_PINNED) + list_add(&vma->exec_link, &eb->unbound); + else if (flags & __EXEC_OBJECT_NEEDS_MAP) + list_add_tail(&vma->exec_link, &eb->unbound); + else + list_add_tail(&vma->exec_link, &last); + } + list_splice_tail(&last, &eb->unbound); + + switch (pass++) { + case 0: + break; + + case 1: + /* Too fragmented, unbind everything and retry */ + err = i915_gem_evict_vm(eb->vm); + if (err) + return err; + break; + + default: + return -ENOSPC; + } + } while (1); +} + +static unsigned int eb_batch_index(const struct i915_execbuffer *eb) +{ + if (eb->args->flags & I915_EXEC_BATCH_FIRST) + return 0; + else + return eb->buffer_count - 1; +} + +static int eb_select_context(struct i915_execbuffer *eb) +{ + struct i915_gem_context *ctx; + + ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); + if (unlikely(!ctx)) + return -ENOENT; + + eb->ctx = ctx; + eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm; + + eb->context_flags = 0; + if (ctx->flags & CONTEXT_NO_ZEROMAP) + eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; + + return 0; +} + +static int eb_lookup_vmas(struct i915_execbuffer *eb) +{ + struct radix_tree_root *handles_vma = &eb->ctx->handles_vma; + struct drm_i915_gem_object *obj; + unsigned int i, batch; + int err; + + if (unlikely(i915_gem_context_is_closed(eb->ctx))) + return -ENOENT; + + if (unlikely(i915_gem_context_is_banned(eb->ctx))) + return -EIO; + + INIT_LIST_HEAD(&eb->relocs); + INIT_LIST_HEAD(&eb->unbound); + + batch = eb_batch_index(eb); + + for (i = 0; i < eb->buffer_count; i++) { + u32 handle = eb->exec[i].handle; + struct i915_lut_handle *lut; + struct i915_vma *vma; + + vma = radix_tree_lookup(handles_vma, handle); + if (likely(vma)) + goto add_vma; + + obj = i915_gem_object_lookup(eb->file, handle); + if (unlikely(!obj)) { + err = -ENOENT; + goto err_vma; + } + + vma = i915_vma_instance(obj, eb->vm, NULL); + if (unlikely(IS_ERR(vma))) { + err = PTR_ERR(vma); + goto err_obj; + } + + lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL); + if (unlikely(!lut)) { + err = -ENOMEM; + goto err_obj; + } + + err = radix_tree_insert(handles_vma, handle, vma); + if (unlikely(err)) { + kmem_cache_free(eb->i915->luts, lut); + goto err_obj; + } + + /* transfer ref to ctx */ + if (!vma->open_count++) + i915_vma_reopen(vma); + list_add(&lut->obj_link, &obj->lut_list); + list_add(&lut->ctx_link, &eb->ctx->handles_list); + lut->ctx = eb->ctx; + lut->handle = handle; + +add_vma: + err = eb_add_vma(eb, i, batch, vma); + if (unlikely(err)) + goto err_vma; + + GEM_BUG_ON(vma != eb->vma[i]); + GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); + GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && + eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); + } + + eb->args->flags |= __EXEC_VALIDATED; + return eb_reserve(eb); + +err_obj: + i915_gem_object_put(obj); +err_vma: + eb->vma[i] = NULL; + return err; +} + +static struct i915_vma * +eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) +{ + if (eb->lut_size < 0) { + if (handle >= -eb->lut_size) + return NULL; + return eb->vma[handle]; + } else { + struct hlist_head *head; + struct i915_vma *vma; + + head = &eb->buckets[hash_32(handle, eb->lut_size)]; + hlist_for_each_entry(vma, head, exec_node) { + if (vma->exec_handle == handle) + return vma; + } + return NULL; + } +} + +static void eb_release_vmas(const struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + + for (i = 0; i < count; i++) { + struct i915_vma *vma = eb->vma[i]; + unsigned int flags = eb->flags[i]; + + if (!vma) + break; + + GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); + vma->exec_flags = NULL; + eb->vma[i] = NULL; + + if (flags & __EXEC_OBJECT_HAS_PIN) + __eb_unreserve_vma(vma, flags); + + if (flags & __EXEC_OBJECT_HAS_REF) + i915_vma_put(vma); + } +} + +static void eb_reset_vmas(const struct i915_execbuffer *eb) +{ + eb_release_vmas(eb); + if (eb->lut_size > 0) + memset(eb->buckets, 0, + sizeof(struct hlist_head) << eb->lut_size); +} + +static void eb_destroy(const struct i915_execbuffer *eb) +{ + GEM_BUG_ON(eb->reloc_cache.rq); + + if (eb->lut_size > 0) + kfree(eb->buckets); +} + +static inline u64 +relocation_target(const struct drm_i915_gem_relocation_entry *reloc, + const struct i915_vma *target) +{ + return gen8_canonical_addr((int)reloc->delta + target->node.start); +} + +static void reloc_cache_init(struct reloc_cache *cache, + struct drm_i915_private *i915) +{ + cache->page = -1; + cache->vaddr = 0; + /* Must be a variable in the struct to allow GCC to unroll. */ + cache->gen = INTEL_GEN(i915); + cache->has_llc = HAS_LLC(i915); + cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); + cache->has_fence = cache->gen < 4; + cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; + cache->node.allocated = false; + cache->rq = NULL; + cache->rq_size = 0; +} + +static inline void *unmask_page(unsigned long p) +{ + return (void *)(uintptr_t)(p & PAGE_MASK); +} + +static inline unsigned int unmask_flags(unsigned long p) +{ + return p & ~PAGE_MASK; +} + +#define KMAP 0x4 /* after CLFLUSH_FLAGS */ + +static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) +{ + struct drm_i915_private *i915 = + container_of(cache, struct i915_execbuffer, reloc_cache)->i915; + return &i915->ggtt; +} + +static void reloc_gpu_flush(struct reloc_cache *cache) +{ + GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); + cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; + i915_gem_object_unpin_map(cache->rq->batch->obj); + i915_gem_chipset_flush(cache->rq->i915); + + i915_request_add(cache->rq); + cache->rq = NULL; +} + +static void reloc_cache_reset(struct reloc_cache *cache) +{ + void *vaddr; + + if (cache->rq) + reloc_gpu_flush(cache); + + if (!cache->vaddr) + return; + + vaddr = unmask_page(cache->vaddr); + if (cache->vaddr & KMAP) { + if (cache->vaddr & CLFLUSH_AFTER) + mb(); + + kunmap_atomic(vaddr); + i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm); + } else { + wmb(); + io_mapping_unmap_atomic((void __iomem *)vaddr); + if (cache->node.allocated) { + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + + ggtt->vm.clear_range(&ggtt->vm, + cache->node.start, + cache->node.size); + drm_mm_remove_node(&cache->node); + } else { + i915_vma_unpin((struct i915_vma *)cache->node.mm); + } + } + + cache->vaddr = 0; + cache->page = -1; +} + +static void *reloc_kmap(struct drm_i915_gem_object *obj, + struct reloc_cache *cache, + unsigned long page) +{ + void *vaddr; + + if (cache->vaddr) { + kunmap_atomic(unmask_page(cache->vaddr)); + } else { + unsigned int flushes; + int err; + + err = i915_gem_obj_prepare_shmem_write(obj, &flushes); + if (err) + return ERR_PTR(err); + + BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); + BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); + + cache->vaddr = flushes | KMAP; + cache->node.mm = (void *)obj; + if (flushes) + mb(); + } + + vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); + cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; + cache->page = page; + + return vaddr; +} + +static void *reloc_iomap(struct drm_i915_gem_object *obj, + struct reloc_cache *cache, + unsigned long page) +{ + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + unsigned long offset; + void *vaddr; + + if (cache->vaddr) { + io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); + } else { + struct i915_vma *vma; + int err; + + if (use_cpu_reloc(cache, obj)) + return NULL; + + err = i915_gem_object_set_to_gtt_domain(obj, true); + if (err) + return ERR_PTR(err); + + vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, + PIN_MAPPABLE | + PIN_NONBLOCK | + PIN_NONFAULT); + if (IS_ERR(vma)) { + memset(&cache->node, 0, sizeof(cache->node)); + err = drm_mm_insert_node_in_range + (&ggtt->vm.mm, &cache->node, + PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, + 0, ggtt->mappable_end, + DRM_MM_INSERT_LOW); + if (err) /* no inactive aperture space, use cpu reloc */ + return NULL; + } else { + err = i915_vma_put_fence(vma); + if (err) { + i915_vma_unpin(vma); + return ERR_PTR(err); + } + + cache->node.start = vma->node.start; + cache->node.mm = (void *)vma; + } + } + + offset = cache->node.start; + if (cache->node.allocated) { + wmb(); + ggtt->vm.insert_page(&ggtt->vm, + i915_gem_object_get_dma_address(obj, page), + offset, I915_CACHE_NONE, 0); + } else { + offset += page << PAGE_SHIFT; + } + + vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, + offset); + cache->page = page; + cache->vaddr = (unsigned long)vaddr; + + return vaddr; +} + +static void *reloc_vaddr(struct drm_i915_gem_object *obj, + struct reloc_cache *cache, + unsigned long page) +{ + void *vaddr; + + if (cache->page == page) { + vaddr = unmask_page(cache->vaddr); + } else { + vaddr = NULL; + if ((cache->vaddr & KMAP) == 0) + vaddr = reloc_iomap(obj, cache, page); + if (!vaddr) + vaddr = reloc_kmap(obj, cache, page); + } + + return vaddr; +} + +static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) +{ + if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { + if (flushes & CLFLUSH_BEFORE) { + clflushopt(addr); + mb(); + } + + *addr = value; + + /* + * Writes to the same cacheline are serialised by the CPU + * (including clflush). On the write path, we only require + * that it hits memory in an orderly fashion and place + * mb barriers at the start and end of the relocation phase + * to ensure ordering of clflush wrt to the system. + */ + if (flushes & CLFLUSH_AFTER) + clflushopt(addr); + } else + *addr = value; +} + +static int __reloc_gpu_alloc(struct i915_execbuffer *eb, + struct i915_vma *vma, + unsigned int len) +{ + struct reloc_cache *cache = &eb->reloc_cache; + struct drm_i915_gem_object *obj; + struct i915_request *rq; + struct i915_vma *batch; + u32 *cmd; + int err; + + GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU); + + obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE); + if (IS_ERR(obj)) + return PTR_ERR(obj); + + cmd = i915_gem_object_pin_map(obj, + cache->has_llc ? + I915_MAP_FORCE_WB : + I915_MAP_FORCE_WC); + i915_gem_object_unpin_pages(obj); + if (IS_ERR(cmd)) + return PTR_ERR(cmd); + + err = i915_gem_object_set_to_wc_domain(obj, false); + if (err) + goto err_unmap; + + batch = i915_vma_instance(obj, vma->vm, NULL); + if (IS_ERR(batch)) { + err = PTR_ERR(batch); + goto err_unmap; + } + + err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); + if (err) + goto err_unmap; + + rq = i915_request_alloc(eb->engine, eb->ctx); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err_unpin; + } + + err = i915_request_await_object(rq, vma->obj, true); + if (err) + goto err_request; + + err = eb->engine->emit_bb_start(rq, + batch->node.start, PAGE_SIZE, + cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); + if (err) + goto err_request; + + GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true)); + err = i915_vma_move_to_active(batch, rq, 0); + if (err) + goto skip_request; + + err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); + if (err) + goto skip_request; + + rq->batch = batch; + i915_vma_unpin(batch); + + cache->rq = rq; + cache->rq_cmd = cmd; + cache->rq_size = 0; + + /* Return with batch mapping (cmd) still pinned */ + return 0; + +skip_request: + i915_request_skip(rq, err); +err_request: + i915_request_add(rq); +err_unpin: + i915_vma_unpin(batch); +err_unmap: + i915_gem_object_unpin_map(obj); + return err; +} + +static u32 *reloc_gpu(struct i915_execbuffer *eb, + struct i915_vma *vma, + unsigned int len) +{ + struct reloc_cache *cache = &eb->reloc_cache; + u32 *cmd; + + if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) + reloc_gpu_flush(cache); + + if (unlikely(!cache->rq)) { + int err; + + /* If we need to copy for the cmdparser, we will stall anyway */ + if (eb_use_cmdparser(eb)) + return ERR_PTR(-EWOULDBLOCK); + + if (!intel_engine_can_store_dword(eb->engine)) + return ERR_PTR(-ENODEV); + + err = __reloc_gpu_alloc(eb, vma, len); + if (unlikely(err)) + return ERR_PTR(err); + } + + cmd = cache->rq_cmd + cache->rq_size; + cache->rq_size += len; + + return cmd; +} + +static u64 +relocate_entry(struct i915_vma *vma, + const struct drm_i915_gem_relocation_entry *reloc, + struct i915_execbuffer *eb, + const struct i915_vma *target) +{ + u64 offset = reloc->offset; + u64 target_offset = relocation_target(reloc, target); + bool wide = eb->reloc_cache.use_64bit_reloc; + void *vaddr; + + if (!eb->reloc_cache.vaddr && + (DBG_FORCE_RELOC == FORCE_GPU_RELOC || + !reservation_object_test_signaled_rcu(vma->resv, true))) { + const unsigned int gen = eb->reloc_cache.gen; + unsigned int len; + u32 *batch; + u64 addr; + + if (wide) + len = offset & 7 ? 8 : 5; + else if (gen >= 4) + len = 4; + else + len = 3; + + batch = reloc_gpu(eb, vma, len); + if (IS_ERR(batch)) + goto repeat; + + addr = gen8_canonical_addr(vma->node.start + offset); + if (wide) { + if (offset & 7) { + *batch++ = MI_STORE_DWORD_IMM_GEN4; + *batch++ = lower_32_bits(addr); + *batch++ = upper_32_bits(addr); + *batch++ = lower_32_bits(target_offset); + + addr = gen8_canonical_addr(addr + 4); + + *batch++ = MI_STORE_DWORD_IMM_GEN4; + *batch++ = lower_32_bits(addr); + *batch++ = upper_32_bits(addr); + *batch++ = upper_32_bits(target_offset); + } else { + *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; + *batch++ = lower_32_bits(addr); + *batch++ = upper_32_bits(addr); + *batch++ = lower_32_bits(target_offset); + *batch++ = upper_32_bits(target_offset); + } + } else if (gen >= 6) { + *batch++ = MI_STORE_DWORD_IMM_GEN4; + *batch++ = 0; + *batch++ = addr; + *batch++ = target_offset; + } else if (gen >= 4) { + *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; + *batch++ = 0; + *batch++ = addr; + *batch++ = target_offset; + } else { + *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; + *batch++ = addr; + *batch++ = target_offset; + } + + goto out; + } + +repeat: + vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + clflush_write32(vaddr + offset_in_page(offset), + lower_32_bits(target_offset), + eb->reloc_cache.vaddr); + + if (wide) { + offset += sizeof(u32); + target_offset >>= 32; + wide = false; + goto repeat; + } + +out: + return target->node.start | UPDATE; +} + +static u64 +eb_relocate_entry(struct i915_execbuffer *eb, + struct i915_vma *vma, + const struct drm_i915_gem_relocation_entry *reloc) +{ + struct i915_vma *target; + int err; + + /* we've already hold a reference to all valid objects */ + target = eb_get_vma(eb, reloc->target_handle); + if (unlikely(!target)) + return -ENOENT; + + /* Validate that the target is in a valid r/w GPU domain */ + if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { + DRM_DEBUG("reloc with multiple write domains: " + "target %d offset %d " + "read %08x write %08x", + reloc->target_handle, + (int) reloc->offset, + reloc->read_domains, + reloc->write_domain); + return -EINVAL; + } + if (unlikely((reloc->write_domain | reloc->read_domains) + & ~I915_GEM_GPU_DOMAINS)) { + DRM_DEBUG("reloc with read/write non-GPU domains: " + "target %d offset %d " + "read %08x write %08x", + reloc->target_handle, + (int) reloc->offset, + reloc->read_domains, + reloc->write_domain); + return -EINVAL; + } + + if (reloc->write_domain) { + *target->exec_flags |= EXEC_OBJECT_WRITE; + + /* + * Sandybridge PPGTT errata: We need a global gtt mapping + * for MI and pipe_control writes because the gpu doesn't + * properly redirect them through the ppgtt for non_secure + * batchbuffers. + */ + if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && + IS_GEN6(eb->i915)) { + err = i915_vma_bind(target, target->obj->cache_level, + PIN_GLOBAL); + if (WARN_ONCE(err, + "Unexpected failure to bind target VMA!")) + return err; + } + } + + /* + * If the relocation already has the right value in it, no + * more work needs to be done. + */ + if (!DBG_FORCE_RELOC && + gen8_canonical_addr(target->node.start) == reloc->presumed_offset) + return 0; + + /* Check that the relocation address is valid... */ + if (unlikely(reloc->offset > + vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { + DRM_DEBUG("Relocation beyond object bounds: " + "target %d offset %d size %d.\n", + reloc->target_handle, + (int)reloc->offset, + (int)vma->size); + return -EINVAL; + } + if (unlikely(reloc->offset & 3)) { + DRM_DEBUG("Relocation not 4-byte aligned: " + "target %d offset %d.\n", + reloc->target_handle, + (int)reloc->offset); + return -EINVAL; + } + + /* + * If we write into the object, we need to force the synchronisation + * barrier, either with an asynchronous clflush or if we executed the + * patching using the GPU (though that should be serialised by the + * timeline). To be completely sure, and since we are required to + * do relocations we are already stalling, disable the user's opt + * out of our synchronisation. + */ + *vma->exec_flags &= ~EXEC_OBJECT_ASYNC; + + /* and update the user's relocation entry */ + return relocate_entry(vma, reloc, eb, target); +} + +static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) +{ +#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) + struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; + struct drm_i915_gem_relocation_entry __user *urelocs; + const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); + unsigned int remain; + + urelocs = u64_to_user_ptr(entry->relocs_ptr); + remain = entry->relocation_count; + if (unlikely(remain > N_RELOC(ULONG_MAX))) + return -EINVAL; + + /* + * We must check that the entire relocation array is safe + * to read. However, if the array is not writable the user loses + * the updated relocation values. + */ + if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs)))) + return -EFAULT; + + do { + struct drm_i915_gem_relocation_entry *r = stack; + unsigned int count = + min_t(unsigned int, remain, ARRAY_SIZE(stack)); + unsigned int copied; + + /* + * This is the fast path and we cannot handle a pagefault + * whilst holding the struct mutex lest the user pass in the + * relocations contained within a mmaped bo. For in such a case + * we, the page fault handler would call i915_gem_fault() and + * we would try to acquire the struct mutex again. Obviously + * this is bad and so lockdep complains vehemently. + */ + pagefault_disable(); + copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); + pagefault_enable(); + if (unlikely(copied)) { + remain = -EFAULT; + goto out; + } + + remain -= count; + do { + u64 offset = eb_relocate_entry(eb, vma, r); + + if (likely(offset == 0)) { + } else if ((s64)offset < 0) { + remain = (int)offset; + goto out; + } else { + /* + * Note that reporting an error now + * leaves everything in an inconsistent + * state as we have *already* changed + * the relocation value inside the + * object. As we have not changed the + * reloc.presumed_offset or will not + * change the execobject.offset, on the + * call we may not rewrite the value + * inside the object, leaving it + * dangling and causing a GPU hang. Unless + * userspace dynamically rebuilds the + * relocations on each execbuf rather than + * presume a static tree. + * + * We did previously check if the relocations + * were writable (access_ok), an error now + * would be a strange race with mprotect, + * having already demonstrated that we + * can read from this userspace address. + */ + offset = gen8_canonical_addr(offset & ~UPDATE); + __put_user(offset, + &urelocs[r-stack].presumed_offset); + } + } while (r++, --count); + urelocs += ARRAY_SIZE(stack); + } while (remain); +out: + reloc_cache_reset(&eb->reloc_cache); + return remain; +} + +static int +eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) +{ + const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); + struct drm_i915_gem_relocation_entry *relocs = + u64_to_ptr(typeof(*relocs), entry->relocs_ptr); + unsigned int i; + int err; + + for (i = 0; i < entry->relocation_count; i++) { + u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); + + if ((s64)offset < 0) { + err = (int)offset; + goto err; + } + } + err = 0; +err: + reloc_cache_reset(&eb->reloc_cache); + return err; +} + +static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) +{ + const char __user *addr, *end; + unsigned long size; + char __maybe_unused c; + + size = entry->relocation_count; + if (size == 0) + return 0; + + if (size > N_RELOC(ULONG_MAX)) + return -EINVAL; + + addr = u64_to_user_ptr(entry->relocs_ptr); + size *= sizeof(struct drm_i915_gem_relocation_entry); + if (!access_ok(VERIFY_READ, addr, size)) + return -EFAULT; + + end = addr + size; + for (; addr < end; addr += PAGE_SIZE) { + int err = __get_user(c, addr); + if (err) + return err; + } + return __get_user(c, end - 1); +} + +static int eb_copy_relocations(const struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + int err; + + for (i = 0; i < count; i++) { + const unsigned int nreloc = eb->exec[i].relocation_count; + struct drm_i915_gem_relocation_entry __user *urelocs; + struct drm_i915_gem_relocation_entry *relocs; + unsigned long size; + unsigned long copied; + + if (nreloc == 0) + continue; + + err = check_relocations(&eb->exec[i]); + if (err) + goto err; + + urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); + size = nreloc * sizeof(*relocs); + + relocs = kvmalloc_array(size, 1, GFP_KERNEL); + if (!relocs) { + kvfree(relocs); + err = -ENOMEM; + goto err; + } + + /* copy_from_user is limited to < 4GiB */ + copied = 0; + do { + unsigned int len = + min_t(u64, BIT_ULL(31), size - copied); + + if (__copy_from_user((char *)relocs + copied, + (char __user *)urelocs + copied, + len)) { + kvfree(relocs); + err = -EFAULT; + goto err; + } + + copied += len; + } while (copied < size); + + /* + * As we do not update the known relocation offsets after + * relocating (due to the complexities in lock handling), + * we need to mark them as invalid now so that we force the + * relocation processing next time. Just in case the target + * object is evicted and then rebound into its old + * presumed_offset before the next execbuffer - if that + * happened we would make the mistake of assuming that the + * relocations were valid. + */ + if (!user_access_begin(VERIFY_WRITE, urelocs, size)) + goto end_user; + + for (copied = 0; copied < nreloc; copied++) + unsafe_put_user(-1, + &urelocs[copied].presumed_offset, + end_user); +end_user: + user_access_end(); + + eb->exec[i].relocs_ptr = (uintptr_t)relocs; + } + + return 0; + +err: + while (i--) { + struct drm_i915_gem_relocation_entry *relocs = + u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); + if (eb->exec[i].relocation_count) + kvfree(relocs); + } + return err; +} + +static int eb_prefault_relocations(const struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + + if (unlikely(i915_modparams.prefault_disable)) + return 0; + + for (i = 0; i < count; i++) { + int err; + + err = check_relocations(&eb->exec[i]); + if (err) + return err; + } + + return 0; +} + +static noinline int eb_relocate_slow(struct i915_execbuffer *eb) +{ + struct drm_device *dev = &eb->i915->drm; + bool have_copy = false; + struct i915_vma *vma; + int err = 0; + +repeat: + if (signal_pending(current)) { + err = -ERESTARTSYS; + goto out; + } + + /* We may process another execbuffer during the unlock... */ + eb_reset_vmas(eb); + mutex_unlock(&dev->struct_mutex); + + /* + * We take 3 passes through the slowpatch. + * + * 1 - we try to just prefault all the user relocation entries and + * then attempt to reuse the atomic pagefault disabled fast path again. + * + * 2 - we copy the user entries to a local buffer here outside of the + * local and allow ourselves to wait upon any rendering before + * relocations + * + * 3 - we already have a local copy of the relocation entries, but + * were interrupted (EAGAIN) whilst waiting for the objects, try again. + */ + if (!err) { + err = eb_prefault_relocations(eb); + } else if (!have_copy) { + err = eb_copy_relocations(eb); + have_copy = err == 0; + } else { + cond_resched(); + err = 0; + } + if (err) { + mutex_lock(&dev->struct_mutex); + goto out; + } + + /* A frequent cause for EAGAIN are currently unavailable client pages */ + flush_workqueue(eb->i915->mm.userptr_wq); + + err = i915_mutex_lock_interruptible(dev); + if (err) { + mutex_lock(&dev->struct_mutex); + goto out; + } + + /* reacquire the objects */ + err = eb_lookup_vmas(eb); + if (err) + goto err; + + GEM_BUG_ON(!eb->batch); + + list_for_each_entry(vma, &eb->relocs, reloc_link) { + if (!have_copy) { + pagefault_disable(); + err = eb_relocate_vma(eb, vma); + pagefault_enable(); + if (err) + goto repeat; + } else { + err = eb_relocate_vma_slow(eb, vma); + if (err) + goto err; + } + } + + /* + * Leave the user relocations as are, this is the painfully slow path, + * and we want to avoid the complication of dropping the lock whilst + * having buffers reserved in the aperture and so causing spurious + * ENOSPC for random operations. + */ + +err: + if (err == -EAGAIN) + goto repeat; + +out: + if (have_copy) { + const unsigned int count = eb->buffer_count; + unsigned int i; + + for (i = 0; i < count; i++) { + const struct drm_i915_gem_exec_object2 *entry = + &eb->exec[i]; + struct drm_i915_gem_relocation_entry *relocs; + + if (!entry->relocation_count) + continue; + + relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); + kvfree(relocs); + } + } + + return err; +} + +static int eb_relocate(struct i915_execbuffer *eb) +{ + if (eb_lookup_vmas(eb)) + goto slow; + + /* The objects are in their final locations, apply the relocations. */ + if (eb->args->flags & __EXEC_HAS_RELOC) { + struct i915_vma *vma; + + list_for_each_entry(vma, &eb->relocs, reloc_link) { + if (eb_relocate_vma(eb, vma)) + goto slow; + } + } + + return 0; + +slow: + return eb_relocate_slow(eb); +} + +static int eb_move_to_gpu(struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + int err; + + for (i = 0; i < count; i++) { + unsigned int flags = eb->flags[i]; + struct i915_vma *vma = eb->vma[i]; + struct drm_i915_gem_object *obj = vma->obj; + + if (flags & EXEC_OBJECT_CAPTURE) { + struct i915_capture_list *capture; + + capture = kmalloc(sizeof(*capture), GFP_KERNEL); + if (unlikely(!capture)) + return -ENOMEM; + + capture->next = eb->request->capture_list; + capture->vma = eb->vma[i]; + eb->request->capture_list = capture; + } + + /* + * If the GPU is not _reading_ through the CPU cache, we need + * to make sure that any writes (both previous GPU writes from + * before a change in snooping levels and normal CPU writes) + * caught in that cache are flushed to main memory. + * + * We want to say + * obj->cache_dirty && + * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) + * but gcc's optimiser doesn't handle that as well and emits + * two jumps instead of one. Maybe one day... + */ + if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { + if (i915_gem_clflush_object(obj, 0)) + flags &= ~EXEC_OBJECT_ASYNC; + } + + if (flags & EXEC_OBJECT_ASYNC) + continue; + + err = i915_request_await_object + (eb->request, obj, flags & EXEC_OBJECT_WRITE); + if (err) + return err; + } + + for (i = 0; i < count; i++) { + unsigned int flags = eb->flags[i]; + struct i915_vma *vma = eb->vma[i]; + + err = i915_vma_move_to_active(vma, eb->request, flags); + if (unlikely(err)) { + i915_request_skip(eb->request, err); + return err; + } + + __eb_unreserve_vma(vma, flags); + vma->exec_flags = NULL; + + if (unlikely(flags & __EXEC_OBJECT_HAS_REF)) + i915_vma_put(vma); + } + eb->exec = NULL; + + /* Unconditionally flush any chipset caches (for streaming writes). */ + i915_gem_chipset_flush(eb->i915); + + return 0; +} + +static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) +{ + if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) + return false; + + /* Kernel clipping was a DRI1 misfeature */ + if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { + if (exec->num_cliprects || exec->cliprects_ptr) + return false; + } + + if (exec->DR4 == 0xffffffff) { + DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); + exec->DR4 = 0; + } + if (exec->DR1 || exec->DR4) + return false; + + if ((exec->batch_start_offset | exec->batch_len) & 0x7) + return false; + + return true; +} + +static int i915_reset_gen7_sol_offsets(struct i915_request *rq) +{ + u32 *cs; + int i; + + if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) { + DRM_DEBUG("sol reset is gen7/rcs only\n"); + return -EINVAL; + } + + cs = intel_ring_begin(rq, 4 * 2 + 2); + if (IS_ERR(cs)) + return PTR_ERR(cs); + + *cs++ = MI_LOAD_REGISTER_IMM(4); + for (i = 0; i < 4; i++) { + *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); + *cs++ = 0; + } + *cs++ = MI_NOOP; + intel_ring_advance(rq, cs); + + return 0; +} + +static struct i915_vma * +shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj) +{ + struct drm_i915_private *dev_priv = eb->i915; + struct i915_address_space *vm; + u64 flags; + + /* + * PPGTT backed shadow buffers must be mapped RO, to prevent + * post-scan tampering + */ + if (CMDPARSER_USES_GGTT(dev_priv)) { + flags = PIN_GLOBAL; + vm = &dev_priv->ggtt.vm; + } else if (eb->vm->has_read_only) { + flags = PIN_USER; + vm = eb->vm; + i915_gem_object_set_readonly(obj); + } else { + DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n"); + return ERR_PTR(-EINVAL); + } + + return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags); +} + +static struct i915_vma *eb_parse(struct i915_execbuffer *eb) +{ + struct drm_i915_gem_object *shadow_batch_obj; + struct i915_vma *vma; + u64 batch_start; + u64 shadow_batch_start; + int err; + + shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, + PAGE_ALIGN(eb->batch_len)); + if (IS_ERR(shadow_batch_obj)) + return ERR_CAST(shadow_batch_obj); + + vma = shadow_batch_pin(eb, shadow_batch_obj); + if (IS_ERR(vma)) + goto out; + + batch_start = gen8_canonical_addr(eb->batch->node.start) + + eb->batch_start_offset; + + shadow_batch_start = gen8_canonical_addr(vma->node.start); + + err = intel_engine_cmd_parser(eb->ctx, + eb->engine, + eb->batch->obj, + batch_start, + eb->batch_start_offset, + eb->batch_len, + shadow_batch_obj, + shadow_batch_start); + + if (err) { + i915_vma_unpin(vma); + + /* + * Unsafe GGTT-backed buffers can still be submitted safely + * as non-secure. + * For PPGTT backing however, we have no choice but to forcibly + * reject unsafe buffers + */ + if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES)) + /* Execute original buffer non-secure */ + vma = NULL; + else + vma = ERR_PTR(err); + + goto out; + } + + eb->vma[eb->buffer_count] = i915_vma_get(vma); + eb->flags[eb->buffer_count] = + __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; + vma->exec_flags = &eb->flags[eb->buffer_count]; + eb->buffer_count++; + eb->batch_start_offset = 0; + eb->batch = vma; + + /* eb->batch_len unchanged */ + + if (CMDPARSER_USES_GGTT(eb->i915)) + eb->batch_flags |= I915_DISPATCH_SECURE; + +out: + i915_gem_object_unpin_pages(shadow_batch_obj); + return vma; +} + +static void +add_to_client(struct i915_request *rq, struct drm_file *file) +{ + rq->file_priv = file->driver_priv; + list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list); +} + +static int eb_submit(struct i915_execbuffer *eb) +{ + int err; + + err = eb_move_to_gpu(eb); + if (err) + return err; + + if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { + err = i915_reset_gen7_sol_offsets(eb->request); + if (err) + return err; + } + + err = eb->engine->emit_bb_start(eb->request, + eb->batch->node.start + + eb->batch_start_offset, + eb->batch_len, + eb->batch_flags); + if (err) + return err; + + return 0; +} + +/* + * Find one BSD ring to dispatch the corresponding BSD command. + * The engine index is returned. + */ +static unsigned int +gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, + struct drm_file *file) +{ + struct drm_i915_file_private *file_priv = file->driver_priv; + + /* Check whether the file_priv has already selected one ring. */ + if ((int)file_priv->bsd_engine < 0) + file_priv->bsd_engine = atomic_fetch_xor(1, + &dev_priv->mm.bsd_engine_dispatch_index); + + return file_priv->bsd_engine; +} + +#define I915_USER_RINGS (4) + +static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = { + [I915_EXEC_DEFAULT] = RCS, + [I915_EXEC_RENDER] = RCS, + [I915_EXEC_BLT] = BCS, + [I915_EXEC_BSD] = VCS, + [I915_EXEC_VEBOX] = VECS +}; + +static struct intel_engine_cs * +eb_select_engine(struct drm_i915_private *dev_priv, + struct drm_file *file, + struct drm_i915_gem_execbuffer2 *args) +{ + unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; + struct intel_engine_cs *engine; + + if (user_ring_id > I915_USER_RINGS) { + DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); + return NULL; + } + + if ((user_ring_id != I915_EXEC_BSD) && + ((args->flags & I915_EXEC_BSD_MASK) != 0)) { + DRM_DEBUG("execbuf with non bsd ring but with invalid " + "bsd dispatch flags: %d\n", (int)(args->flags)); + return NULL; + } + + if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) { + unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; + + if (bsd_idx == I915_EXEC_BSD_DEFAULT) { + bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file); + } else if (bsd_idx >= I915_EXEC_BSD_RING1 && + bsd_idx <= I915_EXEC_BSD_RING2) { + bsd_idx >>= I915_EXEC_BSD_SHIFT; + bsd_idx--; + } else { + DRM_DEBUG("execbuf with unknown bsd ring: %u\n", + bsd_idx); + return NULL; + } + + engine = dev_priv->engine[_VCS(bsd_idx)]; + } else { + engine = dev_priv->engine[user_ring_map[user_ring_id]]; + } + + if (!engine) { + DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id); + return NULL; + } + + return engine; +} + +static void +__free_fence_array(struct drm_syncobj **fences, unsigned int n) +{ + while (n--) + drm_syncobj_put(ptr_mask_bits(fences[n], 2)); + kvfree(fences); +} + +static struct drm_syncobj ** +get_fence_array(struct drm_i915_gem_execbuffer2 *args, + struct drm_file *file) +{ + const unsigned long nfences = args->num_cliprects; + struct drm_i915_gem_exec_fence __user *user; + struct drm_syncobj **fences; + unsigned long n; + int err; + + if (!(args->flags & I915_EXEC_FENCE_ARRAY)) + return NULL; + + /* Check multiplication overflow for access_ok() and kvmalloc_array() */ + BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); + if (nfences > min_t(unsigned long, + ULONG_MAX / sizeof(*user), + SIZE_MAX / sizeof(*fences))) + return ERR_PTR(-EINVAL); + + user = u64_to_user_ptr(args->cliprects_ptr); + if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user))) + return ERR_PTR(-EFAULT); + + fences = kvmalloc_array(nfences, sizeof(*fences), + __GFP_NOWARN | GFP_KERNEL); + if (!fences) + return ERR_PTR(-ENOMEM); + + for (n = 0; n < nfences; n++) { + struct drm_i915_gem_exec_fence fence; + struct drm_syncobj *syncobj; + + if (__copy_from_user(&fence, user++, sizeof(fence))) { + err = -EFAULT; + goto err; + } + + if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { + err = -EINVAL; + goto err; + } + + syncobj = drm_syncobj_find(file, fence.handle); + if (!syncobj) { + DRM_DEBUG("Invalid syncobj handle provided\n"); + err = -ENOENT; + goto err; + } + + BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & + ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); + + fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); + } + + return fences; + +err: + __free_fence_array(fences, n); + return ERR_PTR(err); +} + +static void +put_fence_array(struct drm_i915_gem_execbuffer2 *args, + struct drm_syncobj **fences) +{ + if (fences) + __free_fence_array(fences, args->num_cliprects); +} + +static int +await_fence_array(struct i915_execbuffer *eb, + struct drm_syncobj **fences) +{ + const unsigned int nfences = eb->args->num_cliprects; + unsigned int n; + int err; + + for (n = 0; n < nfences; n++) { + struct drm_syncobj *syncobj; + struct dma_fence *fence; + unsigned int flags; + + syncobj = ptr_unpack_bits(fences[n], &flags, 2); + if (!(flags & I915_EXEC_FENCE_WAIT)) + continue; + + fence = drm_syncobj_fence_get(syncobj); + if (!fence) + return -EINVAL; + + err = i915_request_await_dma_fence(eb->request, fence); + dma_fence_put(fence); + if (err < 0) + return err; + } + + return 0; +} + +static void +signal_fence_array(struct i915_execbuffer *eb, + struct drm_syncobj **fences) +{ + const unsigned int nfences = eb->args->num_cliprects; + struct dma_fence * const fence = &eb->request->fence; + unsigned int n; + + for (n = 0; n < nfences; n++) { + struct drm_syncobj *syncobj; + unsigned int flags; + + syncobj = ptr_unpack_bits(fences[n], &flags, 2); + if (!(flags & I915_EXEC_FENCE_SIGNAL)) + continue; + + drm_syncobj_replace_fence(syncobj, fence); + } +} + +static int +i915_gem_do_execbuffer(struct drm_device *dev, + struct drm_file *file, + struct drm_i915_gem_execbuffer2 *args, + struct drm_i915_gem_exec_object2 *exec, + struct drm_syncobj **fences) +{ + struct drm_i915_private *i915 = to_i915(dev); + struct i915_execbuffer eb; + struct dma_fence *in_fence = NULL; + struct sync_file *out_fence = NULL; + int out_fence_fd = -1; + int err; + + BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); + BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & + ~__EXEC_OBJECT_UNKNOWN_FLAGS); + + eb.i915 = i915; + eb.file = file; + eb.args = args; + if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) + args->flags |= __EXEC_HAS_RELOC; + + eb.exec = exec; + eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1); + eb.vma[0] = NULL; + eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1); + + eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; + if (USES_FULL_PPGTT(eb.i915)) + eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT; + reloc_cache_init(&eb.reloc_cache, eb.i915); + + eb.buffer_count = args->buffer_count; + eb.batch_start_offset = args->batch_start_offset; + eb.batch_len = args->batch_len; + + eb.batch_flags = 0; + if (args->flags & I915_EXEC_SECURE) { + if (INTEL_GEN(i915) >= 11) + return -ENODEV; + + /* Return -EPERM to trigger fallback code on old binaries. */ + if (!HAS_SECURE_BATCHES(i915)) + return -EPERM; + + if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) + return -EPERM; + + eb.batch_flags |= I915_DISPATCH_SECURE; + } + if (args->flags & I915_EXEC_IS_PINNED) + eb.batch_flags |= I915_DISPATCH_PINNED; + + eb.engine = eb_select_engine(eb.i915, file, args); + if (!eb.engine) + return -EINVAL; + + if (args->flags & I915_EXEC_RESOURCE_STREAMER) { + if (!HAS_RESOURCE_STREAMER(eb.i915)) { + DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n"); + return -EINVAL; + } + if (eb.engine->id != RCS) { + DRM_DEBUG("RS is not available on %s\n", + eb.engine->name); + return -EINVAL; + } + + eb.batch_flags |= I915_DISPATCH_RS; + } + + if (args->flags & I915_EXEC_FENCE_IN) { + in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); + if (!in_fence) + return -EINVAL; + } + + if (args->flags & I915_EXEC_FENCE_OUT) { + out_fence_fd = get_unused_fd_flags(O_CLOEXEC); + if (out_fence_fd < 0) { + err = out_fence_fd; + goto err_in_fence; + } + } + + err = eb_create(&eb); + if (err) + goto err_out_fence; + + GEM_BUG_ON(!eb.lut_size); + + err = eb_select_context(&eb); + if (unlikely(err)) + goto err_destroy; + + /* + * Take a local wakeref for preparing to dispatch the execbuf as + * we expect to access the hardware fairly frequently in the + * process. Upon first dispatch, we acquire another prolonged + * wakeref that we hold until the GPU has been idle for at least + * 100ms. + */ + intel_runtime_pm_get(eb.i915); + + err = i915_mutex_lock_interruptible(dev); + if (err) + goto err_rpm; + + err = eb_relocate(&eb); + if (err) { + /* + * If the user expects the execobject.offset and + * reloc.presumed_offset to be an exact match, + * as for using NO_RELOC, then we cannot update + * the execobject.offset until we have completed + * relocation. + */ + args->flags &= ~__EXEC_HAS_RELOC; + goto err_vma; + } + + if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) { + DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); + err = -EINVAL; + goto err_vma; + } + if (eb.batch_start_offset > eb.batch->size || + eb.batch_len > eb.batch->size - eb.batch_start_offset) { + DRM_DEBUG("Attempting to use out-of-bounds batch\n"); + err = -EINVAL; + goto err_vma; + } + + if (eb.batch_len == 0) + eb.batch_len = eb.batch->size - eb.batch_start_offset; + + if (eb_use_cmdparser(&eb)) { + struct i915_vma *vma; + + vma = eb_parse(&eb); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + goto err_vma; + } + } + + /* + * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure + * batch" bit. Hence we need to pin secure batches into the global gtt. + * hsw should have this fixed, but bdw mucks it up again. */ + if (eb.batch_flags & I915_DISPATCH_SECURE) { + struct i915_vma *vma; + + /* + * So on first glance it looks freaky that we pin the batch here + * outside of the reservation loop. But: + * - The batch is already pinned into the relevant ppgtt, so we + * already have the backing storage fully allocated. + * - No other BO uses the global gtt (well contexts, but meh), + * so we don't really have issues with multiple objects not + * fitting due to fragmentation. + * So this is actually safe. + */ + vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + goto err_vma; + } + + eb.batch = vma; + } + + /* All GPU relocation batches must be submitted prior to the user rq */ + GEM_BUG_ON(eb.reloc_cache.rq); + + /* Allocate a request for this batch buffer nice and early. */ + eb.request = i915_request_alloc(eb.engine, eb.ctx); + if (IS_ERR(eb.request)) { + err = PTR_ERR(eb.request); + goto err_batch_unpin; + } + + if (in_fence) { + err = i915_request_await_dma_fence(eb.request, in_fence); + if (err < 0) + goto err_request; + } + + if (fences) { + err = await_fence_array(&eb, fences); + if (err) + goto err_request; + } + + if (out_fence_fd != -1) { + out_fence = sync_file_create(&eb.request->fence); + if (!out_fence) { + err = -ENOMEM; + goto err_request; + } + } + + /* + * Whilst this request exists, batch_obj will be on the + * active_list, and so will hold the active reference. Only when this + * request is retired will the the batch_obj be moved onto the + * inactive_list and lose its active reference. Hence we do not need + * to explicitly hold another reference here. + */ + eb.request->batch = eb.batch; + + trace_i915_request_queue(eb.request, eb.batch_flags); + err = eb_submit(&eb); +err_request: + i915_request_add(eb.request); + add_to_client(eb.request, file); + + if (fences) + signal_fence_array(&eb, fences); + + if (out_fence) { + if (err == 0) { + fd_install(out_fence_fd, out_fence->file); + args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ + args->rsvd2 |= (u64)out_fence_fd << 32; + out_fence_fd = -1; + } else { + fput(out_fence->file); + } + } + +err_batch_unpin: + if (eb.batch_flags & I915_DISPATCH_SECURE) + i915_vma_unpin(eb.batch); +err_vma: + if (eb.exec) + eb_release_vmas(&eb); + mutex_unlock(&dev->struct_mutex); +err_rpm: + intel_runtime_pm_put(eb.i915); + i915_gem_context_put(eb.ctx); +err_destroy: + eb_destroy(&eb); +err_out_fence: + if (out_fence_fd != -1) + put_unused_fd(out_fence_fd); +err_in_fence: + dma_fence_put(in_fence); + return err; +} + +static size_t eb_element_size(void) +{ + return (sizeof(struct drm_i915_gem_exec_object2) + + sizeof(struct i915_vma *) + + sizeof(unsigned int)); +} + +static bool check_buffer_count(size_t count) +{ + const size_t sz = eb_element_size(); + + /* + * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup + * array size (see eb_create()). Otherwise, we can accept an array as + * large as can be addressed (though use large arrays at your peril)! + */ + + return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); +} + +/* + * Legacy execbuffer just creates an exec2 list from the original exec object + * list array and passes it to the real function. + */ +int +i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct drm_i915_gem_execbuffer *args = data; + struct drm_i915_gem_execbuffer2 exec2; + struct drm_i915_gem_exec_object *exec_list = NULL; + struct drm_i915_gem_exec_object2 *exec2_list = NULL; + const size_t count = args->buffer_count; + unsigned int i; + int err; + + if (!check_buffer_count(count)) { + DRM_DEBUG("execbuf2 with %zd buffers\n", count); + return -EINVAL; + } + + exec2.buffers_ptr = args->buffers_ptr; + exec2.buffer_count = args->buffer_count; + exec2.batch_start_offset = args->batch_start_offset; + exec2.batch_len = args->batch_len; + exec2.DR1 = args->DR1; + exec2.DR4 = args->DR4; + exec2.num_cliprects = args->num_cliprects; + exec2.cliprects_ptr = args->cliprects_ptr; + exec2.flags = I915_EXEC_RENDER; + i915_execbuffer2_set_context_id(exec2, 0); + + if (!i915_gem_check_execbuffer(&exec2)) + return -EINVAL; + + /* Copy in the exec list from userland */ + exec_list = kvmalloc_array(count, sizeof(*exec_list), + __GFP_NOWARN | GFP_KERNEL); + exec2_list = kvmalloc_array(count + 1, eb_element_size(), + __GFP_NOWARN | GFP_KERNEL); + if (exec_list == NULL || exec2_list == NULL) { + DRM_DEBUG("Failed to allocate exec list for %d buffers\n", + args->buffer_count); + kvfree(exec_list); + kvfree(exec2_list); + return -ENOMEM; + } + err = copy_from_user(exec_list, + u64_to_user_ptr(args->buffers_ptr), + sizeof(*exec_list) * count); + if (err) { + DRM_DEBUG("copy %d exec entries failed %d\n", + args->buffer_count, err); + kvfree(exec_list); + kvfree(exec2_list); + return -EFAULT; + } + + for (i = 0; i < args->buffer_count; i++) { + exec2_list[i].handle = exec_list[i].handle; + exec2_list[i].relocation_count = exec_list[i].relocation_count; + exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; + exec2_list[i].alignment = exec_list[i].alignment; + exec2_list[i].offset = exec_list[i].offset; + if (INTEL_GEN(to_i915(dev)) < 4) + exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; + else + exec2_list[i].flags = 0; + } + + err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); + if (exec2.flags & __EXEC_HAS_RELOC) { + struct drm_i915_gem_exec_object __user *user_exec_list = + u64_to_user_ptr(args->buffers_ptr); + + /* Copy the new buffer offsets back to the user's exec list. */ + for (i = 0; i < args->buffer_count; i++) { + if (!(exec2_list[i].offset & UPDATE)) + continue; + + exec2_list[i].offset = + gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); + exec2_list[i].offset &= PIN_OFFSET_MASK; + if (__copy_to_user(&user_exec_list[i].offset, + &exec2_list[i].offset, + sizeof(user_exec_list[i].offset))) + break; + } + } + + kvfree(exec_list); + kvfree(exec2_list); + return err; +} + +int +i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct drm_i915_gem_execbuffer2 *args = data; + struct drm_i915_gem_exec_object2 *exec2_list; + struct drm_syncobj **fences = NULL; + const size_t count = args->buffer_count; + int err; + + if (!check_buffer_count(count)) { + DRM_DEBUG("execbuf2 with %zd buffers\n", count); + return -EINVAL; + } + + if (!i915_gem_check_execbuffer(args)) + return -EINVAL; + + /* Allocate an extra slot for use by the command parser */ + exec2_list = kvmalloc_array(count + 1, eb_element_size(), + __GFP_NOWARN | GFP_KERNEL); + if (exec2_list == NULL) { + DRM_DEBUG("Failed to allocate exec list for %zd buffers\n", + count); + return -ENOMEM; + } + if (copy_from_user(exec2_list, + u64_to_user_ptr(args->buffers_ptr), + sizeof(*exec2_list) * count)) { + DRM_DEBUG("copy %zd exec entries failed\n", count); + kvfree(exec2_list); + return -EFAULT; + } + + if (args->flags & I915_EXEC_FENCE_ARRAY) { + fences = get_fence_array(args, file); + if (IS_ERR(fences)) { + kvfree(exec2_list); + return PTR_ERR(fences); + } + } + + err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); + + /* + * Now that we have begun execution of the batchbuffer, we ignore + * any new error after this point. Also given that we have already + * updated the associated relocations, we try to write out the current + * object locations irrespective of any error. + */ + if (args->flags & __EXEC_HAS_RELOC) { + struct drm_i915_gem_exec_object2 __user *user_exec_list = + u64_to_user_ptr(args->buffers_ptr); + unsigned int i; + + /* Copy the new buffer offsets back to the user's exec list. */ + /* + * Note: count * sizeof(*user_exec_list) does not overflow, + * because we checked 'count' in check_buffer_count(). + * + * And this range already got effectively checked earlier + * when we did the "copy_from_user()" above. + */ + if (!user_access_begin(VERIFY_WRITE, user_exec_list, + count * sizeof(*user_exec_list))) + goto end_user; + + for (i = 0; i < args->buffer_count; i++) { + if (!(exec2_list[i].offset & UPDATE)) + continue; + + exec2_list[i].offset = + gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); + unsafe_put_user(exec2_list[i].offset, + &user_exec_list[i].offset, + end_user); + } +end_user: + user_access_end(); + } + + args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; + put_fence_array(args, fences); + kvfree(exec2_list); + return err; +} |