diff options
Diffstat (limited to 'drivers/gpu/drm/i915/i915_gem_object.h')
-rw-r--r-- | drivers/gpu/drm/i915/i915_gem_object.h | 487 |
1 files changed, 487 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/i915_gem_object.h b/drivers/gpu/drm/i915/i915_gem_object.h new file mode 100644 index 000000000..2e3a713e9 --- /dev/null +++ b/drivers/gpu/drm/i915/i915_gem_object.h @@ -0,0 +1,487 @@ +/* + * Copyright © 2016 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + */ + +#ifndef __I915_GEM_OBJECT_H__ +#define __I915_GEM_OBJECT_H__ + +#include <linux/reservation.h> + +#include <drm/drm_vma_manager.h> +#include <drm/drm_gem.h> +#include <drm/drmP.h> + +#include <drm/i915_drm.h> + +#include "i915_request.h" +#include "i915_selftest.h" + +struct drm_i915_gem_object; + +/* + * struct i915_lut_handle tracks the fast lookups from handle to vma used + * for execbuf. Although we use a radixtree for that mapping, in order to + * remove them as the object or context is closed, we need a secondary list + * and a translation entry (i915_lut_handle). + */ +struct i915_lut_handle { + struct list_head obj_link; + struct list_head ctx_link; + struct i915_gem_context *ctx; + u32 handle; +}; + +struct drm_i915_gem_object_ops { + unsigned int flags; +#define I915_GEM_OBJECT_HAS_STRUCT_PAGE BIT(0) +#define I915_GEM_OBJECT_IS_SHRINKABLE BIT(1) +#define I915_GEM_OBJECT_IS_PROXY BIT(2) + + /* Interface between the GEM object and its backing storage. + * get_pages() is called once prior to the use of the associated set + * of pages before to binding them into the GTT, and put_pages() is + * called after we no longer need them. As we expect there to be + * associated cost with migrating pages between the backing storage + * and making them available for the GPU (e.g. clflush), we may hold + * onto the pages after they are no longer referenced by the GPU + * in case they may be used again shortly (for example migrating the + * pages to a different memory domain within the GTT). put_pages() + * will therefore most likely be called when the object itself is + * being released or under memory pressure (where we attempt to + * reap pages for the shrinker). + */ + int (*get_pages)(struct drm_i915_gem_object *); + void (*put_pages)(struct drm_i915_gem_object *, struct sg_table *); + + int (*pwrite)(struct drm_i915_gem_object *, + const struct drm_i915_gem_pwrite *); + + int (*dmabuf_export)(struct drm_i915_gem_object *); + void (*release)(struct drm_i915_gem_object *); +}; + +struct drm_i915_gem_object { + struct drm_gem_object base; + + const struct drm_i915_gem_object_ops *ops; + + /** + * @vma_list: List of VMAs backed by this object + * + * The VMA on this list are ordered by type, all GGTT vma are placed + * at the head and all ppGTT vma are placed at the tail. The different + * types of GGTT vma are unordered between themselves, use the + * @vma_tree (which has a defined order between all VMA) to find an + * exact match. + */ + struct list_head vma_list; + /** + * @vma_tree: Ordered tree of VMAs backed by this object + * + * All VMA created for this object are placed in the @vma_tree for + * fast retrieval via a binary search in i915_vma_instance(). + * They are also added to @vma_list for easy iteration. + */ + struct rb_root vma_tree; + + /** + * @lut_list: List of vma lookup entries in use for this object. + * + * If this object is closed, we need to remove all of its VMA from + * the fast lookup index in associated contexts; @lut_list provides + * this translation from object to context->handles_vma. + */ + struct list_head lut_list; + + /** Stolen memory for this object, instead of being backed by shmem. */ + struct drm_mm_node *stolen; + union { + struct rcu_head rcu; + struct llist_node freed; + }; + + /** + * Whether the object is currently in the GGTT mmap. + */ + unsigned int userfault_count; + struct list_head userfault_link; + + struct list_head batch_pool_link; + I915_SELFTEST_DECLARE(struct list_head st_link); + + unsigned long flags; + + /** + * Have we taken a reference for the object for incomplete GPU + * activity? + */ +#define I915_BO_ACTIVE_REF 0 +#define I915_BO_WAS_BOUND_BIT 1 + + /* + * Is the object to be mapped as read-only to the GPU + * Only honoured if hardware has relevant pte bit + */ + unsigned int cache_level:3; + unsigned int cache_coherent:2; +#define I915_BO_CACHE_COHERENT_FOR_READ BIT(0) +#define I915_BO_CACHE_COHERENT_FOR_WRITE BIT(1) + unsigned int cache_dirty:1; + + /** + * @read_domains: Read memory domains. + * + * These monitor which caches contain read/write data related to the + * object. When transitioning from one set of domains to another, + * the driver is called to ensure that caches are suitably flushed and + * invalidated. + */ + u16 read_domains; + + /** + * @write_domain: Corresponding unique write memory domain. + */ + u16 write_domain; + + atomic_t frontbuffer_bits; + unsigned int frontbuffer_ggtt_origin; /* write once */ + struct i915_gem_active frontbuffer_write; + + /** Current tiling stride for the object, if it's tiled. */ + unsigned int tiling_and_stride; +#define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */ +#define TILING_MASK (FENCE_MINIMUM_STRIDE-1) +#define STRIDE_MASK (~TILING_MASK) + + /** Count of VMA actually bound by this object */ + unsigned int bind_count; + unsigned int active_count; + /** Count of how many global VMA are currently pinned for use by HW */ + unsigned int pin_global; + + struct { + struct mutex lock; /* protects the pages and their use */ + atomic_t pages_pin_count; + + struct sg_table *pages; + void *mapping; + + /* TODO: whack some of this into the error state */ + struct i915_page_sizes { + /** + * The sg mask of the pages sg_table. i.e the mask of + * of the lengths for each sg entry. + */ + unsigned int phys; + + /** + * The gtt page sizes we are allowed to use given the + * sg mask and the supported page sizes. This will + * express the smallest unit we can use for the whole + * object, as well as the larger sizes we may be able + * to use opportunistically. + */ + unsigned int sg; + + /** + * The actual gtt page size usage. Since we can have + * multiple vma associated with this object we need to + * prevent any trampling of state, hence a copy of this + * struct also lives in each vma, therefore the gtt + * value here should only be read/write through the vma. + */ + unsigned int gtt; + } page_sizes; + + I915_SELFTEST_DECLARE(unsigned int page_mask); + + struct i915_gem_object_page_iter { + struct scatterlist *sg_pos; + unsigned int sg_idx; /* in pages, but 32bit eek! */ + + struct radix_tree_root radix; + struct mutex lock; /* protects this cache */ + } get_page; + + /** + * Element within i915->mm.unbound_list or i915->mm.bound_list, + * locked by i915->mm.obj_lock. + */ + struct list_head link; + + /** + * Advice: are the backing pages purgeable? + */ + unsigned int madv:2; + + /** + * This is set if the object has been written to since the + * pages were last acquired. + */ + bool dirty:1; + + /** + * This is set if the object has been pinned due to unknown + * swizzling. + */ + bool quirked:1; + } mm; + + /** Breadcrumb of last rendering to the buffer. + * There can only be one writer, but we allow for multiple readers. + * If there is a writer that necessarily implies that all other + * read requests are complete - but we may only be lazily clearing + * the read requests. A read request is naturally the most recent + * request on a ring, so we may have two different write and read + * requests on one ring where the write request is older than the + * read request. This allows for the CPU to read from an active + * buffer by only waiting for the write to complete. + */ + struct reservation_object *resv; + + /** References from framebuffers, locks out tiling changes. */ + unsigned int framebuffer_references; + + /** Record of address bit 17 of each page at last unbind. */ + unsigned long *bit_17; + + union { + struct i915_gem_userptr { + uintptr_t ptr; + + struct i915_mm_struct *mm; + struct i915_mmu_object *mmu_object; + struct work_struct *work; + } userptr; + + unsigned long scratch; + + void *gvt_info; + }; + + /** for phys allocated objects */ + struct drm_dma_handle *phys_handle; + + struct reservation_object __builtin_resv; +}; + +static inline struct drm_i915_gem_object * +to_intel_bo(struct drm_gem_object *gem) +{ + /* Assert that to_intel_bo(NULL) == NULL */ + BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base)); + + return container_of(gem, struct drm_i915_gem_object, base); +} + +/** + * i915_gem_object_lookup_rcu - look up a temporary GEM object from its handle + * @filp: DRM file private date + * @handle: userspace handle + * + * Returns: + * + * A pointer to the object named by the handle if such exists on @filp, NULL + * otherwise. This object is only valid whilst under the RCU read lock, and + * note carefully the object may be in the process of being destroyed. + */ +static inline struct drm_i915_gem_object * +i915_gem_object_lookup_rcu(struct drm_file *file, u32 handle) +{ +#ifdef CONFIG_LOCKDEP + WARN_ON(debug_locks && !lock_is_held(&rcu_lock_map)); +#endif + return idr_find(&file->object_idr, handle); +} + +static inline struct drm_i915_gem_object * +i915_gem_object_lookup(struct drm_file *file, u32 handle) +{ + struct drm_i915_gem_object *obj; + + rcu_read_lock(); + obj = i915_gem_object_lookup_rcu(file, handle); + if (obj && !kref_get_unless_zero(&obj->base.refcount)) + obj = NULL; + rcu_read_unlock(); + + return obj; +} + +__deprecated +extern struct drm_gem_object * +drm_gem_object_lookup(struct drm_file *file, u32 handle); + +__attribute__((nonnull)) +static inline struct drm_i915_gem_object * +i915_gem_object_get(struct drm_i915_gem_object *obj) +{ + drm_gem_object_get(&obj->base); + return obj; +} + +__attribute__((nonnull)) +static inline void +i915_gem_object_put(struct drm_i915_gem_object *obj) +{ + __drm_gem_object_put(&obj->base); +} + +static inline void i915_gem_object_lock(struct drm_i915_gem_object *obj) +{ + reservation_object_lock(obj->resv, NULL); +} + +static inline void i915_gem_object_unlock(struct drm_i915_gem_object *obj) +{ + reservation_object_unlock(obj->resv); +} + +static inline void +i915_gem_object_set_readonly(struct drm_i915_gem_object *obj) +{ + obj->base.vma_node.readonly = true; +} + +static inline bool +i915_gem_object_is_readonly(const struct drm_i915_gem_object *obj) +{ + return obj->base.vma_node.readonly; +} + +static inline bool +i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) +{ + return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE; +} + +static inline bool +i915_gem_object_is_shrinkable(const struct drm_i915_gem_object *obj) +{ + return obj->ops->flags & I915_GEM_OBJECT_IS_SHRINKABLE; +} + +static inline bool +i915_gem_object_is_proxy(const struct drm_i915_gem_object *obj) +{ + return obj->ops->flags & I915_GEM_OBJECT_IS_PROXY; +} + +static inline bool +i915_gem_object_is_active(const struct drm_i915_gem_object *obj) +{ + return obj->active_count; +} + +static inline bool +i915_gem_object_has_active_reference(const struct drm_i915_gem_object *obj) +{ + return test_bit(I915_BO_ACTIVE_REF, &obj->flags); +} + +static inline void +i915_gem_object_set_active_reference(struct drm_i915_gem_object *obj) +{ + lockdep_assert_held(&obj->base.dev->struct_mutex); + __set_bit(I915_BO_ACTIVE_REF, &obj->flags); +} + +static inline void +i915_gem_object_clear_active_reference(struct drm_i915_gem_object *obj) +{ + lockdep_assert_held(&obj->base.dev->struct_mutex); + __clear_bit(I915_BO_ACTIVE_REF, &obj->flags); +} + +void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj); + +static inline bool +i915_gem_object_is_framebuffer(const struct drm_i915_gem_object *obj) +{ + return READ_ONCE(obj->framebuffer_references); +} + +static inline unsigned int +i915_gem_object_get_tiling(struct drm_i915_gem_object *obj) +{ + return obj->tiling_and_stride & TILING_MASK; +} + +static inline bool +i915_gem_object_is_tiled(struct drm_i915_gem_object *obj) +{ + return i915_gem_object_get_tiling(obj) != I915_TILING_NONE; +} + +static inline unsigned int +i915_gem_object_get_stride(struct drm_i915_gem_object *obj) +{ + return obj->tiling_and_stride & STRIDE_MASK; +} + +static inline unsigned int +i915_gem_tile_height(unsigned int tiling) +{ + GEM_BUG_ON(!tiling); + return tiling == I915_TILING_Y ? 32 : 8; +} + +static inline unsigned int +i915_gem_object_get_tile_height(struct drm_i915_gem_object *obj) +{ + return i915_gem_tile_height(i915_gem_object_get_tiling(obj)); +} + +static inline unsigned int +i915_gem_object_get_tile_row_size(struct drm_i915_gem_object *obj) +{ + return (i915_gem_object_get_stride(obj) * + i915_gem_object_get_tile_height(obj)); +} + +int i915_gem_object_set_tiling(struct drm_i915_gem_object *obj, + unsigned int tiling, unsigned int stride); + +static inline struct intel_engine_cs * +i915_gem_object_last_write_engine(struct drm_i915_gem_object *obj) +{ + struct intel_engine_cs *engine = NULL; + struct dma_fence *fence; + + rcu_read_lock(); + fence = reservation_object_get_excl_rcu(obj->resv); + rcu_read_unlock(); + + if (fence && dma_fence_is_i915(fence) && !dma_fence_is_signaled(fence)) + engine = to_request(fence)->engine; + dma_fence_put(fence); + + return engine; +} + +void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj, + unsigned int cache_level); +void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj); + +#endif + |