summaryrefslogtreecommitdiffstats
path: root/drivers/md/raid10.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/raid10.c')
-rw-r--r--drivers/md/raid10.c4917
1 files changed, 4917 insertions, 0 deletions
diff --git a/drivers/md/raid10.c b/drivers/md/raid10.c
new file mode 100644
index 000000000..8e0f936b3
--- /dev/null
+++ b/drivers/md/raid10.c
@@ -0,0 +1,4917 @@
+/*
+ * raid10.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 2000-2004 Neil Brown
+ *
+ * RAID-10 support for md.
+ *
+ * Base on code in raid1.c. See raid1.c for further copyright information.
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/ratelimit.h>
+#include <linux/kthread.h>
+#include <trace/events/block.h>
+#include "md.h"
+#include "raid10.h"
+#include "raid0.h"
+#include "md-bitmap.h"
+
+/*
+ * RAID10 provides a combination of RAID0 and RAID1 functionality.
+ * The layout of data is defined by
+ * chunk_size
+ * raid_disks
+ * near_copies (stored in low byte of layout)
+ * far_copies (stored in second byte of layout)
+ * far_offset (stored in bit 16 of layout )
+ * use_far_sets (stored in bit 17 of layout )
+ * use_far_sets_bugfixed (stored in bit 18 of layout )
+ *
+ * The data to be stored is divided into chunks using chunksize. Each device
+ * is divided into far_copies sections. In each section, chunks are laid out
+ * in a style similar to raid0, but near_copies copies of each chunk is stored
+ * (each on a different drive). The starting device for each section is offset
+ * near_copies from the starting device of the previous section. Thus there
+ * are (near_copies * far_copies) of each chunk, and each is on a different
+ * drive. near_copies and far_copies must be at least one, and their product
+ * is at most raid_disks.
+ *
+ * If far_offset is true, then the far_copies are handled a bit differently.
+ * The copies are still in different stripes, but instead of being very far
+ * apart on disk, there are adjacent stripes.
+ *
+ * The far and offset algorithms are handled slightly differently if
+ * 'use_far_sets' is true. In this case, the array's devices are grouped into
+ * sets that are (near_copies * far_copies) in size. The far copied stripes
+ * are still shifted by 'near_copies' devices, but this shifting stays confined
+ * to the set rather than the entire array. This is done to improve the number
+ * of device combinations that can fail without causing the array to fail.
+ * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
+ * on a device):
+ * A B C D A B C D E
+ * ... ...
+ * D A B C E A B C D
+ * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
+ * [A B] [C D] [A B] [C D E]
+ * |...| |...| |...| | ... |
+ * [B A] [D C] [B A] [E C D]
+ */
+
+/*
+ * Number of guaranteed r10bios in case of extreme VM load:
+ */
+#define NR_RAID10_BIOS 256
+
+/* when we get a read error on a read-only array, we redirect to another
+ * device without failing the first device, or trying to over-write to
+ * correct the read error. To keep track of bad blocks on a per-bio
+ * level, we store IO_BLOCKED in the appropriate 'bios' pointer
+ */
+#define IO_BLOCKED ((struct bio *)1)
+/* When we successfully write to a known bad-block, we need to remove the
+ * bad-block marking which must be done from process context. So we record
+ * the success by setting devs[n].bio to IO_MADE_GOOD
+ */
+#define IO_MADE_GOOD ((struct bio *)2)
+
+#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
+
+/* When there are this many requests queued to be written by
+ * the raid10 thread, we become 'congested' to provide back-pressure
+ * for writeback.
+ */
+static int max_queued_requests = 1024;
+
+static void allow_barrier(struct r10conf *conf);
+static void lower_barrier(struct r10conf *conf);
+static int _enough(struct r10conf *conf, int previous, int ignore);
+static int enough(struct r10conf *conf, int ignore);
+static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped);
+static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
+static void end_reshape_write(struct bio *bio);
+static void end_reshape(struct r10conf *conf);
+
+#define raid10_log(md, fmt, args...) \
+ do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
+
+#include "raid1-10.c"
+
+/*
+ * for resync bio, r10bio pointer can be retrieved from the per-bio
+ * 'struct resync_pages'.
+ */
+static inline struct r10bio *get_resync_r10bio(struct bio *bio)
+{
+ return get_resync_pages(bio)->raid_bio;
+}
+
+static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
+{
+ struct r10conf *conf = data;
+ int size = offsetof(struct r10bio, devs[conf->copies]);
+
+ /* allocate a r10bio with room for raid_disks entries in the
+ * bios array */
+ return kzalloc(size, gfp_flags);
+}
+
+static void r10bio_pool_free(void *r10_bio, void *data)
+{
+ kfree(r10_bio);
+}
+
+#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
+/* amount of memory to reserve for resync requests */
+#define RESYNC_WINDOW (1024*1024)
+/* maximum number of concurrent requests, memory permitting */
+#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
+#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
+#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
+
+/*
+ * When performing a resync, we need to read and compare, so
+ * we need as many pages are there are copies.
+ * When performing a recovery, we need 2 bios, one for read,
+ * one for write (we recover only one drive per r10buf)
+ *
+ */
+static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
+{
+ struct r10conf *conf = data;
+ struct r10bio *r10_bio;
+ struct bio *bio;
+ int j;
+ int nalloc, nalloc_rp;
+ struct resync_pages *rps;
+
+ r10_bio = r10bio_pool_alloc(gfp_flags, conf);
+ if (!r10_bio)
+ return NULL;
+
+ if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
+ nalloc = conf->copies; /* resync */
+ else
+ nalloc = 2; /* recovery */
+
+ /* allocate once for all bios */
+ if (!conf->have_replacement)
+ nalloc_rp = nalloc;
+ else
+ nalloc_rp = nalloc * 2;
+ rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
+ if (!rps)
+ goto out_free_r10bio;
+
+ /*
+ * Allocate bios.
+ */
+ for (j = nalloc ; j-- ; ) {
+ bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
+ if (!bio)
+ goto out_free_bio;
+ r10_bio->devs[j].bio = bio;
+ if (!conf->have_replacement)
+ continue;
+ bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
+ if (!bio)
+ goto out_free_bio;
+ r10_bio->devs[j].repl_bio = bio;
+ }
+ /*
+ * Allocate RESYNC_PAGES data pages and attach them
+ * where needed.
+ */
+ for (j = 0; j < nalloc; j++) {
+ struct bio *rbio = r10_bio->devs[j].repl_bio;
+ struct resync_pages *rp, *rp_repl;
+
+ rp = &rps[j];
+ if (rbio)
+ rp_repl = &rps[nalloc + j];
+
+ bio = r10_bio->devs[j].bio;
+
+ if (!j || test_bit(MD_RECOVERY_SYNC,
+ &conf->mddev->recovery)) {
+ if (resync_alloc_pages(rp, gfp_flags))
+ goto out_free_pages;
+ } else {
+ memcpy(rp, &rps[0], sizeof(*rp));
+ resync_get_all_pages(rp);
+ }
+
+ rp->raid_bio = r10_bio;
+ bio->bi_private = rp;
+ if (rbio) {
+ memcpy(rp_repl, rp, sizeof(*rp));
+ rbio->bi_private = rp_repl;
+ }
+ }
+
+ return r10_bio;
+
+out_free_pages:
+ while (--j >= 0)
+ resync_free_pages(&rps[j]);
+
+ j = 0;
+out_free_bio:
+ for ( ; j < nalloc; j++) {
+ if (r10_bio->devs[j].bio)
+ bio_put(r10_bio->devs[j].bio);
+ if (r10_bio->devs[j].repl_bio)
+ bio_put(r10_bio->devs[j].repl_bio);
+ }
+ kfree(rps);
+out_free_r10bio:
+ r10bio_pool_free(r10_bio, conf);
+ return NULL;
+}
+
+static void r10buf_pool_free(void *__r10_bio, void *data)
+{
+ struct r10conf *conf = data;
+ struct r10bio *r10bio = __r10_bio;
+ int j;
+ struct resync_pages *rp = NULL;
+
+ for (j = conf->copies; j--; ) {
+ struct bio *bio = r10bio->devs[j].bio;
+
+ if (bio) {
+ rp = get_resync_pages(bio);
+ resync_free_pages(rp);
+ bio_put(bio);
+ }
+
+ bio = r10bio->devs[j].repl_bio;
+ if (bio)
+ bio_put(bio);
+ }
+
+ /* resync pages array stored in the 1st bio's .bi_private */
+ kfree(rp);
+
+ r10bio_pool_free(r10bio, conf);
+}
+
+static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
+{
+ int i;
+
+ for (i = 0; i < conf->copies; i++) {
+ struct bio **bio = & r10_bio->devs[i].bio;
+ if (!BIO_SPECIAL(*bio))
+ bio_put(*bio);
+ *bio = NULL;
+ bio = &r10_bio->devs[i].repl_bio;
+ if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
+ bio_put(*bio);
+ *bio = NULL;
+ }
+}
+
+static void free_r10bio(struct r10bio *r10_bio)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ put_all_bios(conf, r10_bio);
+ mempool_free(r10_bio, &conf->r10bio_pool);
+}
+
+static void put_buf(struct r10bio *r10_bio)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ mempool_free(r10_bio, &conf->r10buf_pool);
+
+ lower_barrier(conf);
+}
+
+static void reschedule_retry(struct r10bio *r10_bio)
+{
+ unsigned long flags;
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ list_add(&r10_bio->retry_list, &conf->retry_list);
+ conf->nr_queued ++;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ /* wake up frozen array... */
+ wake_up(&conf->wait_barrier);
+
+ md_wakeup_thread(mddev->thread);
+}
+
+/*
+ * raid_end_bio_io() is called when we have finished servicing a mirrored
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void raid_end_bio_io(struct r10bio *r10_bio)
+{
+ struct bio *bio = r10_bio->master_bio;
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
+ bio->bi_status = BLK_STS_IOERR;
+
+ bio_endio(bio);
+ /*
+ * Wake up any possible resync thread that waits for the device
+ * to go idle.
+ */
+ allow_barrier(conf);
+
+ free_r10bio(r10_bio);
+}
+
+/*
+ * Update disk head position estimator based on IRQ completion info.
+ */
+static inline void update_head_pos(int slot, struct r10bio *r10_bio)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ conf->mirrors[r10_bio->devs[slot].devnum].head_position =
+ r10_bio->devs[slot].addr + (r10_bio->sectors);
+}
+
+/*
+ * Find the disk number which triggered given bio
+ */
+static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
+ struct bio *bio, int *slotp, int *replp)
+{
+ int slot;
+ int repl = 0;
+
+ for (slot = 0; slot < conf->copies; slot++) {
+ if (r10_bio->devs[slot].bio == bio)
+ break;
+ if (r10_bio->devs[slot].repl_bio == bio) {
+ repl = 1;
+ break;
+ }
+ }
+
+ BUG_ON(slot == conf->copies);
+ update_head_pos(slot, r10_bio);
+
+ if (slotp)
+ *slotp = slot;
+ if (replp)
+ *replp = repl;
+ return r10_bio->devs[slot].devnum;
+}
+
+static void raid10_end_read_request(struct bio *bio)
+{
+ int uptodate = !bio->bi_status;
+ struct r10bio *r10_bio = bio->bi_private;
+ int slot;
+ struct md_rdev *rdev;
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ slot = r10_bio->read_slot;
+ rdev = r10_bio->devs[slot].rdev;
+ /*
+ * this branch is our 'one mirror IO has finished' event handler:
+ */
+ update_head_pos(slot, r10_bio);
+
+ if (uptodate) {
+ /*
+ * Set R10BIO_Uptodate in our master bio, so that
+ * we will return a good error code to the higher
+ * levels even if IO on some other mirrored buffer fails.
+ *
+ * The 'master' represents the composite IO operation to
+ * user-side. So if something waits for IO, then it will
+ * wait for the 'master' bio.
+ */
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+ } else {
+ /* If all other devices that store this block have
+ * failed, we want to return the error upwards rather
+ * than fail the last device. Here we redefine
+ * "uptodate" to mean "Don't want to retry"
+ */
+ if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
+ rdev->raid_disk))
+ uptodate = 1;
+ }
+ if (uptodate) {
+ raid_end_bio_io(r10_bio);
+ rdev_dec_pending(rdev, conf->mddev);
+ } else {
+ /*
+ * oops, read error - keep the refcount on the rdev
+ */
+ char b[BDEVNAME_SIZE];
+ pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
+ mdname(conf->mddev),
+ bdevname(rdev->bdev, b),
+ (unsigned long long)r10_bio->sector);
+ set_bit(R10BIO_ReadError, &r10_bio->state);
+ reschedule_retry(r10_bio);
+ }
+}
+
+static void close_write(struct r10bio *r10_bio)
+{
+ /* clear the bitmap if all writes complete successfully */
+ md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
+ r10_bio->sectors,
+ !test_bit(R10BIO_Degraded, &r10_bio->state),
+ 0);
+ md_write_end(r10_bio->mddev);
+}
+
+static void one_write_done(struct r10bio *r10_bio)
+{
+ if (atomic_dec_and_test(&r10_bio->remaining)) {
+ if (test_bit(R10BIO_WriteError, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else {
+ close_write(r10_bio);
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else
+ raid_end_bio_io(r10_bio);
+ }
+ }
+}
+
+static void raid10_end_write_request(struct bio *bio)
+{
+ struct r10bio *r10_bio = bio->bi_private;
+ int dev;
+ int dec_rdev = 1;
+ struct r10conf *conf = r10_bio->mddev->private;
+ int slot, repl;
+ struct md_rdev *rdev = NULL;
+ struct bio *to_put = NULL;
+ bool discard_error;
+
+ discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
+
+ dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+
+ if (repl)
+ rdev = conf->mirrors[dev].replacement;
+ if (!rdev) {
+ smp_rmb();
+ repl = 0;
+ rdev = conf->mirrors[dev].rdev;
+ }
+ /*
+ * this branch is our 'one mirror IO has finished' event handler:
+ */
+ if (bio->bi_status && !discard_error) {
+ if (repl)
+ /* Never record new bad blocks to replacement,
+ * just fail it.
+ */
+ md_error(rdev->mddev, rdev);
+ else {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+
+ dec_rdev = 0;
+ if (test_bit(FailFast, &rdev->flags) &&
+ (bio->bi_opf & MD_FAILFAST)) {
+ md_error(rdev->mddev, rdev);
+ if (!test_bit(Faulty, &rdev->flags))
+ /* This is the only remaining device,
+ * We need to retry the write without
+ * FailFast
+ */
+ set_bit(R10BIO_WriteError, &r10_bio->state);
+ else {
+ r10_bio->devs[slot].bio = NULL;
+ to_put = bio;
+ dec_rdev = 1;
+ }
+ } else
+ set_bit(R10BIO_WriteError, &r10_bio->state);
+ }
+ } else {
+ /*
+ * Set R10BIO_Uptodate in our master bio, so that
+ * we will return a good error code for to the higher
+ * levels even if IO on some other mirrored buffer fails.
+ *
+ * The 'master' represents the composite IO operation to
+ * user-side. So if something waits for IO, then it will
+ * wait for the 'master' bio.
+ */
+ sector_t first_bad;
+ int bad_sectors;
+
+ /*
+ * Do not set R10BIO_Uptodate if the current device is
+ * rebuilding or Faulty. This is because we cannot use
+ * such device for properly reading the data back (we could
+ * potentially use it, if the current write would have felt
+ * before rdev->recovery_offset, but for simplicity we don't
+ * check this here.
+ */
+ if (test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags))
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+
+ /* Maybe we can clear some bad blocks. */
+ if (is_badblock(rdev,
+ r10_bio->devs[slot].addr,
+ r10_bio->sectors,
+ &first_bad, &bad_sectors) && !discard_error) {
+ bio_put(bio);
+ if (repl)
+ r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
+ else
+ r10_bio->devs[slot].bio = IO_MADE_GOOD;
+ dec_rdev = 0;
+ set_bit(R10BIO_MadeGood, &r10_bio->state);
+ }
+ }
+
+ /*
+ *
+ * Let's see if all mirrored write operations have finished
+ * already.
+ */
+ one_write_done(r10_bio);
+ if (dec_rdev)
+ rdev_dec_pending(rdev, conf->mddev);
+ if (to_put)
+ bio_put(to_put);
+}
+
+/*
+ * RAID10 layout manager
+ * As well as the chunksize and raid_disks count, there are two
+ * parameters: near_copies and far_copies.
+ * near_copies * far_copies must be <= raid_disks.
+ * Normally one of these will be 1.
+ * If both are 1, we get raid0.
+ * If near_copies == raid_disks, we get raid1.
+ *
+ * Chunks are laid out in raid0 style with near_copies copies of the
+ * first chunk, followed by near_copies copies of the next chunk and
+ * so on.
+ * If far_copies > 1, then after 1/far_copies of the array has been assigned
+ * as described above, we start again with a device offset of near_copies.
+ * So we effectively have another copy of the whole array further down all
+ * the drives, but with blocks on different drives.
+ * With this layout, and block is never stored twice on the one device.
+ *
+ * raid10_find_phys finds the sector offset of a given virtual sector
+ * on each device that it is on.
+ *
+ * raid10_find_virt does the reverse mapping, from a device and a
+ * sector offset to a virtual address
+ */
+
+static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
+{
+ int n,f;
+ sector_t sector;
+ sector_t chunk;
+ sector_t stripe;
+ int dev;
+ int slot = 0;
+ int last_far_set_start, last_far_set_size;
+
+ last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
+ last_far_set_start *= geo->far_set_size;
+
+ last_far_set_size = geo->far_set_size;
+ last_far_set_size += (geo->raid_disks % geo->far_set_size);
+
+ /* now calculate first sector/dev */
+ chunk = r10bio->sector >> geo->chunk_shift;
+ sector = r10bio->sector & geo->chunk_mask;
+
+ chunk *= geo->near_copies;
+ stripe = chunk;
+ dev = sector_div(stripe, geo->raid_disks);
+ if (geo->far_offset)
+ stripe *= geo->far_copies;
+
+ sector += stripe << geo->chunk_shift;
+
+ /* and calculate all the others */
+ for (n = 0; n < geo->near_copies; n++) {
+ int d = dev;
+ int set;
+ sector_t s = sector;
+ r10bio->devs[slot].devnum = d;
+ r10bio->devs[slot].addr = s;
+ slot++;
+
+ for (f = 1; f < geo->far_copies; f++) {
+ set = d / geo->far_set_size;
+ d += geo->near_copies;
+
+ if ((geo->raid_disks % geo->far_set_size) &&
+ (d > last_far_set_start)) {
+ d -= last_far_set_start;
+ d %= last_far_set_size;
+ d += last_far_set_start;
+ } else {
+ d %= geo->far_set_size;
+ d += geo->far_set_size * set;
+ }
+ s += geo->stride;
+ r10bio->devs[slot].devnum = d;
+ r10bio->devs[slot].addr = s;
+ slot++;
+ }
+ dev++;
+ if (dev >= geo->raid_disks) {
+ dev = 0;
+ sector += (geo->chunk_mask + 1);
+ }
+ }
+}
+
+static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
+{
+ struct geom *geo = &conf->geo;
+
+ if (conf->reshape_progress != MaxSector &&
+ ((r10bio->sector >= conf->reshape_progress) !=
+ conf->mddev->reshape_backwards)) {
+ set_bit(R10BIO_Previous, &r10bio->state);
+ geo = &conf->prev;
+ } else
+ clear_bit(R10BIO_Previous, &r10bio->state);
+
+ __raid10_find_phys(geo, r10bio);
+}
+
+static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
+{
+ sector_t offset, chunk, vchunk;
+ /* Never use conf->prev as this is only called during resync
+ * or recovery, so reshape isn't happening
+ */
+ struct geom *geo = &conf->geo;
+ int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
+ int far_set_size = geo->far_set_size;
+ int last_far_set_start;
+
+ if (geo->raid_disks % geo->far_set_size) {
+ last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
+ last_far_set_start *= geo->far_set_size;
+
+ if (dev >= last_far_set_start) {
+ far_set_size = geo->far_set_size;
+ far_set_size += (geo->raid_disks % geo->far_set_size);
+ far_set_start = last_far_set_start;
+ }
+ }
+
+ offset = sector & geo->chunk_mask;
+ if (geo->far_offset) {
+ int fc;
+ chunk = sector >> geo->chunk_shift;
+ fc = sector_div(chunk, geo->far_copies);
+ dev -= fc * geo->near_copies;
+ if (dev < far_set_start)
+ dev += far_set_size;
+ } else {
+ while (sector >= geo->stride) {
+ sector -= geo->stride;
+ if (dev < (geo->near_copies + far_set_start))
+ dev += far_set_size - geo->near_copies;
+ else
+ dev -= geo->near_copies;
+ }
+ chunk = sector >> geo->chunk_shift;
+ }
+ vchunk = chunk * geo->raid_disks + dev;
+ sector_div(vchunk, geo->near_copies);
+ return (vchunk << geo->chunk_shift) + offset;
+}
+
+/*
+ * This routine returns the disk from which the requested read should
+ * be done. There is a per-array 'next expected sequential IO' sector
+ * number - if this matches on the next IO then we use the last disk.
+ * There is also a per-disk 'last know head position' sector that is
+ * maintained from IRQ contexts, both the normal and the resync IO
+ * completion handlers update this position correctly. If there is no
+ * perfect sequential match then we pick the disk whose head is closest.
+ *
+ * If there are 2 mirrors in the same 2 devices, performance degrades
+ * because position is mirror, not device based.
+ *
+ * The rdev for the device selected will have nr_pending incremented.
+ */
+
+/*
+ * FIXME: possibly should rethink readbalancing and do it differently
+ * depending on near_copies / far_copies geometry.
+ */
+static struct md_rdev *read_balance(struct r10conf *conf,
+ struct r10bio *r10_bio,
+ int *max_sectors)
+{
+ const sector_t this_sector = r10_bio->sector;
+ int disk, slot;
+ int sectors = r10_bio->sectors;
+ int best_good_sectors;
+ sector_t new_distance, best_dist;
+ struct md_rdev *best_rdev, *rdev = NULL;
+ int do_balance;
+ int best_slot;
+ struct geom *geo = &conf->geo;
+
+ raid10_find_phys(conf, r10_bio);
+ rcu_read_lock();
+ best_slot = -1;
+ best_rdev = NULL;
+ best_dist = MaxSector;
+ best_good_sectors = 0;
+ do_balance = 1;
+ clear_bit(R10BIO_FailFast, &r10_bio->state);
+ /*
+ * Check if we can balance. We can balance on the whole
+ * device if no resync is going on (recovery is ok), or below
+ * the resync window. We take the first readable disk when
+ * above the resync window.
+ */
+ if ((conf->mddev->recovery_cp < MaxSector
+ && (this_sector + sectors >= conf->next_resync)) ||
+ (mddev_is_clustered(conf->mddev) &&
+ md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
+ this_sector + sectors)))
+ do_balance = 0;
+
+ for (slot = 0; slot < conf->copies ; slot++) {
+ sector_t first_bad;
+ int bad_sectors;
+ sector_t dev_sector;
+
+ if (r10_bio->devs[slot].bio == IO_BLOCKED)
+ continue;
+ disk = r10_bio->devs[slot].devnum;
+ rdev = rcu_dereference(conf->mirrors[disk].replacement);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
+ r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
+ rdev = rcu_dereference(conf->mirrors[disk].rdev);
+ if (rdev == NULL ||
+ test_bit(Faulty, &rdev->flags))
+ continue;
+ if (!test_bit(In_sync, &rdev->flags) &&
+ r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
+ continue;
+
+ dev_sector = r10_bio->devs[slot].addr;
+ if (is_badblock(rdev, dev_sector, sectors,
+ &first_bad, &bad_sectors)) {
+ if (best_dist < MaxSector)
+ /* Already have a better slot */
+ continue;
+ if (first_bad <= dev_sector) {
+ /* Cannot read here. If this is the
+ * 'primary' device, then we must not read
+ * beyond 'bad_sectors' from another device.
+ */
+ bad_sectors -= (dev_sector - first_bad);
+ if (!do_balance && sectors > bad_sectors)
+ sectors = bad_sectors;
+ if (best_good_sectors > sectors)
+ best_good_sectors = sectors;
+ } else {
+ sector_t good_sectors =
+ first_bad - dev_sector;
+ if (good_sectors > best_good_sectors) {
+ best_good_sectors = good_sectors;
+ best_slot = slot;
+ best_rdev = rdev;
+ }
+ if (!do_balance)
+ /* Must read from here */
+ break;
+ }
+ continue;
+ } else
+ best_good_sectors = sectors;
+
+ if (!do_balance)
+ break;
+
+ if (best_slot >= 0)
+ /* At least 2 disks to choose from so failfast is OK */
+ set_bit(R10BIO_FailFast, &r10_bio->state);
+ /* This optimisation is debatable, and completely destroys
+ * sequential read speed for 'far copies' arrays. So only
+ * keep it for 'near' arrays, and review those later.
+ */
+ if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
+ new_distance = 0;
+
+ /* for far > 1 always use the lowest address */
+ else if (geo->far_copies > 1)
+ new_distance = r10_bio->devs[slot].addr;
+ else
+ new_distance = abs(r10_bio->devs[slot].addr -
+ conf->mirrors[disk].head_position);
+ if (new_distance < best_dist) {
+ best_dist = new_distance;
+ best_slot = slot;
+ best_rdev = rdev;
+ }
+ }
+ if (slot >= conf->copies) {
+ slot = best_slot;
+ rdev = best_rdev;
+ }
+
+ if (slot >= 0) {
+ atomic_inc(&rdev->nr_pending);
+ r10_bio->read_slot = slot;
+ } else
+ rdev = NULL;
+ rcu_read_unlock();
+ *max_sectors = best_good_sectors;
+
+ return rdev;
+}
+
+static int raid10_congested(struct mddev *mddev, int bits)
+{
+ struct r10conf *conf = mddev->private;
+ int i, ret = 0;
+
+ if ((bits & (1 << WB_async_congested)) &&
+ conf->pending_count >= max_queued_requests)
+ return 1;
+
+ rcu_read_lock();
+ for (i = 0;
+ (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
+ && ret == 0;
+ i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (rdev && !test_bit(Faulty, &rdev->flags)) {
+ struct request_queue *q = bdev_get_queue(rdev->bdev);
+
+ ret |= bdi_congested(q->backing_dev_info, bits);
+ }
+ }
+ rcu_read_unlock();
+ return ret;
+}
+
+static void flush_pending_writes(struct r10conf *conf)
+{
+ /* Any writes that have been queued but are awaiting
+ * bitmap updates get flushed here.
+ */
+ spin_lock_irq(&conf->device_lock);
+
+ if (conf->pending_bio_list.head) {
+ struct blk_plug plug;
+ struct bio *bio;
+
+ bio = bio_list_get(&conf->pending_bio_list);
+ conf->pending_count = 0;
+ spin_unlock_irq(&conf->device_lock);
+
+ /*
+ * As this is called in a wait_event() loop (see freeze_array),
+ * current->state might be TASK_UNINTERRUPTIBLE which will
+ * cause a warning when we prepare to wait again. As it is
+ * rare that this path is taken, it is perfectly safe to force
+ * us to go around the wait_event() loop again, so the warning
+ * is a false-positive. Silence the warning by resetting
+ * thread state
+ */
+ __set_current_state(TASK_RUNNING);
+
+ blk_start_plug(&plug);
+ /* flush any pending bitmap writes to disk
+ * before proceeding w/ I/O */
+ md_bitmap_unplug(conf->mddev->bitmap);
+ wake_up(&conf->wait_barrier);
+
+ while (bio) { /* submit pending writes */
+ struct bio *next = bio->bi_next;
+ struct md_rdev *rdev = (void*)bio->bi_disk;
+ bio->bi_next = NULL;
+ bio_set_dev(bio, rdev->bdev);
+ if (test_bit(Faulty, &rdev->flags)) {
+ bio_io_error(bio);
+ } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
+ !blk_queue_discard(bio->bi_disk->queue)))
+ /* Just ignore it */
+ bio_endio(bio);
+ else
+ generic_make_request(bio);
+ bio = next;
+ }
+ blk_finish_plug(&plug);
+ } else
+ spin_unlock_irq(&conf->device_lock);
+}
+
+/* Barriers....
+ * Sometimes we need to suspend IO while we do something else,
+ * either some resync/recovery, or reconfigure the array.
+ * To do this we raise a 'barrier'.
+ * The 'barrier' is a counter that can be raised multiple times
+ * to count how many activities are happening which preclude
+ * normal IO.
+ * We can only raise the barrier if there is no pending IO.
+ * i.e. if nr_pending == 0.
+ * We choose only to raise the barrier if no-one is waiting for the
+ * barrier to go down. This means that as soon as an IO request
+ * is ready, no other operations which require a barrier will start
+ * until the IO request has had a chance.
+ *
+ * So: regular IO calls 'wait_barrier'. When that returns there
+ * is no backgroup IO happening, It must arrange to call
+ * allow_barrier when it has finished its IO.
+ * backgroup IO calls must call raise_barrier. Once that returns
+ * there is no normal IO happeing. It must arrange to call
+ * lower_barrier when the particular background IO completes.
+ */
+
+static void raise_barrier(struct r10conf *conf, int force)
+{
+ BUG_ON(force && !conf->barrier);
+ spin_lock_irq(&conf->resync_lock);
+
+ /* Wait until no block IO is waiting (unless 'force') */
+ wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
+ conf->resync_lock);
+
+ /* block any new IO from starting */
+ conf->barrier++;
+
+ /* Now wait for all pending IO to complete */
+ wait_event_lock_irq(conf->wait_barrier,
+ !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
+ conf->resync_lock);
+
+ spin_unlock_irq(&conf->resync_lock);
+}
+
+static void lower_barrier(struct r10conf *conf)
+{
+ unsigned long flags;
+ spin_lock_irqsave(&conf->resync_lock, flags);
+ conf->barrier--;
+ spin_unlock_irqrestore(&conf->resync_lock, flags);
+ wake_up(&conf->wait_barrier);
+}
+
+static void wait_barrier(struct r10conf *conf)
+{
+ spin_lock_irq(&conf->resync_lock);
+ if (conf->barrier) {
+ conf->nr_waiting++;
+ /* Wait for the barrier to drop.
+ * However if there are already pending
+ * requests (preventing the barrier from
+ * rising completely), and the
+ * pre-process bio queue isn't empty,
+ * then don't wait, as we need to empty
+ * that queue to get the nr_pending
+ * count down.
+ */
+ raid10_log(conf->mddev, "wait barrier");
+ wait_event_lock_irq(conf->wait_barrier,
+ !conf->barrier ||
+ (atomic_read(&conf->nr_pending) &&
+ current->bio_list &&
+ (!bio_list_empty(&current->bio_list[0]) ||
+ !bio_list_empty(&current->bio_list[1]))),
+ conf->resync_lock);
+ conf->nr_waiting--;
+ if (!conf->nr_waiting)
+ wake_up(&conf->wait_barrier);
+ }
+ atomic_inc(&conf->nr_pending);
+ spin_unlock_irq(&conf->resync_lock);
+}
+
+static void allow_barrier(struct r10conf *conf)
+{
+ if ((atomic_dec_and_test(&conf->nr_pending)) ||
+ (conf->array_freeze_pending))
+ wake_up(&conf->wait_barrier);
+}
+
+static void freeze_array(struct r10conf *conf, int extra)
+{
+ /* stop syncio and normal IO and wait for everything to
+ * go quiet.
+ * We increment barrier and nr_waiting, and then
+ * wait until nr_pending match nr_queued+extra
+ * This is called in the context of one normal IO request
+ * that has failed. Thus any sync request that might be pending
+ * will be blocked by nr_pending, and we need to wait for
+ * pending IO requests to complete or be queued for re-try.
+ * Thus the number queued (nr_queued) plus this request (extra)
+ * must match the number of pending IOs (nr_pending) before
+ * we continue.
+ */
+ spin_lock_irq(&conf->resync_lock);
+ conf->array_freeze_pending++;
+ conf->barrier++;
+ conf->nr_waiting++;
+ wait_event_lock_irq_cmd(conf->wait_barrier,
+ atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
+ conf->resync_lock,
+ flush_pending_writes(conf));
+
+ conf->array_freeze_pending--;
+ spin_unlock_irq(&conf->resync_lock);
+}
+
+static void unfreeze_array(struct r10conf *conf)
+{
+ /* reverse the effect of the freeze */
+ spin_lock_irq(&conf->resync_lock);
+ conf->barrier--;
+ conf->nr_waiting--;
+ wake_up(&conf->wait_barrier);
+ spin_unlock_irq(&conf->resync_lock);
+}
+
+static sector_t choose_data_offset(struct r10bio *r10_bio,
+ struct md_rdev *rdev)
+{
+ if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
+ test_bit(R10BIO_Previous, &r10_bio->state))
+ return rdev->data_offset;
+ else
+ return rdev->new_data_offset;
+}
+
+struct raid10_plug_cb {
+ struct blk_plug_cb cb;
+ struct bio_list pending;
+ int pending_cnt;
+};
+
+static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
+{
+ struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
+ cb);
+ struct mddev *mddev = plug->cb.data;
+ struct r10conf *conf = mddev->private;
+ struct bio *bio;
+
+ if (from_schedule || current->bio_list) {
+ spin_lock_irq(&conf->device_lock);
+ bio_list_merge(&conf->pending_bio_list, &plug->pending);
+ conf->pending_count += plug->pending_cnt;
+ spin_unlock_irq(&conf->device_lock);
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(mddev->thread);
+ kfree(plug);
+ return;
+ }
+
+ /* we aren't scheduling, so we can do the write-out directly. */
+ bio = bio_list_get(&plug->pending);
+ md_bitmap_unplug(mddev->bitmap);
+ wake_up(&conf->wait_barrier);
+
+ while (bio) { /* submit pending writes */
+ struct bio *next = bio->bi_next;
+ struct md_rdev *rdev = (void*)bio->bi_disk;
+ bio->bi_next = NULL;
+ bio_set_dev(bio, rdev->bdev);
+ if (test_bit(Faulty, &rdev->flags)) {
+ bio_io_error(bio);
+ } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
+ !blk_queue_discard(bio->bi_disk->queue)))
+ /* Just ignore it */
+ bio_endio(bio);
+ else
+ generic_make_request(bio);
+ bio = next;
+ }
+ kfree(plug);
+}
+
+static void raid10_read_request(struct mddev *mddev, struct bio *bio,
+ struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ struct bio *read_bio;
+ const int op = bio_op(bio);
+ const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
+ int max_sectors;
+ sector_t sectors;
+ struct md_rdev *rdev;
+ char b[BDEVNAME_SIZE];
+ int slot = r10_bio->read_slot;
+ struct md_rdev *err_rdev = NULL;
+ gfp_t gfp = GFP_NOIO;
+
+ if (slot >= 0 && r10_bio->devs[slot].rdev) {
+ /*
+ * This is an error retry, but we cannot
+ * safely dereference the rdev in the r10_bio,
+ * we must use the one in conf.
+ * If it has already been disconnected (unlikely)
+ * we lose the device name in error messages.
+ */
+ int disk;
+ /*
+ * As we are blocking raid10, it is a little safer to
+ * use __GFP_HIGH.
+ */
+ gfp = GFP_NOIO | __GFP_HIGH;
+
+ rcu_read_lock();
+ disk = r10_bio->devs[slot].devnum;
+ err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
+ if (err_rdev)
+ bdevname(err_rdev->bdev, b);
+ else {
+ strcpy(b, "???");
+ /* This never gets dereferenced */
+ err_rdev = r10_bio->devs[slot].rdev;
+ }
+ rcu_read_unlock();
+ }
+ /*
+ * Register the new request and wait if the reconstruction
+ * thread has put up a bar for new requests.
+ * Continue immediately if no resync is active currently.
+ */
+ wait_barrier(conf);
+
+ sectors = r10_bio->sectors;
+ while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ bio->bi_iter.bi_sector < conf->reshape_progress &&
+ bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
+ /*
+ * IO spans the reshape position. Need to wait for reshape to
+ * pass
+ */
+ raid10_log(conf->mddev, "wait reshape");
+ allow_barrier(conf);
+ wait_event(conf->wait_barrier,
+ conf->reshape_progress <= bio->bi_iter.bi_sector ||
+ conf->reshape_progress >= bio->bi_iter.bi_sector +
+ sectors);
+ wait_barrier(conf);
+ }
+
+ rdev = read_balance(conf, r10_bio, &max_sectors);
+ if (!rdev) {
+ if (err_rdev) {
+ pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
+ mdname(mddev), b,
+ (unsigned long long)r10_bio->sector);
+ }
+ raid_end_bio_io(r10_bio);
+ return;
+ }
+ if (err_rdev)
+ pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
+ mdname(mddev),
+ bdevname(rdev->bdev, b),
+ (unsigned long long)r10_bio->sector);
+ if (max_sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, max_sectors,
+ gfp, &conf->bio_split);
+ bio_chain(split, bio);
+ allow_barrier(conf);
+ generic_make_request(bio);
+ wait_barrier(conf);
+ bio = split;
+ r10_bio->master_bio = bio;
+ r10_bio->sectors = max_sectors;
+ }
+ slot = r10_bio->read_slot;
+
+ read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
+
+ r10_bio->devs[slot].bio = read_bio;
+ r10_bio->devs[slot].rdev = rdev;
+
+ read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
+ choose_data_offset(r10_bio, rdev);
+ bio_set_dev(read_bio, rdev->bdev);
+ read_bio->bi_end_io = raid10_end_read_request;
+ bio_set_op_attrs(read_bio, op, do_sync);
+ if (test_bit(FailFast, &rdev->flags) &&
+ test_bit(R10BIO_FailFast, &r10_bio->state))
+ read_bio->bi_opf |= MD_FAILFAST;
+ read_bio->bi_private = r10_bio;
+
+ if (mddev->gendisk)
+ trace_block_bio_remap(read_bio->bi_disk->queue,
+ read_bio, disk_devt(mddev->gendisk),
+ r10_bio->sector);
+ generic_make_request(read_bio);
+ return;
+}
+
+static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
+ struct bio *bio, bool replacement,
+ int n_copy)
+{
+ const int op = bio_op(bio);
+ const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
+ const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
+ unsigned long flags;
+ struct blk_plug_cb *cb;
+ struct raid10_plug_cb *plug = NULL;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev;
+ int devnum = r10_bio->devs[n_copy].devnum;
+ struct bio *mbio;
+
+ if (replacement) {
+ rdev = conf->mirrors[devnum].replacement;
+ if (rdev == NULL) {
+ /* Replacement just got moved to main 'rdev' */
+ smp_mb();
+ rdev = conf->mirrors[devnum].rdev;
+ }
+ } else
+ rdev = conf->mirrors[devnum].rdev;
+
+ mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
+ if (replacement)
+ r10_bio->devs[n_copy].repl_bio = mbio;
+ else
+ r10_bio->devs[n_copy].bio = mbio;
+
+ mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
+ choose_data_offset(r10_bio, rdev));
+ bio_set_dev(mbio, rdev->bdev);
+ mbio->bi_end_io = raid10_end_write_request;
+ bio_set_op_attrs(mbio, op, do_sync | do_fua);
+ if (!replacement && test_bit(FailFast,
+ &conf->mirrors[devnum].rdev->flags)
+ && enough(conf, devnum))
+ mbio->bi_opf |= MD_FAILFAST;
+ mbio->bi_private = r10_bio;
+
+ if (conf->mddev->gendisk)
+ trace_block_bio_remap(mbio->bi_disk->queue,
+ mbio, disk_devt(conf->mddev->gendisk),
+ r10_bio->sector);
+ /* flush_pending_writes() needs access to the rdev so...*/
+ mbio->bi_disk = (void *)rdev;
+
+ atomic_inc(&r10_bio->remaining);
+
+ cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
+ if (cb)
+ plug = container_of(cb, struct raid10_plug_cb, cb);
+ else
+ plug = NULL;
+ if (plug) {
+ bio_list_add(&plug->pending, mbio);
+ plug->pending_cnt++;
+ } else {
+ spin_lock_irqsave(&conf->device_lock, flags);
+ bio_list_add(&conf->pending_bio_list, mbio);
+ conf->pending_count++;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ md_wakeup_thread(mddev->thread);
+ }
+}
+
+static void raid10_write_request(struct mddev *mddev, struct bio *bio,
+ struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ int i;
+ struct md_rdev *blocked_rdev;
+ sector_t sectors;
+ int max_sectors;
+
+ if ((mddev_is_clustered(mddev) &&
+ md_cluster_ops->area_resyncing(mddev, WRITE,
+ bio->bi_iter.bi_sector,
+ bio_end_sector(bio)))) {
+ DEFINE_WAIT(w);
+ for (;;) {
+ prepare_to_wait(&conf->wait_barrier,
+ &w, TASK_IDLE);
+ if (!md_cluster_ops->area_resyncing(mddev, WRITE,
+ bio->bi_iter.bi_sector, bio_end_sector(bio)))
+ break;
+ schedule();
+ }
+ finish_wait(&conf->wait_barrier, &w);
+ }
+
+ /*
+ * Register the new request and wait if the reconstruction
+ * thread has put up a bar for new requests.
+ * Continue immediately if no resync is active currently.
+ */
+ wait_barrier(conf);
+
+ sectors = r10_bio->sectors;
+ while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ bio->bi_iter.bi_sector < conf->reshape_progress &&
+ bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
+ /*
+ * IO spans the reshape position. Need to wait for reshape to
+ * pass
+ */
+ raid10_log(conf->mddev, "wait reshape");
+ allow_barrier(conf);
+ wait_event(conf->wait_barrier,
+ conf->reshape_progress <= bio->bi_iter.bi_sector ||
+ conf->reshape_progress >= bio->bi_iter.bi_sector +
+ sectors);
+ wait_barrier(conf);
+ }
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ (mddev->reshape_backwards
+ ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
+ bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
+ : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
+ bio->bi_iter.bi_sector < conf->reshape_progress))) {
+ /* Need to update reshape_position in metadata */
+ mddev->reshape_position = conf->reshape_progress;
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ md_wakeup_thread(mddev->thread);
+ raid10_log(conf->mddev, "wait reshape metadata");
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
+
+ conf->reshape_safe = mddev->reshape_position;
+ }
+
+ if (conf->pending_count >= max_queued_requests) {
+ md_wakeup_thread(mddev->thread);
+ raid10_log(mddev, "wait queued");
+ wait_event(conf->wait_barrier,
+ conf->pending_count < max_queued_requests);
+ }
+ /* first select target devices under rcu_lock and
+ * inc refcount on their rdev. Record them by setting
+ * bios[x] to bio
+ * If there are known/acknowledged bad blocks on any device
+ * on which we have seen a write error, we want to avoid
+ * writing to those blocks. This potentially requires several
+ * writes to write around the bad blocks. Each set of writes
+ * gets its own r10_bio with a set of bios attached.
+ */
+
+ r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
+ raid10_find_phys(conf, r10_bio);
+retry_write:
+ blocked_rdev = NULL;
+ rcu_read_lock();
+ max_sectors = r10_bio->sectors;
+
+ for (i = 0; i < conf->copies; i++) {
+ int d = r10_bio->devs[i].devnum;
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
+ struct md_rdev *rrdev = rcu_dereference(
+ conf->mirrors[d].replacement);
+ if (rdev == rrdev)
+ rrdev = NULL;
+ if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
+ atomic_inc(&rdev->nr_pending);
+ blocked_rdev = rdev;
+ break;
+ }
+ if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
+ atomic_inc(&rrdev->nr_pending);
+ blocked_rdev = rrdev;
+ break;
+ }
+ if (rdev && (test_bit(Faulty, &rdev->flags)))
+ rdev = NULL;
+ if (rrdev && (test_bit(Faulty, &rrdev->flags)))
+ rrdev = NULL;
+
+ r10_bio->devs[i].bio = NULL;
+ r10_bio->devs[i].repl_bio = NULL;
+
+ if (!rdev && !rrdev) {
+ set_bit(R10BIO_Degraded, &r10_bio->state);
+ continue;
+ }
+ if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
+ sector_t first_bad;
+ sector_t dev_sector = r10_bio->devs[i].addr;
+ int bad_sectors;
+ int is_bad;
+
+ is_bad = is_badblock(rdev, dev_sector, max_sectors,
+ &first_bad, &bad_sectors);
+ if (is_bad < 0) {
+ /* Mustn't write here until the bad block
+ * is acknowledged
+ */
+ atomic_inc(&rdev->nr_pending);
+ set_bit(BlockedBadBlocks, &rdev->flags);
+ blocked_rdev = rdev;
+ break;
+ }
+ if (is_bad && first_bad <= dev_sector) {
+ /* Cannot write here at all */
+ bad_sectors -= (dev_sector - first_bad);
+ if (bad_sectors < max_sectors)
+ /* Mustn't write more than bad_sectors
+ * to other devices yet
+ */
+ max_sectors = bad_sectors;
+ /* We don't set R10BIO_Degraded as that
+ * only applies if the disk is missing,
+ * so it might be re-added, and we want to
+ * know to recover this chunk.
+ * In this case the device is here, and the
+ * fact that this chunk is not in-sync is
+ * recorded in the bad block log.
+ */
+ continue;
+ }
+ if (is_bad) {
+ int good_sectors = first_bad - dev_sector;
+ if (good_sectors < max_sectors)
+ max_sectors = good_sectors;
+ }
+ }
+ if (rdev) {
+ r10_bio->devs[i].bio = bio;
+ atomic_inc(&rdev->nr_pending);
+ }
+ if (rrdev) {
+ r10_bio->devs[i].repl_bio = bio;
+ atomic_inc(&rrdev->nr_pending);
+ }
+ }
+ rcu_read_unlock();
+
+ if (unlikely(blocked_rdev)) {
+ /* Have to wait for this device to get unblocked, then retry */
+ int j;
+ int d;
+
+ for (j = 0; j < i; j++) {
+ if (r10_bio->devs[j].bio) {
+ d = r10_bio->devs[j].devnum;
+ rdev_dec_pending(conf->mirrors[d].rdev, mddev);
+ }
+ if (r10_bio->devs[j].repl_bio) {
+ struct md_rdev *rdev;
+ d = r10_bio->devs[j].devnum;
+ rdev = conf->mirrors[d].replacement;
+ if (!rdev) {
+ /* Race with remove_disk */
+ smp_mb();
+ rdev = conf->mirrors[d].rdev;
+ }
+ rdev_dec_pending(rdev, mddev);
+ }
+ }
+ allow_barrier(conf);
+ raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
+ md_wait_for_blocked_rdev(blocked_rdev, mddev);
+ wait_barrier(conf);
+ goto retry_write;
+ }
+
+ if (max_sectors < r10_bio->sectors)
+ r10_bio->sectors = max_sectors;
+
+ if (r10_bio->sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, r10_bio->sectors,
+ GFP_NOIO, &conf->bio_split);
+ bio_chain(split, bio);
+ allow_barrier(conf);
+ generic_make_request(bio);
+ wait_barrier(conf);
+ bio = split;
+ r10_bio->master_bio = bio;
+ }
+
+ atomic_set(&r10_bio->remaining, 1);
+ md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
+
+ for (i = 0; i < conf->copies; i++) {
+ if (r10_bio->devs[i].bio)
+ raid10_write_one_disk(mddev, r10_bio, bio, false, i);
+ if (r10_bio->devs[i].repl_bio)
+ raid10_write_one_disk(mddev, r10_bio, bio, true, i);
+ }
+ one_write_done(r10_bio);
+}
+
+static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
+{
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10_bio;
+
+ r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
+
+ r10_bio->master_bio = bio;
+ r10_bio->sectors = sectors;
+
+ r10_bio->mddev = mddev;
+ r10_bio->sector = bio->bi_iter.bi_sector;
+ r10_bio->state = 0;
+ r10_bio->read_slot = -1;
+ memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
+
+ if (bio_data_dir(bio) == READ)
+ raid10_read_request(mddev, bio, r10_bio);
+ else
+ raid10_write_request(mddev, bio, r10_bio);
+}
+
+static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
+{
+ struct r10conf *conf = mddev->private;
+ sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
+ int chunk_sects = chunk_mask + 1;
+ int sectors = bio_sectors(bio);
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)
+ && md_flush_request(mddev, bio))
+ return true;
+
+ if (!md_write_start(mddev, bio))
+ return false;
+
+ /*
+ * If this request crosses a chunk boundary, we need to split
+ * it.
+ */
+ if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
+ sectors > chunk_sects
+ && (conf->geo.near_copies < conf->geo.raid_disks
+ || conf->prev.near_copies <
+ conf->prev.raid_disks)))
+ sectors = chunk_sects -
+ (bio->bi_iter.bi_sector &
+ (chunk_sects - 1));
+ __make_request(mddev, bio, sectors);
+
+ /* In case raid10d snuck in to freeze_array */
+ wake_up(&conf->wait_barrier);
+ return true;
+}
+
+static void raid10_status(struct seq_file *seq, struct mddev *mddev)
+{
+ struct r10conf *conf = mddev->private;
+ int i;
+
+ if (conf->geo.near_copies < conf->geo.raid_disks)
+ seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
+ if (conf->geo.near_copies > 1)
+ seq_printf(seq, " %d near-copies", conf->geo.near_copies);
+ if (conf->geo.far_copies > 1) {
+ if (conf->geo.far_offset)
+ seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
+ else
+ seq_printf(seq, " %d far-copies", conf->geo.far_copies);
+ if (conf->geo.far_set_size != conf->geo.raid_disks)
+ seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
+ }
+ seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
+ conf->geo.raid_disks - mddev->degraded);
+ rcu_read_lock();
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
+ }
+ rcu_read_unlock();
+ seq_printf(seq, "]");
+}
+
+/* check if there are enough drives for
+ * every block to appear on atleast one.
+ * Don't consider the device numbered 'ignore'
+ * as we might be about to remove it.
+ */
+static int _enough(struct r10conf *conf, int previous, int ignore)
+{
+ int first = 0;
+ int has_enough = 0;
+ int disks, ncopies;
+ if (previous) {
+ disks = conf->prev.raid_disks;
+ ncopies = conf->prev.near_copies;
+ } else {
+ disks = conf->geo.raid_disks;
+ ncopies = conf->geo.near_copies;
+ }
+
+ rcu_read_lock();
+ do {
+ int n = conf->copies;
+ int cnt = 0;
+ int this = first;
+ while (n--) {
+ struct md_rdev *rdev;
+ if (this != ignore &&
+ (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
+ test_bit(In_sync, &rdev->flags))
+ cnt++;
+ this = (this+1) % disks;
+ }
+ if (cnt == 0)
+ goto out;
+ first = (first + ncopies) % disks;
+ } while (first != 0);
+ has_enough = 1;
+out:
+ rcu_read_unlock();
+ return has_enough;
+}
+
+static int enough(struct r10conf *conf, int ignore)
+{
+ /* when calling 'enough', both 'prev' and 'geo' must
+ * be stable.
+ * This is ensured if ->reconfig_mutex or ->device_lock
+ * is held.
+ */
+ return _enough(conf, 0, ignore) &&
+ _enough(conf, 1, ignore);
+}
+
+static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ char b[BDEVNAME_SIZE];
+ struct r10conf *conf = mddev->private;
+ unsigned long flags;
+
+ /*
+ * If it is not operational, then we have already marked it as dead
+ * else if it is the last working disks, ignore the error, let the
+ * next level up know.
+ * else mark the drive as failed
+ */
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (test_bit(In_sync, &rdev->flags)
+ && !enough(conf, rdev->raid_disk)) {
+ /*
+ * Don't fail the drive, just return an IO error.
+ */
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ return;
+ }
+ if (test_and_clear_bit(In_sync, &rdev->flags))
+ mddev->degraded++;
+ /*
+ * If recovery is running, make sure it aborts.
+ */
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ set_bit(Blocked, &rdev->flags);
+ set_bit(Faulty, &rdev->flags);
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
+ "md/raid10:%s: Operation continuing on %d devices.\n",
+ mdname(mddev), bdevname(rdev->bdev, b),
+ mdname(mddev), conf->geo.raid_disks - mddev->degraded);
+}
+
+static void print_conf(struct r10conf *conf)
+{
+ int i;
+ struct md_rdev *rdev;
+
+ pr_debug("RAID10 conf printout:\n");
+ if (!conf) {
+ pr_debug("(!conf)\n");
+ return;
+ }
+ pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
+ conf->geo.raid_disks);
+
+ /* This is only called with ->reconfix_mutex held, so
+ * rcu protection of rdev is not needed */
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ char b[BDEVNAME_SIZE];
+ rdev = conf->mirrors[i].rdev;
+ if (rdev)
+ pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
+ i, !test_bit(In_sync, &rdev->flags),
+ !test_bit(Faulty, &rdev->flags),
+ bdevname(rdev->bdev,b));
+ }
+}
+
+static void close_sync(struct r10conf *conf)
+{
+ wait_barrier(conf);
+ allow_barrier(conf);
+
+ mempool_exit(&conf->r10buf_pool);
+}
+
+static int raid10_spare_active(struct mddev *mddev)
+{
+ int i;
+ struct r10conf *conf = mddev->private;
+ struct raid10_info *tmp;
+ int count = 0;
+ unsigned long flags;
+
+ /*
+ * Find all non-in_sync disks within the RAID10 configuration
+ * and mark them in_sync
+ */
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ tmp = conf->mirrors + i;
+ if (tmp->replacement
+ && tmp->replacement->recovery_offset == MaxSector
+ && !test_bit(Faulty, &tmp->replacement->flags)
+ && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
+ /* Replacement has just become active */
+ if (!tmp->rdev
+ || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
+ count++;
+ if (tmp->rdev) {
+ /* Replaced device not technically faulty,
+ * but we need to be sure it gets removed
+ * and never re-added.
+ */
+ set_bit(Faulty, &tmp->rdev->flags);
+ sysfs_notify_dirent_safe(
+ tmp->rdev->sysfs_state);
+ }
+ sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
+ } else if (tmp->rdev
+ && tmp->rdev->recovery_offset == MaxSector
+ && !test_bit(Faulty, &tmp->rdev->flags)
+ && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
+ count++;
+ sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
+ }
+ }
+ spin_lock_irqsave(&conf->device_lock, flags);
+ mddev->degraded -= count;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ print_conf(conf);
+ return count;
+}
+
+static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r10conf *conf = mddev->private;
+ int err = -EEXIST;
+ int mirror;
+ int first = 0;
+ int last = conf->geo.raid_disks - 1;
+
+ if (mddev->recovery_cp < MaxSector)
+ /* only hot-add to in-sync arrays, as recovery is
+ * very different from resync
+ */
+ return -EBUSY;
+ if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
+ return -EINVAL;
+
+ if (md_integrity_add_rdev(rdev, mddev))
+ return -ENXIO;
+
+ if (rdev->raid_disk >= 0)
+ first = last = rdev->raid_disk;
+
+ if (rdev->saved_raid_disk >= first &&
+ rdev->saved_raid_disk < conf->geo.raid_disks &&
+ conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
+ mirror = rdev->saved_raid_disk;
+ else
+ mirror = first;
+ for ( ; mirror <= last ; mirror++) {
+ struct raid10_info *p = &conf->mirrors[mirror];
+ if (p->recovery_disabled == mddev->recovery_disabled)
+ continue;
+ if (p->rdev) {
+ if (!test_bit(WantReplacement, &p->rdev->flags) ||
+ p->replacement != NULL)
+ continue;
+ clear_bit(In_sync, &rdev->flags);
+ set_bit(Replacement, &rdev->flags);
+ rdev->raid_disk = mirror;
+ err = 0;
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->replacement, rdev);
+ break;
+ }
+
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ p->head_position = 0;
+ p->recovery_disabled = mddev->recovery_disabled - 1;
+ rdev->raid_disk = mirror;
+ err = 0;
+ if (rdev->saved_raid_disk != mirror)
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->rdev, rdev);
+ break;
+ }
+ if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
+ blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
+
+ print_conf(conf);
+ return err;
+}
+
+static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r10conf *conf = mddev->private;
+ int err = 0;
+ int number = rdev->raid_disk;
+ struct md_rdev **rdevp;
+ struct raid10_info *p = conf->mirrors + number;
+
+ print_conf(conf);
+ if (rdev == p->rdev)
+ rdevp = &p->rdev;
+ else if (rdev == p->replacement)
+ rdevp = &p->replacement;
+ else
+ return 0;
+
+ if (test_bit(In_sync, &rdev->flags) ||
+ atomic_read(&rdev->nr_pending)) {
+ err = -EBUSY;
+ goto abort;
+ }
+ /* Only remove non-faulty devices if recovery
+ * is not possible.
+ */
+ if (!test_bit(Faulty, &rdev->flags) &&
+ mddev->recovery_disabled != p->recovery_disabled &&
+ (!p->replacement || p->replacement == rdev) &&
+ number < conf->geo.raid_disks &&
+ enough(conf, -1)) {
+ err = -EBUSY;
+ goto abort;
+ }
+ *rdevp = NULL;
+ if (!test_bit(RemoveSynchronized, &rdev->flags)) {
+ synchronize_rcu();
+ if (atomic_read(&rdev->nr_pending)) {
+ /* lost the race, try later */
+ err = -EBUSY;
+ *rdevp = rdev;
+ goto abort;
+ }
+ }
+ if (p->replacement) {
+ /* We must have just cleared 'rdev' */
+ p->rdev = p->replacement;
+ clear_bit(Replacement, &p->replacement->flags);
+ smp_mb(); /* Make sure other CPUs may see both as identical
+ * but will never see neither -- if they are careful.
+ */
+ p->replacement = NULL;
+ }
+
+ clear_bit(WantReplacement, &rdev->flags);
+ err = md_integrity_register(mddev);
+
+abort:
+
+ print_conf(conf);
+ return err;
+}
+
+static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ if (!bio->bi_status)
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+ else
+ /* The write handler will notice the lack of
+ * R10BIO_Uptodate and record any errors etc
+ */
+ atomic_add(r10_bio->sectors,
+ &conf->mirrors[d].rdev->corrected_errors);
+
+ /* for reconstruct, we always reschedule after a read.
+ * for resync, only after all reads
+ */
+ rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
+ if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
+ atomic_dec_and_test(&r10_bio->remaining)) {
+ /* we have read all the blocks,
+ * do the comparison in process context in raid10d
+ */
+ reschedule_retry(r10_bio);
+ }
+}
+
+static void end_sync_read(struct bio *bio)
+{
+ struct r10bio *r10_bio = get_resync_r10bio(bio);
+ struct r10conf *conf = r10_bio->mddev->private;
+ int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
+
+ __end_sync_read(r10_bio, bio, d);
+}
+
+static void end_reshape_read(struct bio *bio)
+{
+ /* reshape read bio isn't allocated from r10buf_pool */
+ struct r10bio *r10_bio = bio->bi_private;
+
+ __end_sync_read(r10_bio, bio, r10_bio->read_slot);
+}
+
+static void end_sync_request(struct r10bio *r10_bio)
+{
+ struct mddev *mddev = r10_bio->mddev;
+
+ while (atomic_dec_and_test(&r10_bio->remaining)) {
+ if (r10_bio->master_bio == NULL) {
+ /* the primary of several recovery bios */
+ sector_t s = r10_bio->sectors;
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+ test_bit(R10BIO_WriteError, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else
+ put_buf(r10_bio);
+ md_done_sync(mddev, s, 1);
+ break;
+ } else {
+ struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+ test_bit(R10BIO_WriteError, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else
+ put_buf(r10_bio);
+ r10_bio = r10_bio2;
+ }
+ }
+}
+
+static void end_sync_write(struct bio *bio)
+{
+ struct r10bio *r10_bio = get_resync_r10bio(bio);
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ int d;
+ sector_t first_bad;
+ int bad_sectors;
+ int slot;
+ int repl;
+ struct md_rdev *rdev = NULL;
+
+ d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+ if (repl)
+ rdev = conf->mirrors[d].replacement;
+ else
+ rdev = conf->mirrors[d].rdev;
+
+ if (bio->bi_status) {
+ if (repl)
+ md_error(mddev, rdev);
+ else {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ set_bit(R10BIO_WriteError, &r10_bio->state);
+ }
+ } else if (is_badblock(rdev,
+ r10_bio->devs[slot].addr,
+ r10_bio->sectors,
+ &first_bad, &bad_sectors))
+ set_bit(R10BIO_MadeGood, &r10_bio->state);
+
+ rdev_dec_pending(rdev, mddev);
+
+ end_sync_request(r10_bio);
+}
+
+/*
+ * Note: sync and recover and handled very differently for raid10
+ * This code is for resync.
+ * For resync, we read through virtual addresses and read all blocks.
+ * If there is any error, we schedule a write. The lowest numbered
+ * drive is authoritative.
+ * However requests come for physical address, so we need to map.
+ * For every physical address there are raid_disks/copies virtual addresses,
+ * which is always are least one, but is not necessarly an integer.
+ * This means that a physical address can span multiple chunks, so we may
+ * have to submit multiple io requests for a single sync request.
+ */
+/*
+ * We check if all blocks are in-sync and only write to blocks that
+ * aren't in sync
+ */
+static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ int i, first;
+ struct bio *tbio, *fbio;
+ int vcnt;
+ struct page **tpages, **fpages;
+
+ atomic_set(&r10_bio->remaining, 1);
+
+ /* find the first device with a block */
+ for (i=0; i<conf->copies; i++)
+ if (!r10_bio->devs[i].bio->bi_status)
+ break;
+
+ if (i == conf->copies)
+ goto done;
+
+ first = i;
+ fbio = r10_bio->devs[i].bio;
+ fbio->bi_iter.bi_size = r10_bio->sectors << 9;
+ fbio->bi_iter.bi_idx = 0;
+ fpages = get_resync_pages(fbio)->pages;
+
+ vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
+ /* now find blocks with errors */
+ for (i=0 ; i < conf->copies ; i++) {
+ int j, d;
+ struct md_rdev *rdev;
+ struct resync_pages *rp;
+
+ tbio = r10_bio->devs[i].bio;
+
+ if (tbio->bi_end_io != end_sync_read)
+ continue;
+ if (i == first)
+ continue;
+
+ tpages = get_resync_pages(tbio)->pages;
+ d = r10_bio->devs[i].devnum;
+ rdev = conf->mirrors[d].rdev;
+ if (!r10_bio->devs[i].bio->bi_status) {
+ /* We know that the bi_io_vec layout is the same for
+ * both 'first' and 'i', so we just compare them.
+ * All vec entries are PAGE_SIZE;
+ */
+ int sectors = r10_bio->sectors;
+ for (j = 0; j < vcnt; j++) {
+ int len = PAGE_SIZE;
+ if (sectors < (len / 512))
+ len = sectors * 512;
+ if (memcmp(page_address(fpages[j]),
+ page_address(tpages[j]),
+ len))
+ break;
+ sectors -= len/512;
+ }
+ if (j == vcnt)
+ continue;
+ atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
+ if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
+ /* Don't fix anything. */
+ continue;
+ } else if (test_bit(FailFast, &rdev->flags)) {
+ /* Just give up on this device */
+ md_error(rdev->mddev, rdev);
+ continue;
+ }
+ /* Ok, we need to write this bio, either to correct an
+ * inconsistency or to correct an unreadable block.
+ * First we need to fixup bv_offset, bv_len and
+ * bi_vecs, as the read request might have corrupted these
+ */
+ rp = get_resync_pages(tbio);
+ bio_reset(tbio);
+
+ md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
+
+ rp->raid_bio = r10_bio;
+ tbio->bi_private = rp;
+ tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
+ tbio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
+
+ bio_copy_data(tbio, fbio);
+
+ atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+ atomic_inc(&r10_bio->remaining);
+ md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
+
+ if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
+ tbio->bi_opf |= MD_FAILFAST;
+ tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
+ bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
+ generic_make_request(tbio);
+ }
+
+ /* Now write out to any replacement devices
+ * that are active
+ */
+ for (i = 0; i < conf->copies; i++) {
+ int d;
+
+ tbio = r10_bio->devs[i].repl_bio;
+ if (!tbio || !tbio->bi_end_io)
+ continue;
+ if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
+ && r10_bio->devs[i].bio != fbio)
+ bio_copy_data(tbio, fbio);
+ d = r10_bio->devs[i].devnum;
+ atomic_inc(&r10_bio->remaining);
+ md_sync_acct(conf->mirrors[d].replacement->bdev,
+ bio_sectors(tbio));
+ generic_make_request(tbio);
+ }
+
+done:
+ if (atomic_dec_and_test(&r10_bio->remaining)) {
+ md_done_sync(mddev, r10_bio->sectors, 1);
+ put_buf(r10_bio);
+ }
+}
+
+/*
+ * Now for the recovery code.
+ * Recovery happens across physical sectors.
+ * We recover all non-is_sync drives by finding the virtual address of
+ * each, and then choose a working drive that also has that virt address.
+ * There is a separate r10_bio for each non-in_sync drive.
+ * Only the first two slots are in use. The first for reading,
+ * The second for writing.
+ *
+ */
+static void fix_recovery_read_error(struct r10bio *r10_bio)
+{
+ /* We got a read error during recovery.
+ * We repeat the read in smaller page-sized sections.
+ * If a read succeeds, write it to the new device or record
+ * a bad block if we cannot.
+ * If a read fails, record a bad block on both old and
+ * new devices.
+ */
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ struct bio *bio = r10_bio->devs[0].bio;
+ sector_t sect = 0;
+ int sectors = r10_bio->sectors;
+ int idx = 0;
+ int dr = r10_bio->devs[0].devnum;
+ int dw = r10_bio->devs[1].devnum;
+ struct page **pages = get_resync_pages(bio)->pages;
+
+ while (sectors) {
+ int s = sectors;
+ struct md_rdev *rdev;
+ sector_t addr;
+ int ok;
+
+ if (s > (PAGE_SIZE>>9))
+ s = PAGE_SIZE >> 9;
+
+ rdev = conf->mirrors[dr].rdev;
+ addr = r10_bio->devs[0].addr + sect,
+ ok = sync_page_io(rdev,
+ addr,
+ s << 9,
+ pages[idx],
+ REQ_OP_READ, 0, false);
+ if (ok) {
+ rdev = conf->mirrors[dw].rdev;
+ addr = r10_bio->devs[1].addr + sect;
+ ok = sync_page_io(rdev,
+ addr,
+ s << 9,
+ pages[idx],
+ REQ_OP_WRITE, 0, false);
+ if (!ok) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement,
+ &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ }
+ }
+ if (!ok) {
+ /* We don't worry if we cannot set a bad block -
+ * it really is bad so there is no loss in not
+ * recording it yet
+ */
+ rdev_set_badblocks(rdev, addr, s, 0);
+
+ if (rdev != conf->mirrors[dw].rdev) {
+ /* need bad block on destination too */
+ struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
+ addr = r10_bio->devs[1].addr + sect;
+ ok = rdev_set_badblocks(rdev2, addr, s, 0);
+ if (!ok) {
+ /* just abort the recovery */
+ pr_notice("md/raid10:%s: recovery aborted due to read error\n",
+ mdname(mddev));
+
+ conf->mirrors[dw].recovery_disabled
+ = mddev->recovery_disabled;
+ set_bit(MD_RECOVERY_INTR,
+ &mddev->recovery);
+ break;
+ }
+ }
+ }
+
+ sectors -= s;
+ sect += s;
+ idx++;
+ }
+}
+
+static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ int d;
+ struct bio *wbio, *wbio2;
+
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
+ fix_recovery_read_error(r10_bio);
+ end_sync_request(r10_bio);
+ return;
+ }
+
+ /*
+ * share the pages with the first bio
+ * and submit the write request
+ */
+ d = r10_bio->devs[1].devnum;
+ wbio = r10_bio->devs[1].bio;
+ wbio2 = r10_bio->devs[1].repl_bio;
+ /* Need to test wbio2->bi_end_io before we call
+ * generic_make_request as if the former is NULL,
+ * the latter is free to free wbio2.
+ */
+ if (wbio2 && !wbio2->bi_end_io)
+ wbio2 = NULL;
+ if (wbio->bi_end_io) {
+ atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+ md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
+ generic_make_request(wbio);
+ }
+ if (wbio2) {
+ atomic_inc(&conf->mirrors[d].replacement->nr_pending);
+ md_sync_acct(conf->mirrors[d].replacement->bdev,
+ bio_sectors(wbio2));
+ generic_make_request(wbio2);
+ }
+}
+
+/*
+ * Used by fix_read_error() to decay the per rdev read_errors.
+ * We halve the read error count for every hour that has elapsed
+ * since the last recorded read error.
+ *
+ */
+static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
+{
+ long cur_time_mon;
+ unsigned long hours_since_last;
+ unsigned int read_errors = atomic_read(&rdev->read_errors);
+
+ cur_time_mon = ktime_get_seconds();
+
+ if (rdev->last_read_error == 0) {
+ /* first time we've seen a read error */
+ rdev->last_read_error = cur_time_mon;
+ return;
+ }
+
+ hours_since_last = (long)(cur_time_mon -
+ rdev->last_read_error) / 3600;
+
+ rdev->last_read_error = cur_time_mon;
+
+ /*
+ * if hours_since_last is > the number of bits in read_errors
+ * just set read errors to 0. We do this to avoid
+ * overflowing the shift of read_errors by hours_since_last.
+ */
+ if (hours_since_last >= 8 * sizeof(read_errors))
+ atomic_set(&rdev->read_errors, 0);
+ else
+ atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
+}
+
+static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
+ int sectors, struct page *page, int rw)
+{
+ sector_t first_bad;
+ int bad_sectors;
+
+ if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
+ && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
+ return -1;
+ if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
+ /* success */
+ return 1;
+ if (rw == WRITE) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ }
+ /* need to record an error - either for the block or the device */
+ if (!rdev_set_badblocks(rdev, sector, sectors, 0))
+ md_error(rdev->mddev, rdev);
+ return 0;
+}
+
+/*
+ * This is a kernel thread which:
+ *
+ * 1. Retries failed read operations on working mirrors.
+ * 2. Updates the raid superblock when problems encounter.
+ * 3. Performs writes following reads for array synchronising.
+ */
+
+static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
+{
+ int sect = 0; /* Offset from r10_bio->sector */
+ int sectors = r10_bio->sectors;
+ struct md_rdev *rdev;
+ int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
+ int d = r10_bio->devs[r10_bio->read_slot].devnum;
+
+ /* still own a reference to this rdev, so it cannot
+ * have been cleared recently.
+ */
+ rdev = conf->mirrors[d].rdev;
+
+ if (test_bit(Faulty, &rdev->flags))
+ /* drive has already been failed, just ignore any
+ more fix_read_error() attempts */
+ return;
+
+ check_decay_read_errors(mddev, rdev);
+ atomic_inc(&rdev->read_errors);
+ if (atomic_read(&rdev->read_errors) > max_read_errors) {
+ char b[BDEVNAME_SIZE];
+ bdevname(rdev->bdev, b);
+
+ pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
+ mdname(mddev), b,
+ atomic_read(&rdev->read_errors), max_read_errors);
+ pr_notice("md/raid10:%s: %s: Failing raid device\n",
+ mdname(mddev), b);
+ md_error(mddev, rdev);
+ r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
+ return;
+ }
+
+ while(sectors) {
+ int s = sectors;
+ int sl = r10_bio->read_slot;
+ int success = 0;
+ int start;
+
+ if (s > (PAGE_SIZE>>9))
+ s = PAGE_SIZE >> 9;
+
+ rcu_read_lock();
+ do {
+ sector_t first_bad;
+ int bad_sectors;
+
+ d = r10_bio->devs[sl].devnum;
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev &&
+ test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags) &&
+ is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
+ &first_bad, &bad_sectors) == 0) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ success = sync_page_io(rdev,
+ r10_bio->devs[sl].addr +
+ sect,
+ s<<9,
+ conf->tmppage,
+ REQ_OP_READ, 0, false);
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ if (success)
+ break;
+ }
+ sl++;
+ if (sl == conf->copies)
+ sl = 0;
+ } while (!success && sl != r10_bio->read_slot);
+ rcu_read_unlock();
+
+ if (!success) {
+ /* Cannot read from anywhere, just mark the block
+ * as bad on the first device to discourage future
+ * reads.
+ */
+ int dn = r10_bio->devs[r10_bio->read_slot].devnum;
+ rdev = conf->mirrors[dn].rdev;
+
+ if (!rdev_set_badblocks(
+ rdev,
+ r10_bio->devs[r10_bio->read_slot].addr
+ + sect,
+ s, 0)) {
+ md_error(mddev, rdev);
+ r10_bio->devs[r10_bio->read_slot].bio
+ = IO_BLOCKED;
+ }
+ break;
+ }
+
+ start = sl;
+ /* write it back and re-read */
+ rcu_read_lock();
+ while (sl != r10_bio->read_slot) {
+ char b[BDEVNAME_SIZE];
+
+ if (sl==0)
+ sl = conf->copies;
+ sl--;
+ d = r10_bio->devs[sl].devnum;
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (!rdev ||
+ test_bit(Faulty, &rdev->flags) ||
+ !test_bit(In_sync, &rdev->flags))
+ continue;
+
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ if (r10_sync_page_io(rdev,
+ r10_bio->devs[sl].addr +
+ sect,
+ s, conf->tmppage, WRITE)
+ == 0) {
+ /* Well, this device is dead */
+ pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
+ mdname(mddev), s,
+ (unsigned long long)(
+ sect +
+ choose_data_offset(r10_bio,
+ rdev)),
+ bdevname(rdev->bdev, b));
+ pr_notice("md/raid10:%s: %s: failing drive\n",
+ mdname(mddev),
+ bdevname(rdev->bdev, b));
+ }
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ }
+ sl = start;
+ while (sl != r10_bio->read_slot) {
+ char b[BDEVNAME_SIZE];
+
+ if (sl==0)
+ sl = conf->copies;
+ sl--;
+ d = r10_bio->devs[sl].devnum;
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (!rdev ||
+ test_bit(Faulty, &rdev->flags) ||
+ !test_bit(In_sync, &rdev->flags))
+ continue;
+
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ switch (r10_sync_page_io(rdev,
+ r10_bio->devs[sl].addr +
+ sect,
+ s, conf->tmppage,
+ READ)) {
+ case 0:
+ /* Well, this device is dead */
+ pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
+ mdname(mddev), s,
+ (unsigned long long)(
+ sect +
+ choose_data_offset(r10_bio, rdev)),
+ bdevname(rdev->bdev, b));
+ pr_notice("md/raid10:%s: %s: failing drive\n",
+ mdname(mddev),
+ bdevname(rdev->bdev, b));
+ break;
+ case 1:
+ pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
+ mdname(mddev), s,
+ (unsigned long long)(
+ sect +
+ choose_data_offset(r10_bio, rdev)),
+ bdevname(rdev->bdev, b));
+ atomic_add(s, &rdev->corrected_errors);
+ }
+
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ }
+ rcu_read_unlock();
+
+ sectors -= s;
+ sect += s;
+ }
+}
+
+static int narrow_write_error(struct r10bio *r10_bio, int i)
+{
+ struct bio *bio = r10_bio->master_bio;
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
+ /* bio has the data to be written to slot 'i' where
+ * we just recently had a write error.
+ * We repeatedly clone the bio and trim down to one block,
+ * then try the write. Where the write fails we record
+ * a bad block.
+ * It is conceivable that the bio doesn't exactly align with
+ * blocks. We must handle this.
+ *
+ * We currently own a reference to the rdev.
+ */
+
+ int block_sectors;
+ sector_t sector;
+ int sectors;
+ int sect_to_write = r10_bio->sectors;
+ int ok = 1;
+
+ if (rdev->badblocks.shift < 0)
+ return 0;
+
+ block_sectors = roundup(1 << rdev->badblocks.shift,
+ bdev_logical_block_size(rdev->bdev) >> 9);
+ sector = r10_bio->sector;
+ sectors = ((r10_bio->sector + block_sectors)
+ & ~(sector_t)(block_sectors - 1))
+ - sector;
+
+ while (sect_to_write) {
+ struct bio *wbio;
+ sector_t wsector;
+ if (sectors > sect_to_write)
+ sectors = sect_to_write;
+ /* Write at 'sector' for 'sectors' */
+ wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
+ bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
+ wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
+ wbio->bi_iter.bi_sector = wsector +
+ choose_data_offset(r10_bio, rdev);
+ bio_set_dev(wbio, rdev->bdev);
+ bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
+
+ if (submit_bio_wait(wbio) < 0)
+ /* Failure! */
+ ok = rdev_set_badblocks(rdev, wsector,
+ sectors, 0)
+ && ok;
+
+ bio_put(wbio);
+ sect_to_write -= sectors;
+ sector += sectors;
+ sectors = block_sectors;
+ }
+ return ok;
+}
+
+static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ int slot = r10_bio->read_slot;
+ struct bio *bio;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev = r10_bio->devs[slot].rdev;
+
+ /* we got a read error. Maybe the drive is bad. Maybe just
+ * the block and we can fix it.
+ * We freeze all other IO, and try reading the block from
+ * other devices. When we find one, we re-write
+ * and check it that fixes the read error.
+ * This is all done synchronously while the array is
+ * frozen.
+ */
+ bio = r10_bio->devs[slot].bio;
+ bio_put(bio);
+ r10_bio->devs[slot].bio = NULL;
+
+ if (mddev->ro)
+ r10_bio->devs[slot].bio = IO_BLOCKED;
+ else if (!test_bit(FailFast, &rdev->flags)) {
+ freeze_array(conf, 1);
+ fix_read_error(conf, mddev, r10_bio);
+ unfreeze_array(conf);
+ } else
+ md_error(mddev, rdev);
+
+ rdev_dec_pending(rdev, mddev);
+ allow_barrier(conf);
+ r10_bio->state = 0;
+ raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
+}
+
+static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
+{
+ /* Some sort of write request has finished and it
+ * succeeded in writing where we thought there was a
+ * bad block. So forget the bad block.
+ * Or possibly if failed and we need to record
+ * a bad block.
+ */
+ int m;
+ struct md_rdev *rdev;
+
+ if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
+ test_bit(R10BIO_IsRecover, &r10_bio->state)) {
+ for (m = 0; m < conf->copies; m++) {
+ int dev = r10_bio->devs[m].devnum;
+ rdev = conf->mirrors[dev].rdev;
+ if (r10_bio->devs[m].bio == NULL ||
+ r10_bio->devs[m].bio->bi_end_io == NULL)
+ continue;
+ if (!r10_bio->devs[m].bio->bi_status) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ } else {
+ if (!rdev_set_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0))
+ md_error(conf->mddev, rdev);
+ }
+ rdev = conf->mirrors[dev].replacement;
+ if (r10_bio->devs[m].repl_bio == NULL ||
+ r10_bio->devs[m].repl_bio->bi_end_io == NULL)
+ continue;
+
+ if (!r10_bio->devs[m].repl_bio->bi_status) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ } else {
+ if (!rdev_set_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0))
+ md_error(conf->mddev, rdev);
+ }
+ }
+ put_buf(r10_bio);
+ } else {
+ bool fail = false;
+ for (m = 0; m < conf->copies; m++) {
+ int dev = r10_bio->devs[m].devnum;
+ struct bio *bio = r10_bio->devs[m].bio;
+ rdev = conf->mirrors[dev].rdev;
+ if (bio == IO_MADE_GOOD) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ } else if (bio != NULL && bio->bi_status) {
+ fail = true;
+ if (!narrow_write_error(r10_bio, m)) {
+ md_error(conf->mddev, rdev);
+ set_bit(R10BIO_Degraded,
+ &r10_bio->state);
+ }
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ bio = r10_bio->devs[m].repl_bio;
+ rdev = conf->mirrors[dev].replacement;
+ if (rdev && bio == IO_MADE_GOOD) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ }
+ if (fail) {
+ spin_lock_irq(&conf->device_lock);
+ list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
+ conf->nr_queued++;
+ spin_unlock_irq(&conf->device_lock);
+ /*
+ * In case freeze_array() is waiting for condition
+ * nr_pending == nr_queued + extra to be true.
+ */
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(conf->mddev->thread);
+ } else {
+ if (test_bit(R10BIO_WriteError,
+ &r10_bio->state))
+ close_write(r10_bio);
+ raid_end_bio_io(r10_bio);
+ }
+ }
+}
+
+static void raid10d(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct r10bio *r10_bio;
+ unsigned long flags;
+ struct r10conf *conf = mddev->private;
+ struct list_head *head = &conf->retry_list;
+ struct blk_plug plug;
+
+ md_check_recovery(mddev);
+
+ if (!list_empty_careful(&conf->bio_end_io_list) &&
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ LIST_HEAD(tmp);
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ while (!list_empty(&conf->bio_end_io_list)) {
+ list_move(conf->bio_end_io_list.prev, &tmp);
+ conf->nr_queued--;
+ }
+ }
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ while (!list_empty(&tmp)) {
+ r10_bio = list_first_entry(&tmp, struct r10bio,
+ retry_list);
+ list_del(&r10_bio->retry_list);
+ if (mddev->degraded)
+ set_bit(R10BIO_Degraded, &r10_bio->state);
+
+ if (test_bit(R10BIO_WriteError,
+ &r10_bio->state))
+ close_write(r10_bio);
+ raid_end_bio_io(r10_bio);
+ }
+ }
+
+ blk_start_plug(&plug);
+ for (;;) {
+
+ flush_pending_writes(conf);
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (list_empty(head)) {
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ break;
+ }
+ r10_bio = list_entry(head->prev, struct r10bio, retry_list);
+ list_del(head->prev);
+ conf->nr_queued--;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ mddev = r10_bio->mddev;
+ conf = mddev->private;
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+ test_bit(R10BIO_WriteError, &r10_bio->state))
+ handle_write_completed(conf, r10_bio);
+ else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
+ reshape_request_write(mddev, r10_bio);
+ else if (test_bit(R10BIO_IsSync, &r10_bio->state))
+ sync_request_write(mddev, r10_bio);
+ else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
+ recovery_request_write(mddev, r10_bio);
+ else if (test_bit(R10BIO_ReadError, &r10_bio->state))
+ handle_read_error(mddev, r10_bio);
+ else
+ WARN_ON_ONCE(1);
+
+ cond_resched();
+ if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
+ md_check_recovery(mddev);
+ }
+ blk_finish_plug(&plug);
+}
+
+static int init_resync(struct r10conf *conf)
+{
+ int ret, buffs, i;
+
+ buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
+ BUG_ON(mempool_initialized(&conf->r10buf_pool));
+ conf->have_replacement = 0;
+ for (i = 0; i < conf->geo.raid_disks; i++)
+ if (conf->mirrors[i].replacement)
+ conf->have_replacement = 1;
+ ret = mempool_init(&conf->r10buf_pool, buffs,
+ r10buf_pool_alloc, r10buf_pool_free, conf);
+ if (ret)
+ return ret;
+ conf->next_resync = 0;
+ return 0;
+}
+
+static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
+{
+ struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
+ struct rsync_pages *rp;
+ struct bio *bio;
+ int nalloc;
+ int i;
+
+ if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
+ nalloc = conf->copies; /* resync */
+ else
+ nalloc = 2; /* recovery */
+
+ for (i = 0; i < nalloc; i++) {
+ bio = r10bio->devs[i].bio;
+ rp = bio->bi_private;
+ bio_reset(bio);
+ bio->bi_private = rp;
+ bio = r10bio->devs[i].repl_bio;
+ if (bio) {
+ rp = bio->bi_private;
+ bio_reset(bio);
+ bio->bi_private = rp;
+ }
+ }
+ return r10bio;
+}
+
+/*
+ * Set cluster_sync_high since we need other nodes to add the
+ * range [cluster_sync_low, cluster_sync_high] to suspend list.
+ */
+static void raid10_set_cluster_sync_high(struct r10conf *conf)
+{
+ sector_t window_size;
+ int extra_chunk, chunks;
+
+ /*
+ * First, here we define "stripe" as a unit which across
+ * all member devices one time, so we get chunks by use
+ * raid_disks / near_copies. Otherwise, if near_copies is
+ * close to raid_disks, then resync window could increases
+ * linearly with the increase of raid_disks, which means
+ * we will suspend a really large IO window while it is not
+ * necessary. If raid_disks is not divisible by near_copies,
+ * an extra chunk is needed to ensure the whole "stripe" is
+ * covered.
+ */
+
+ chunks = conf->geo.raid_disks / conf->geo.near_copies;
+ if (conf->geo.raid_disks % conf->geo.near_copies == 0)
+ extra_chunk = 0;
+ else
+ extra_chunk = 1;
+ window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
+
+ /*
+ * At least use a 32M window to align with raid1's resync window
+ */
+ window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
+ CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
+
+ conf->cluster_sync_high = conf->cluster_sync_low + window_size;
+}
+
+/*
+ * perform a "sync" on one "block"
+ *
+ * We need to make sure that no normal I/O request - particularly write
+ * requests - conflict with active sync requests.
+ *
+ * This is achieved by tracking pending requests and a 'barrier' concept
+ * that can be installed to exclude normal IO requests.
+ *
+ * Resync and recovery are handled very differently.
+ * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
+ *
+ * For resync, we iterate over virtual addresses, read all copies,
+ * and update if there are differences. If only one copy is live,
+ * skip it.
+ * For recovery, we iterate over physical addresses, read a good
+ * value for each non-in_sync drive, and over-write.
+ *
+ * So, for recovery we may have several outstanding complex requests for a
+ * given address, one for each out-of-sync device. We model this by allocating
+ * a number of r10_bio structures, one for each out-of-sync device.
+ * As we setup these structures, we collect all bio's together into a list
+ * which we then process collectively to add pages, and then process again
+ * to pass to generic_make_request.
+ *
+ * The r10_bio structures are linked using a borrowed master_bio pointer.
+ * This link is counted in ->remaining. When the r10_bio that points to NULL
+ * has its remaining count decremented to 0, the whole complex operation
+ * is complete.
+ *
+ */
+
+static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped)
+{
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10_bio;
+ struct bio *biolist = NULL, *bio;
+ sector_t max_sector, nr_sectors;
+ int i;
+ int max_sync;
+ sector_t sync_blocks;
+ sector_t sectors_skipped = 0;
+ int chunks_skipped = 0;
+ sector_t chunk_mask = conf->geo.chunk_mask;
+ int page_idx = 0;
+
+ if (!mempool_initialized(&conf->r10buf_pool))
+ if (init_resync(conf))
+ return 0;
+
+ /*
+ * Allow skipping a full rebuild for incremental assembly
+ * of a clean array, like RAID1 does.
+ */
+ if (mddev->bitmap == NULL &&
+ mddev->recovery_cp == MaxSector &&
+ mddev->reshape_position == MaxSector &&
+ !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ conf->fullsync == 0) {
+ *skipped = 1;
+ return mddev->dev_sectors - sector_nr;
+ }
+
+ skipped:
+ max_sector = mddev->dev_sectors;
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ max_sector = mddev->resync_max_sectors;
+ if (sector_nr >= max_sector) {
+ conf->cluster_sync_low = 0;
+ conf->cluster_sync_high = 0;
+
+ /* If we aborted, we need to abort the
+ * sync on the 'current' bitmap chucks (there can
+ * be several when recovering multiple devices).
+ * as we may have started syncing it but not finished.
+ * We can find the current address in
+ * mddev->curr_resync, but for recovery,
+ * we need to convert that to several
+ * virtual addresses.
+ */
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
+ end_reshape(conf);
+ close_sync(conf);
+ return 0;
+ }
+
+ if (mddev->curr_resync < max_sector) { /* aborted */
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+ md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+ &sync_blocks, 1);
+ else for (i = 0; i < conf->geo.raid_disks; i++) {
+ sector_t sect =
+ raid10_find_virt(conf, mddev->curr_resync, i);
+ md_bitmap_end_sync(mddev->bitmap, sect,
+ &sync_blocks, 1);
+ }
+ } else {
+ /* completed sync */
+ if ((!mddev->bitmap || conf->fullsync)
+ && conf->have_replacement
+ && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* Completed a full sync so the replacements
+ * are now fully recovered.
+ */
+ rcu_read_lock();
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct md_rdev *rdev =
+ rcu_dereference(conf->mirrors[i].replacement);
+ if (rdev)
+ rdev->recovery_offset = MaxSector;
+ }
+ rcu_read_unlock();
+ }
+ conf->fullsync = 0;
+ }
+ md_bitmap_close_sync(mddev->bitmap);
+ close_sync(conf);
+ *skipped = 1;
+ return sectors_skipped;
+ }
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ return reshape_request(mddev, sector_nr, skipped);
+
+ if (chunks_skipped >= conf->geo.raid_disks) {
+ /* if there has been nothing to do on any drive,
+ * then there is nothing to do at all..
+ */
+ *skipped = 1;
+ return (max_sector - sector_nr) + sectors_skipped;
+ }
+
+ if (max_sector > mddev->resync_max)
+ max_sector = mddev->resync_max; /* Don't do IO beyond here */
+
+ /* make sure whole request will fit in a chunk - if chunks
+ * are meaningful
+ */
+ if (conf->geo.near_copies < conf->geo.raid_disks &&
+ max_sector > (sector_nr | chunk_mask))
+ max_sector = (sector_nr | chunk_mask) + 1;
+
+ /*
+ * If there is non-resync activity waiting for a turn, then let it
+ * though before starting on this new sync request.
+ */
+ if (conf->nr_waiting)
+ schedule_timeout_uninterruptible(1);
+
+ /* Again, very different code for resync and recovery.
+ * Both must result in an r10bio with a list of bios that
+ * have bi_end_io, bi_sector, bi_disk set,
+ * and bi_private set to the r10bio.
+ * For recovery, we may actually create several r10bios
+ * with 2 bios in each, that correspond to the bios in the main one.
+ * In this case, the subordinate r10bios link back through a
+ * borrowed master_bio pointer, and the counter in the master
+ * includes a ref from each subordinate.
+ */
+ /* First, we decide what to do and set ->bi_end_io
+ * To end_sync_read if we want to read, and
+ * end_sync_write if we will want to write.
+ */
+
+ max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
+ if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* recovery... the complicated one */
+ int j;
+ r10_bio = NULL;
+
+ for (i = 0 ; i < conf->geo.raid_disks; i++) {
+ int still_degraded;
+ struct r10bio *rb2;
+ sector_t sect;
+ int must_sync;
+ int any_working;
+ struct raid10_info *mirror = &conf->mirrors[i];
+ struct md_rdev *mrdev, *mreplace;
+
+ rcu_read_lock();
+ mrdev = rcu_dereference(mirror->rdev);
+ mreplace = rcu_dereference(mirror->replacement);
+
+ if ((mrdev == NULL ||
+ test_bit(Faulty, &mrdev->flags) ||
+ test_bit(In_sync, &mrdev->flags)) &&
+ (mreplace == NULL ||
+ test_bit(Faulty, &mreplace->flags))) {
+ rcu_read_unlock();
+ continue;
+ }
+
+ still_degraded = 0;
+ /* want to reconstruct this device */
+ rb2 = r10_bio;
+ sect = raid10_find_virt(conf, sector_nr, i);
+ if (sect >= mddev->resync_max_sectors) {
+ /* last stripe is not complete - don't
+ * try to recover this sector.
+ */
+ rcu_read_unlock();
+ continue;
+ }
+ if (mreplace && test_bit(Faulty, &mreplace->flags))
+ mreplace = NULL;
+ /* Unless we are doing a full sync, or a replacement
+ * we only need to recover the block if it is set in
+ * the bitmap
+ */
+ must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
+ &sync_blocks, 1);
+ if (sync_blocks < max_sync)
+ max_sync = sync_blocks;
+ if (!must_sync &&
+ mreplace == NULL &&
+ !conf->fullsync) {
+ /* yep, skip the sync_blocks here, but don't assume
+ * that there will never be anything to do here
+ */
+ chunks_skipped = -1;
+ rcu_read_unlock();
+ continue;
+ }
+ atomic_inc(&mrdev->nr_pending);
+ if (mreplace)
+ atomic_inc(&mreplace->nr_pending);
+ rcu_read_unlock();
+
+ r10_bio = raid10_alloc_init_r10buf(conf);
+ r10_bio->state = 0;
+ raise_barrier(conf, rb2 != NULL);
+ atomic_set(&r10_bio->remaining, 0);
+
+ r10_bio->master_bio = (struct bio*)rb2;
+ if (rb2)
+ atomic_inc(&rb2->remaining);
+ r10_bio->mddev = mddev;
+ set_bit(R10BIO_IsRecover, &r10_bio->state);
+ r10_bio->sector = sect;
+
+ raid10_find_phys(conf, r10_bio);
+
+ /* Need to check if the array will still be
+ * degraded
+ */
+ rcu_read_lock();
+ for (j = 0; j < conf->geo.raid_disks; j++) {
+ struct md_rdev *rdev = rcu_dereference(
+ conf->mirrors[j].rdev);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
+ still_degraded = 1;
+ break;
+ }
+ }
+
+ must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
+ &sync_blocks, still_degraded);
+
+ any_working = 0;
+ for (j=0; j<conf->copies;j++) {
+ int k;
+ int d = r10_bio->devs[j].devnum;
+ sector_t from_addr, to_addr;
+ struct md_rdev *rdev =
+ rcu_dereference(conf->mirrors[d].rdev);
+ sector_t sector, first_bad;
+ int bad_sectors;
+ if (!rdev ||
+ !test_bit(In_sync, &rdev->flags))
+ continue;
+ /* This is where we read from */
+ any_working = 1;
+ sector = r10_bio->devs[j].addr;
+
+ if (is_badblock(rdev, sector, max_sync,
+ &first_bad, &bad_sectors)) {
+ if (first_bad > sector)
+ max_sync = first_bad - sector;
+ else {
+ bad_sectors -= (sector
+ - first_bad);
+ if (max_sync > bad_sectors)
+ max_sync = bad_sectors;
+ continue;
+ }
+ }
+ bio = r10_bio->devs[0].bio;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_read;
+ bio_set_op_attrs(bio, REQ_OP_READ, 0);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ from_addr = r10_bio->devs[j].addr;
+ bio->bi_iter.bi_sector = from_addr +
+ rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ atomic_inc(&rdev->nr_pending);
+ /* and we write to 'i' (if not in_sync) */
+
+ for (k=0; k<conf->copies; k++)
+ if (r10_bio->devs[k].devnum == i)
+ break;
+ BUG_ON(k == conf->copies);
+ to_addr = r10_bio->devs[k].addr;
+ r10_bio->devs[0].devnum = d;
+ r10_bio->devs[0].addr = from_addr;
+ r10_bio->devs[1].devnum = i;
+ r10_bio->devs[1].addr = to_addr;
+
+ if (!test_bit(In_sync, &mrdev->flags)) {
+ bio = r10_bio->devs[1].bio;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ bio->bi_iter.bi_sector = to_addr
+ + mrdev->data_offset;
+ bio_set_dev(bio, mrdev->bdev);
+ atomic_inc(&r10_bio->remaining);
+ } else
+ r10_bio->devs[1].bio->bi_end_io = NULL;
+
+ /* and maybe write to replacement */
+ bio = r10_bio->devs[1].repl_bio;
+ if (bio)
+ bio->bi_end_io = NULL;
+ /* Note: if mreplace != NULL, then bio
+ * cannot be NULL as r10buf_pool_alloc will
+ * have allocated it.
+ * So the second test here is pointless.
+ * But it keeps semantic-checkers happy, and
+ * this comment keeps human reviewers
+ * happy.
+ */
+ if (mreplace == NULL || bio == NULL ||
+ test_bit(Faulty, &mreplace->flags))
+ break;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ bio->bi_iter.bi_sector = to_addr +
+ mreplace->data_offset;
+ bio_set_dev(bio, mreplace->bdev);
+ atomic_inc(&r10_bio->remaining);
+ break;
+ }
+ rcu_read_unlock();
+ if (j == conf->copies) {
+ /* Cannot recover, so abort the recovery or
+ * record a bad block */
+ if (any_working) {
+ /* problem is that there are bad blocks
+ * on other device(s)
+ */
+ int k;
+ for (k = 0; k < conf->copies; k++)
+ if (r10_bio->devs[k].devnum == i)
+ break;
+ if (!test_bit(In_sync,
+ &mrdev->flags)
+ && !rdev_set_badblocks(
+ mrdev,
+ r10_bio->devs[k].addr,
+ max_sync, 0))
+ any_working = 0;
+ if (mreplace &&
+ !rdev_set_badblocks(
+ mreplace,
+ r10_bio->devs[k].addr,
+ max_sync, 0))
+ any_working = 0;
+ }
+ if (!any_working) {
+ if (!test_and_set_bit(MD_RECOVERY_INTR,
+ &mddev->recovery))
+ pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
+ mdname(mddev));
+ mirror->recovery_disabled
+ = mddev->recovery_disabled;
+ }
+ put_buf(r10_bio);
+ if (rb2)
+ atomic_dec(&rb2->remaining);
+ r10_bio = rb2;
+ rdev_dec_pending(mrdev, mddev);
+ if (mreplace)
+ rdev_dec_pending(mreplace, mddev);
+ break;
+ }
+ rdev_dec_pending(mrdev, mddev);
+ if (mreplace)
+ rdev_dec_pending(mreplace, mddev);
+ if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
+ /* Only want this if there is elsewhere to
+ * read from. 'j' is currently the first
+ * readable copy.
+ */
+ int targets = 1;
+ for (; j < conf->copies; j++) {
+ int d = r10_bio->devs[j].devnum;
+ if (conf->mirrors[d].rdev &&
+ test_bit(In_sync,
+ &conf->mirrors[d].rdev->flags))
+ targets++;
+ }
+ if (targets == 1)
+ r10_bio->devs[0].bio->bi_opf
+ &= ~MD_FAILFAST;
+ }
+ }
+ if (biolist == NULL) {
+ while (r10_bio) {
+ struct r10bio *rb2 = r10_bio;
+ r10_bio = (struct r10bio*) rb2->master_bio;
+ rb2->master_bio = NULL;
+ put_buf(rb2);
+ }
+ goto giveup;
+ }
+ } else {
+ /* resync. Schedule a read for every block at this virt offset */
+ int count = 0;
+
+ /*
+ * Since curr_resync_completed could probably not update in
+ * time, and we will set cluster_sync_low based on it.
+ * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
+ * safety reason, which ensures curr_resync_completed is
+ * updated in bitmap_cond_end_sync.
+ */
+ md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
+ mddev_is_clustered(mddev) &&
+ (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
+
+ if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
+ &sync_blocks, mddev->degraded) &&
+ !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
+ &mddev->recovery)) {
+ /* We can skip this block */
+ *skipped = 1;
+ return sync_blocks + sectors_skipped;
+ }
+ if (sync_blocks < max_sync)
+ max_sync = sync_blocks;
+ r10_bio = raid10_alloc_init_r10buf(conf);
+ r10_bio->state = 0;
+
+ r10_bio->mddev = mddev;
+ atomic_set(&r10_bio->remaining, 0);
+ raise_barrier(conf, 0);
+ conf->next_resync = sector_nr;
+
+ r10_bio->master_bio = NULL;
+ r10_bio->sector = sector_nr;
+ set_bit(R10BIO_IsSync, &r10_bio->state);
+ raid10_find_phys(conf, r10_bio);
+ r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
+
+ for (i = 0; i < conf->copies; i++) {
+ int d = r10_bio->devs[i].devnum;
+ sector_t first_bad, sector;
+ int bad_sectors;
+ struct md_rdev *rdev;
+
+ if (r10_bio->devs[i].repl_bio)
+ r10_bio->devs[i].repl_bio->bi_end_io = NULL;
+
+ bio = r10_bio->devs[i].bio;
+ bio->bi_status = BLK_STS_IOERR;
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
+ rcu_read_unlock();
+ continue;
+ }
+ sector = r10_bio->devs[i].addr;
+ if (is_badblock(rdev, sector, max_sync,
+ &first_bad, &bad_sectors)) {
+ if (first_bad > sector)
+ max_sync = first_bad - sector;
+ else {
+ bad_sectors -= (sector - first_bad);
+ if (max_sync > bad_sectors)
+ max_sync = bad_sectors;
+ rcu_read_unlock();
+ continue;
+ }
+ }
+ atomic_inc(&rdev->nr_pending);
+ atomic_inc(&r10_bio->remaining);
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_read;
+ bio_set_op_attrs(bio, REQ_OP_READ, 0);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ bio->bi_iter.bi_sector = sector + rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ count++;
+
+ rdev = rcu_dereference(conf->mirrors[d].replacement);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
+ rcu_read_unlock();
+ continue;
+ }
+ atomic_inc(&rdev->nr_pending);
+
+ /* Need to set up for writing to the replacement */
+ bio = r10_bio->devs[i].repl_bio;
+ bio->bi_status = BLK_STS_IOERR;
+
+ sector = r10_bio->devs[i].addr;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ bio->bi_iter.bi_sector = sector + rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ count++;
+ rcu_read_unlock();
+ }
+
+ if (count < 2) {
+ for (i=0; i<conf->copies; i++) {
+ int d = r10_bio->devs[i].devnum;
+ if (r10_bio->devs[i].bio->bi_end_io)
+ rdev_dec_pending(conf->mirrors[d].rdev,
+ mddev);
+ if (r10_bio->devs[i].repl_bio &&
+ r10_bio->devs[i].repl_bio->bi_end_io)
+ rdev_dec_pending(
+ conf->mirrors[d].replacement,
+ mddev);
+ }
+ put_buf(r10_bio);
+ biolist = NULL;
+ goto giveup;
+ }
+ }
+
+ nr_sectors = 0;
+ if (sector_nr + max_sync < max_sector)
+ max_sector = sector_nr + max_sync;
+ do {
+ struct page *page;
+ int len = PAGE_SIZE;
+ if (sector_nr + (len>>9) > max_sector)
+ len = (max_sector - sector_nr) << 9;
+ if (len == 0)
+ break;
+ for (bio= biolist ; bio ; bio=bio->bi_next) {
+ struct resync_pages *rp = get_resync_pages(bio);
+ page = resync_fetch_page(rp, page_idx);
+ /*
+ * won't fail because the vec table is big enough
+ * to hold all these pages
+ */
+ bio_add_page(bio, page, len, 0);
+ }
+ nr_sectors += len>>9;
+ sector_nr += len>>9;
+ } while (++page_idx < RESYNC_PAGES);
+ r10_bio->sectors = nr_sectors;
+
+ if (mddev_is_clustered(mddev) &&
+ test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* It is resync not recovery */
+ if (conf->cluster_sync_high < sector_nr + nr_sectors) {
+ conf->cluster_sync_low = mddev->curr_resync_completed;
+ raid10_set_cluster_sync_high(conf);
+ /* Send resync message */
+ md_cluster_ops->resync_info_update(mddev,
+ conf->cluster_sync_low,
+ conf->cluster_sync_high);
+ }
+ } else if (mddev_is_clustered(mddev)) {
+ /* This is recovery not resync */
+ sector_t sect_va1, sect_va2;
+ bool broadcast_msg = false;
+
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ /*
+ * sector_nr is a device address for recovery, so we
+ * need translate it to array address before compare
+ * with cluster_sync_high.
+ */
+ sect_va1 = raid10_find_virt(conf, sector_nr, i);
+
+ if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
+ broadcast_msg = true;
+ /*
+ * curr_resync_completed is similar as
+ * sector_nr, so make the translation too.
+ */
+ sect_va2 = raid10_find_virt(conf,
+ mddev->curr_resync_completed, i);
+
+ if (conf->cluster_sync_low == 0 ||
+ conf->cluster_sync_low > sect_va2)
+ conf->cluster_sync_low = sect_va2;
+ }
+ }
+ if (broadcast_msg) {
+ raid10_set_cluster_sync_high(conf);
+ md_cluster_ops->resync_info_update(mddev,
+ conf->cluster_sync_low,
+ conf->cluster_sync_high);
+ }
+ }
+
+ while (biolist) {
+ bio = biolist;
+ biolist = biolist->bi_next;
+
+ bio->bi_next = NULL;
+ r10_bio = get_resync_r10bio(bio);
+ r10_bio->sectors = nr_sectors;
+
+ if (bio->bi_end_io == end_sync_read) {
+ md_sync_acct_bio(bio, nr_sectors);
+ bio->bi_status = 0;
+ generic_make_request(bio);
+ }
+ }
+
+ if (sectors_skipped)
+ /* pretend they weren't skipped, it makes
+ * no important difference in this case
+ */
+ md_done_sync(mddev, sectors_skipped, 1);
+
+ return sectors_skipped + nr_sectors;
+ giveup:
+ /* There is nowhere to write, so all non-sync
+ * drives must be failed or in resync, all drives
+ * have a bad block, so try the next chunk...
+ */
+ if (sector_nr + max_sync < max_sector)
+ max_sector = sector_nr + max_sync;
+
+ sectors_skipped += (max_sector - sector_nr);
+ chunks_skipped ++;
+ sector_nr = max_sector;
+ goto skipped;
+}
+
+static sector_t
+raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ sector_t size;
+ struct r10conf *conf = mddev->private;
+
+ if (!raid_disks)
+ raid_disks = min(conf->geo.raid_disks,
+ conf->prev.raid_disks);
+ if (!sectors)
+ sectors = conf->dev_sectors;
+
+ size = sectors >> conf->geo.chunk_shift;
+ sector_div(size, conf->geo.far_copies);
+ size = size * raid_disks;
+ sector_div(size, conf->geo.near_copies);
+
+ return size << conf->geo.chunk_shift;
+}
+
+static void calc_sectors(struct r10conf *conf, sector_t size)
+{
+ /* Calculate the number of sectors-per-device that will
+ * actually be used, and set conf->dev_sectors and
+ * conf->stride
+ */
+
+ size = size >> conf->geo.chunk_shift;
+ sector_div(size, conf->geo.far_copies);
+ size = size * conf->geo.raid_disks;
+ sector_div(size, conf->geo.near_copies);
+ /* 'size' is now the number of chunks in the array */
+ /* calculate "used chunks per device" */
+ size = size * conf->copies;
+
+ /* We need to round up when dividing by raid_disks to
+ * get the stride size.
+ */
+ size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
+
+ conf->dev_sectors = size << conf->geo.chunk_shift;
+
+ if (conf->geo.far_offset)
+ conf->geo.stride = 1 << conf->geo.chunk_shift;
+ else {
+ sector_div(size, conf->geo.far_copies);
+ conf->geo.stride = size << conf->geo.chunk_shift;
+ }
+}
+
+enum geo_type {geo_new, geo_old, geo_start};
+static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
+{
+ int nc, fc, fo;
+ int layout, chunk, disks;
+ switch (new) {
+ case geo_old:
+ layout = mddev->layout;
+ chunk = mddev->chunk_sectors;
+ disks = mddev->raid_disks - mddev->delta_disks;
+ break;
+ case geo_new:
+ layout = mddev->new_layout;
+ chunk = mddev->new_chunk_sectors;
+ disks = mddev->raid_disks;
+ break;
+ default: /* avoid 'may be unused' warnings */
+ case geo_start: /* new when starting reshape - raid_disks not
+ * updated yet. */
+ layout = mddev->new_layout;
+ chunk = mddev->new_chunk_sectors;
+ disks = mddev->raid_disks + mddev->delta_disks;
+ break;
+ }
+ if (layout >> 19)
+ return -1;
+ if (chunk < (PAGE_SIZE >> 9) ||
+ !is_power_of_2(chunk))
+ return -2;
+ nc = layout & 255;
+ fc = (layout >> 8) & 255;
+ fo = layout & (1<<16);
+ geo->raid_disks = disks;
+ geo->near_copies = nc;
+ geo->far_copies = fc;
+ geo->far_offset = fo;
+ switch (layout >> 17) {
+ case 0: /* original layout. simple but not always optimal */
+ geo->far_set_size = disks;
+ break;
+ case 1: /* "improved" layout which was buggy. Hopefully no-one is
+ * actually using this, but leave code here just in case.*/
+ geo->far_set_size = disks/fc;
+ WARN(geo->far_set_size < fc,
+ "This RAID10 layout does not provide data safety - please backup and create new array\n");
+ break;
+ case 2: /* "improved" layout fixed to match documentation */
+ geo->far_set_size = fc * nc;
+ break;
+ default: /* Not a valid layout */
+ return -1;
+ }
+ geo->chunk_mask = chunk - 1;
+ geo->chunk_shift = ffz(~chunk);
+ return nc*fc;
+}
+
+static struct r10conf *setup_conf(struct mddev *mddev)
+{
+ struct r10conf *conf = NULL;
+ int err = -EINVAL;
+ struct geom geo;
+ int copies;
+
+ copies = setup_geo(&geo, mddev, geo_new);
+
+ if (copies == -2) {
+ pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
+ mdname(mddev), PAGE_SIZE);
+ goto out;
+ }
+
+ if (copies < 2 || copies > mddev->raid_disks) {
+ pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
+ mdname(mddev), mddev->new_layout);
+ goto out;
+ }
+
+ err = -ENOMEM;
+ conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
+ if (!conf)
+ goto out;
+
+ /* FIXME calc properly */
+ conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
+ sizeof(struct raid10_info),
+ GFP_KERNEL);
+ if (!conf->mirrors)
+ goto out;
+
+ conf->tmppage = alloc_page(GFP_KERNEL);
+ if (!conf->tmppage)
+ goto out;
+
+ conf->geo = geo;
+ conf->copies = copies;
+ err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
+ r10bio_pool_free, conf);
+ if (err)
+ goto out;
+
+ err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
+ if (err)
+ goto out;
+
+ calc_sectors(conf, mddev->dev_sectors);
+ if (mddev->reshape_position == MaxSector) {
+ conf->prev = conf->geo;
+ conf->reshape_progress = MaxSector;
+ } else {
+ if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
+ err = -EINVAL;
+ goto out;
+ }
+ conf->reshape_progress = mddev->reshape_position;
+ if (conf->prev.far_offset)
+ conf->prev.stride = 1 << conf->prev.chunk_shift;
+ else
+ /* far_copies must be 1 */
+ conf->prev.stride = conf->dev_sectors;
+ }
+ conf->reshape_safe = conf->reshape_progress;
+ spin_lock_init(&conf->device_lock);
+ INIT_LIST_HEAD(&conf->retry_list);
+ INIT_LIST_HEAD(&conf->bio_end_io_list);
+
+ spin_lock_init(&conf->resync_lock);
+ init_waitqueue_head(&conf->wait_barrier);
+ atomic_set(&conf->nr_pending, 0);
+
+ err = -ENOMEM;
+ conf->thread = md_register_thread(raid10d, mddev, "raid10");
+ if (!conf->thread)
+ goto out;
+
+ conf->mddev = mddev;
+ return conf;
+
+ out:
+ if (conf) {
+ mempool_exit(&conf->r10bio_pool);
+ kfree(conf->mirrors);
+ safe_put_page(conf->tmppage);
+ bioset_exit(&conf->bio_split);
+ kfree(conf);
+ }
+ return ERR_PTR(err);
+}
+
+static int raid10_run(struct mddev *mddev)
+{
+ struct r10conf *conf;
+ int i, disk_idx, chunk_size;
+ struct raid10_info *disk;
+ struct md_rdev *rdev;
+ sector_t size;
+ sector_t min_offset_diff = 0;
+ int first = 1;
+ bool discard_supported = false;
+
+ if (mddev_init_writes_pending(mddev) < 0)
+ return -ENOMEM;
+
+ if (mddev->private == NULL) {
+ conf = setup_conf(mddev);
+ if (IS_ERR(conf))
+ return PTR_ERR(conf);
+ mddev->private = conf;
+ }
+ conf = mddev->private;
+ if (!conf)
+ goto out;
+
+ if (mddev_is_clustered(conf->mddev)) {
+ int fc, fo;
+
+ fc = (mddev->layout >> 8) & 255;
+ fo = mddev->layout & (1<<16);
+ if (fc > 1 || fo > 0) {
+ pr_err("only near layout is supported by clustered"
+ " raid10\n");
+ goto out_free_conf;
+ }
+ }
+
+ mddev->thread = conf->thread;
+ conf->thread = NULL;
+
+ chunk_size = mddev->chunk_sectors << 9;
+ if (mddev->queue) {
+ blk_queue_max_discard_sectors(mddev->queue,
+ mddev->chunk_sectors);
+ blk_queue_max_write_same_sectors(mddev->queue, 0);
+ blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
+ blk_queue_io_min(mddev->queue, chunk_size);
+ if (conf->geo.raid_disks % conf->geo.near_copies)
+ blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
+ else
+ blk_queue_io_opt(mddev->queue, chunk_size *
+ (conf->geo.raid_disks / conf->geo.near_copies));
+ }
+
+ rdev_for_each(rdev, mddev) {
+ long long diff;
+
+ disk_idx = rdev->raid_disk;
+ if (disk_idx < 0)
+ continue;
+ if (disk_idx >= conf->geo.raid_disks &&
+ disk_idx >= conf->prev.raid_disks)
+ continue;
+ disk = conf->mirrors + disk_idx;
+
+ if (test_bit(Replacement, &rdev->flags)) {
+ if (disk->replacement)
+ goto out_free_conf;
+ disk->replacement = rdev;
+ } else {
+ if (disk->rdev)
+ goto out_free_conf;
+ disk->rdev = rdev;
+ }
+ diff = (rdev->new_data_offset - rdev->data_offset);
+ if (!mddev->reshape_backwards)
+ diff = -diff;
+ if (diff < 0)
+ diff = 0;
+ if (first || diff < min_offset_diff)
+ min_offset_diff = diff;
+
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ disk->head_position = 0;
+
+ if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
+ discard_supported = true;
+ first = 0;
+ }
+
+ if (mddev->queue) {
+ if (discard_supported)
+ blk_queue_flag_set(QUEUE_FLAG_DISCARD,
+ mddev->queue);
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
+ mddev->queue);
+ }
+ /* need to check that every block has at least one working mirror */
+ if (!enough(conf, -1)) {
+ pr_err("md/raid10:%s: not enough operational mirrors.\n",
+ mdname(mddev));
+ goto out_free_conf;
+ }
+
+ if (conf->reshape_progress != MaxSector) {
+ /* must ensure that shape change is supported */
+ if (conf->geo.far_copies != 1 &&
+ conf->geo.far_offset == 0)
+ goto out_free_conf;
+ if (conf->prev.far_copies != 1 &&
+ conf->prev.far_offset == 0)
+ goto out_free_conf;
+ }
+
+ mddev->degraded = 0;
+ for (i = 0;
+ i < conf->geo.raid_disks
+ || i < conf->prev.raid_disks;
+ i++) {
+
+ disk = conf->mirrors + i;
+
+ if (!disk->rdev && disk->replacement) {
+ /* The replacement is all we have - use it */
+ disk->rdev = disk->replacement;
+ disk->replacement = NULL;
+ clear_bit(Replacement, &disk->rdev->flags);
+ }
+
+ if (!disk->rdev ||
+ !test_bit(In_sync, &disk->rdev->flags)) {
+ disk->head_position = 0;
+ mddev->degraded++;
+ if (disk->rdev &&
+ disk->rdev->saved_raid_disk < 0)
+ conf->fullsync = 1;
+ }
+
+ if (disk->replacement &&
+ !test_bit(In_sync, &disk->replacement->flags) &&
+ disk->replacement->saved_raid_disk < 0) {
+ conf->fullsync = 1;
+ }
+
+ disk->recovery_disabled = mddev->recovery_disabled - 1;
+ }
+
+ if (mddev->recovery_cp != MaxSector)
+ pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
+ mdname(mddev));
+ pr_info("md/raid10:%s: active with %d out of %d devices\n",
+ mdname(mddev), conf->geo.raid_disks - mddev->degraded,
+ conf->geo.raid_disks);
+ /*
+ * Ok, everything is just fine now
+ */
+ mddev->dev_sectors = conf->dev_sectors;
+ size = raid10_size(mddev, 0, 0);
+ md_set_array_sectors(mddev, size);
+ mddev->resync_max_sectors = size;
+ set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
+
+ if (mddev->queue) {
+ int stripe = conf->geo.raid_disks *
+ ((mddev->chunk_sectors << 9) / PAGE_SIZE);
+
+ /* Calculate max read-ahead size.
+ * We need to readahead at least twice a whole stripe....
+ * maybe...
+ */
+ stripe /= conf->geo.near_copies;
+ if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
+ mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
+ }
+
+ if (md_integrity_register(mddev))
+ goto out_free_conf;
+
+ if (conf->reshape_progress != MaxSector) {
+ unsigned long before_length, after_length;
+
+ before_length = ((1 << conf->prev.chunk_shift) *
+ conf->prev.far_copies);
+ after_length = ((1 << conf->geo.chunk_shift) *
+ conf->geo.far_copies);
+
+ if (max(before_length, after_length) > min_offset_diff) {
+ /* This cannot work */
+ pr_warn("md/raid10: offset difference not enough to continue reshape\n");
+ goto out_free_conf;
+ }
+ conf->offset_diff = min_offset_diff;
+
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+ "reshape");
+ if (!mddev->sync_thread)
+ goto out_free_conf;
+ }
+
+ return 0;
+
+out_free_conf:
+ md_unregister_thread(&mddev->thread);
+ mempool_exit(&conf->r10bio_pool);
+ safe_put_page(conf->tmppage);
+ kfree(conf->mirrors);
+ kfree(conf);
+ mddev->private = NULL;
+out:
+ return -EIO;
+}
+
+static void raid10_free(struct mddev *mddev, void *priv)
+{
+ struct r10conf *conf = priv;
+
+ mempool_exit(&conf->r10bio_pool);
+ safe_put_page(conf->tmppage);
+ kfree(conf->mirrors);
+ kfree(conf->mirrors_old);
+ kfree(conf->mirrors_new);
+ bioset_exit(&conf->bio_split);
+ kfree(conf);
+}
+
+static void raid10_quiesce(struct mddev *mddev, int quiesce)
+{
+ struct r10conf *conf = mddev->private;
+
+ if (quiesce)
+ raise_barrier(conf, 0);
+ else
+ lower_barrier(conf);
+}
+
+static int raid10_resize(struct mddev *mddev, sector_t sectors)
+{
+ /* Resize of 'far' arrays is not supported.
+ * For 'near' and 'offset' arrays we can set the
+ * number of sectors used to be an appropriate multiple
+ * of the chunk size.
+ * For 'offset', this is far_copies*chunksize.
+ * For 'near' the multiplier is the LCM of
+ * near_copies and raid_disks.
+ * So if far_copies > 1 && !far_offset, fail.
+ * Else find LCM(raid_disks, near_copy)*far_copies and
+ * multiply by chunk_size. Then round to this number.
+ * This is mostly done by raid10_size()
+ */
+ struct r10conf *conf = mddev->private;
+ sector_t oldsize, size;
+
+ if (mddev->reshape_position != MaxSector)
+ return -EBUSY;
+
+ if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
+ return -EINVAL;
+
+ oldsize = raid10_size(mddev, 0, 0);
+ size = raid10_size(mddev, sectors, 0);
+ if (mddev->external_size &&
+ mddev->array_sectors > size)
+ return -EINVAL;
+ if (mddev->bitmap) {
+ int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
+ if (ret)
+ return ret;
+ }
+ md_set_array_sectors(mddev, size);
+ if (sectors > mddev->dev_sectors &&
+ mddev->recovery_cp > oldsize) {
+ mddev->recovery_cp = oldsize;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ }
+ calc_sectors(conf, sectors);
+ mddev->dev_sectors = conf->dev_sectors;
+ mddev->resync_max_sectors = size;
+ return 0;
+}
+
+static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
+{
+ struct md_rdev *rdev;
+ struct r10conf *conf;
+
+ if (mddev->degraded > 0) {
+ pr_warn("md/raid10:%s: Error: degraded raid0!\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+ sector_div(size, devs);
+
+ /* Set new parameters */
+ mddev->new_level = 10;
+ /* new layout: far_copies = 1, near_copies = 2 */
+ mddev->new_layout = (1<<8) + 2;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->delta_disks = mddev->raid_disks;
+ mddev->raid_disks *= 2;
+ /* make sure it will be not marked as dirty */
+ mddev->recovery_cp = MaxSector;
+ mddev->dev_sectors = size;
+
+ conf = setup_conf(mddev);
+ if (!IS_ERR(conf)) {
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0) {
+ rdev->new_raid_disk = rdev->raid_disk * 2;
+ rdev->sectors = size;
+ }
+ conf->barrier = 1;
+ }
+
+ return conf;
+}
+
+static void *raid10_takeover(struct mddev *mddev)
+{
+ struct r0conf *raid0_conf;
+
+ /* raid10 can take over:
+ * raid0 - providing it has only two drives
+ */
+ if (mddev->level == 0) {
+ /* for raid0 takeover only one zone is supported */
+ raid0_conf = mddev->private;
+ if (raid0_conf->nr_strip_zones > 1) {
+ pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+ return raid10_takeover_raid0(mddev,
+ raid0_conf->strip_zone->zone_end,
+ raid0_conf->strip_zone->nb_dev);
+ }
+ return ERR_PTR(-EINVAL);
+}
+
+static int raid10_check_reshape(struct mddev *mddev)
+{
+ /* Called when there is a request to change
+ * - layout (to ->new_layout)
+ * - chunk size (to ->new_chunk_sectors)
+ * - raid_disks (by delta_disks)
+ * or when trying to restart a reshape that was ongoing.
+ *
+ * We need to validate the request and possibly allocate
+ * space if that might be an issue later.
+ *
+ * Currently we reject any reshape of a 'far' mode array,
+ * allow chunk size to change if new is generally acceptable,
+ * allow raid_disks to increase, and allow
+ * a switch between 'near' mode and 'offset' mode.
+ */
+ struct r10conf *conf = mddev->private;
+ struct geom geo;
+
+ if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
+ return -EINVAL;
+
+ if (setup_geo(&geo, mddev, geo_start) != conf->copies)
+ /* mustn't change number of copies */
+ return -EINVAL;
+ if (geo.far_copies > 1 && !geo.far_offset)
+ /* Cannot switch to 'far' mode */
+ return -EINVAL;
+
+ if (mddev->array_sectors & geo.chunk_mask)
+ /* not factor of array size */
+ return -EINVAL;
+
+ if (!enough(conf, -1))
+ return -EINVAL;
+
+ kfree(conf->mirrors_new);
+ conf->mirrors_new = NULL;
+ if (mddev->delta_disks > 0) {
+ /* allocate new 'mirrors' list */
+ conf->mirrors_new =
+ kcalloc(mddev->raid_disks + mddev->delta_disks,
+ sizeof(struct raid10_info),
+ GFP_KERNEL);
+ if (!conf->mirrors_new)
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+/*
+ * Need to check if array has failed when deciding whether to:
+ * - start an array
+ * - remove non-faulty devices
+ * - add a spare
+ * - allow a reshape
+ * This determination is simple when no reshape is happening.
+ * However if there is a reshape, we need to carefully check
+ * both the before and after sections.
+ * This is because some failed devices may only affect one
+ * of the two sections, and some non-in_sync devices may
+ * be insync in the section most affected by failed devices.
+ */
+static int calc_degraded(struct r10conf *conf)
+{
+ int degraded, degraded2;
+ int i;
+
+ rcu_read_lock();
+ degraded = 0;
+ /* 'prev' section first */
+ for (i = 0; i < conf->prev.raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ degraded++;
+ else if (!test_bit(In_sync, &rdev->flags))
+ /* When we can reduce the number of devices in
+ * an array, this might not contribute to
+ * 'degraded'. It does now.
+ */
+ degraded++;
+ }
+ rcu_read_unlock();
+ if (conf->geo.raid_disks == conf->prev.raid_disks)
+ return degraded;
+ rcu_read_lock();
+ degraded2 = 0;
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ degraded2++;
+ else if (!test_bit(In_sync, &rdev->flags)) {
+ /* If reshape is increasing the number of devices,
+ * this section has already been recovered, so
+ * it doesn't contribute to degraded.
+ * else it does.
+ */
+ if (conf->geo.raid_disks <= conf->prev.raid_disks)
+ degraded2++;
+ }
+ }
+ rcu_read_unlock();
+ if (degraded2 > degraded)
+ return degraded2;
+ return degraded;
+}
+
+static int raid10_start_reshape(struct mddev *mddev)
+{
+ /* A 'reshape' has been requested. This commits
+ * the various 'new' fields and sets MD_RECOVER_RESHAPE
+ * This also checks if there are enough spares and adds them
+ * to the array.
+ * We currently require enough spares to make the final
+ * array non-degraded. We also require that the difference
+ * between old and new data_offset - on each device - is
+ * enough that we never risk over-writing.
+ */
+
+ unsigned long before_length, after_length;
+ sector_t min_offset_diff = 0;
+ int first = 1;
+ struct geom new;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev;
+ int spares = 0;
+ int ret;
+
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ return -EBUSY;
+
+ if (setup_geo(&new, mddev, geo_start) != conf->copies)
+ return -EINVAL;
+
+ before_length = ((1 << conf->prev.chunk_shift) *
+ conf->prev.far_copies);
+ after_length = ((1 << conf->geo.chunk_shift) *
+ conf->geo.far_copies);
+
+ rdev_for_each(rdev, mddev) {
+ if (!test_bit(In_sync, &rdev->flags)
+ && !test_bit(Faulty, &rdev->flags))
+ spares++;
+ if (rdev->raid_disk >= 0) {
+ long long diff = (rdev->new_data_offset
+ - rdev->data_offset);
+ if (!mddev->reshape_backwards)
+ diff = -diff;
+ if (diff < 0)
+ diff = 0;
+ if (first || diff < min_offset_diff)
+ min_offset_diff = diff;
+ first = 0;
+ }
+ }
+
+ if (max(before_length, after_length) > min_offset_diff)
+ return -EINVAL;
+
+ if (spares < mddev->delta_disks)
+ return -EINVAL;
+
+ conf->offset_diff = min_offset_diff;
+ spin_lock_irq(&conf->device_lock);
+ if (conf->mirrors_new) {
+ memcpy(conf->mirrors_new, conf->mirrors,
+ sizeof(struct raid10_info)*conf->prev.raid_disks);
+ smp_mb();
+ kfree(conf->mirrors_old);
+ conf->mirrors_old = conf->mirrors;
+ conf->mirrors = conf->mirrors_new;
+ conf->mirrors_new = NULL;
+ }
+ setup_geo(&conf->geo, mddev, geo_start);
+ smp_mb();
+ if (mddev->reshape_backwards) {
+ sector_t size = raid10_size(mddev, 0, 0);
+ if (size < mddev->array_sectors) {
+ spin_unlock_irq(&conf->device_lock);
+ pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ mddev->resync_max_sectors = size;
+ conf->reshape_progress = size;
+ } else
+ conf->reshape_progress = 0;
+ conf->reshape_safe = conf->reshape_progress;
+ spin_unlock_irq(&conf->device_lock);
+
+ if (mddev->delta_disks && mddev->bitmap) {
+ ret = md_bitmap_resize(mddev->bitmap,
+ raid10_size(mddev, 0, conf->geo.raid_disks),
+ 0, 0);
+ if (ret)
+ goto abort;
+ }
+ if (mddev->delta_disks > 0) {
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk < 0 &&
+ !test_bit(Faulty, &rdev->flags)) {
+ if (raid10_add_disk(mddev, rdev) == 0) {
+ if (rdev->raid_disk >=
+ conf->prev.raid_disks)
+ set_bit(In_sync, &rdev->flags);
+ else
+ rdev->recovery_offset = 0;
+
+ if (sysfs_link_rdev(mddev, rdev))
+ /* Failure here is OK */;
+ }
+ } else if (rdev->raid_disk >= conf->prev.raid_disks
+ && !test_bit(Faulty, &rdev->flags)) {
+ /* This is a spare that was manually added */
+ set_bit(In_sync, &rdev->flags);
+ }
+ }
+ /* When a reshape changes the number of devices,
+ * ->degraded is measured against the larger of the
+ * pre and post numbers.
+ */
+ spin_lock_irq(&conf->device_lock);
+ mddev->degraded = calc_degraded(conf);
+ spin_unlock_irq(&conf->device_lock);
+ mddev->raid_disks = conf->geo.raid_disks;
+ mddev->reshape_position = conf->reshape_progress;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+
+ mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+ "reshape");
+ if (!mddev->sync_thread) {
+ ret = -EAGAIN;
+ goto abort;
+ }
+ conf->reshape_checkpoint = jiffies;
+ md_wakeup_thread(mddev->sync_thread);
+ md_new_event(mddev);
+ return 0;
+
+abort:
+ mddev->recovery = 0;
+ spin_lock_irq(&conf->device_lock);
+ conf->geo = conf->prev;
+ mddev->raid_disks = conf->geo.raid_disks;
+ rdev_for_each(rdev, mddev)
+ rdev->new_data_offset = rdev->data_offset;
+ smp_wmb();
+ conf->reshape_progress = MaxSector;
+ conf->reshape_safe = MaxSector;
+ mddev->reshape_position = MaxSector;
+ spin_unlock_irq(&conf->device_lock);
+ return ret;
+}
+
+/* Calculate the last device-address that could contain
+ * any block from the chunk that includes the array-address 's'
+ * and report the next address.
+ * i.e. the address returned will be chunk-aligned and after
+ * any data that is in the chunk containing 's'.
+ */
+static sector_t last_dev_address(sector_t s, struct geom *geo)
+{
+ s = (s | geo->chunk_mask) + 1;
+ s >>= geo->chunk_shift;
+ s *= geo->near_copies;
+ s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
+ s *= geo->far_copies;
+ s <<= geo->chunk_shift;
+ return s;
+}
+
+/* Calculate the first device-address that could contain
+ * any block from the chunk that includes the array-address 's'.
+ * This too will be the start of a chunk
+ */
+static sector_t first_dev_address(sector_t s, struct geom *geo)
+{
+ s >>= geo->chunk_shift;
+ s *= geo->near_copies;
+ sector_div(s, geo->raid_disks);
+ s *= geo->far_copies;
+ s <<= geo->chunk_shift;
+ return s;
+}
+
+static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped)
+{
+ /* We simply copy at most one chunk (smallest of old and new)
+ * at a time, possibly less if that exceeds RESYNC_PAGES,
+ * or we hit a bad block or something.
+ * This might mean we pause for normal IO in the middle of
+ * a chunk, but that is not a problem as mddev->reshape_position
+ * can record any location.
+ *
+ * If we will want to write to a location that isn't
+ * yet recorded as 'safe' (i.e. in metadata on disk) then
+ * we need to flush all reshape requests and update the metadata.
+ *
+ * When reshaping forwards (e.g. to more devices), we interpret
+ * 'safe' as the earliest block which might not have been copied
+ * down yet. We divide this by previous stripe size and multiply
+ * by previous stripe length to get lowest device offset that we
+ * cannot write to yet.
+ * We interpret 'sector_nr' as an address that we want to write to.
+ * From this we use last_device_address() to find where we might
+ * write to, and first_device_address on the 'safe' position.
+ * If this 'next' write position is after the 'safe' position,
+ * we must update the metadata to increase the 'safe' position.
+ *
+ * When reshaping backwards, we round in the opposite direction
+ * and perform the reverse test: next write position must not be
+ * less than current safe position.
+ *
+ * In all this the minimum difference in data offsets
+ * (conf->offset_diff - always positive) allows a bit of slack,
+ * so next can be after 'safe', but not by more than offset_diff
+ *
+ * We need to prepare all the bios here before we start any IO
+ * to ensure the size we choose is acceptable to all devices.
+ * The means one for each copy for write-out and an extra one for
+ * read-in.
+ * We store the read-in bio in ->master_bio and the others in
+ * ->devs[x].bio and ->devs[x].repl_bio.
+ */
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10_bio;
+ sector_t next, safe, last;
+ int max_sectors;
+ int nr_sectors;
+ int s;
+ struct md_rdev *rdev;
+ int need_flush = 0;
+ struct bio *blist;
+ struct bio *bio, *read_bio;
+ int sectors_done = 0;
+ struct page **pages;
+
+ if (sector_nr == 0) {
+ /* If restarting in the middle, skip the initial sectors */
+ if (mddev->reshape_backwards &&
+ conf->reshape_progress < raid10_size(mddev, 0, 0)) {
+ sector_nr = (raid10_size(mddev, 0, 0)
+ - conf->reshape_progress);
+ } else if (!mddev->reshape_backwards &&
+ conf->reshape_progress > 0)
+ sector_nr = conf->reshape_progress;
+ if (sector_nr) {
+ mddev->curr_resync_completed = sector_nr;
+ sysfs_notify(&mddev->kobj, NULL, "sync_completed");
+ *skipped = 1;
+ return sector_nr;
+ }
+ }
+
+ /* We don't use sector_nr to track where we are up to
+ * as that doesn't work well for ->reshape_backwards.
+ * So just use ->reshape_progress.
+ */
+ if (mddev->reshape_backwards) {
+ /* 'next' is the earliest device address that we might
+ * write to for this chunk in the new layout
+ */
+ next = first_dev_address(conf->reshape_progress - 1,
+ &conf->geo);
+
+ /* 'safe' is the last device address that we might read from
+ * in the old layout after a restart
+ */
+ safe = last_dev_address(conf->reshape_safe - 1,
+ &conf->prev);
+
+ if (next + conf->offset_diff < safe)
+ need_flush = 1;
+
+ last = conf->reshape_progress - 1;
+ sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
+ & conf->prev.chunk_mask);
+ if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
+ sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
+ } else {
+ /* 'next' is after the last device address that we
+ * might write to for this chunk in the new layout
+ */
+ next = last_dev_address(conf->reshape_progress, &conf->geo);
+
+ /* 'safe' is the earliest device address that we might
+ * read from in the old layout after a restart
+ */
+ safe = first_dev_address(conf->reshape_safe, &conf->prev);
+
+ /* Need to update metadata if 'next' might be beyond 'safe'
+ * as that would possibly corrupt data
+ */
+ if (next > safe + conf->offset_diff)
+ need_flush = 1;
+
+ sector_nr = conf->reshape_progress;
+ last = sector_nr | (conf->geo.chunk_mask
+ & conf->prev.chunk_mask);
+
+ if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
+ last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
+ }
+
+ if (need_flush ||
+ time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
+ /* Need to update reshape_position in metadata */
+ wait_barrier(conf);
+ mddev->reshape_position = conf->reshape_progress;
+ if (mddev->reshape_backwards)
+ mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
+ - conf->reshape_progress;
+ else
+ mddev->curr_resync_completed = conf->reshape_progress;
+ conf->reshape_checkpoint = jiffies;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
+ test_bit(MD_RECOVERY_INTR, &mddev->recovery));
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+ allow_barrier(conf);
+ return sectors_done;
+ }
+ conf->reshape_safe = mddev->reshape_position;
+ allow_barrier(conf);
+ }
+
+ raise_barrier(conf, 0);
+read_more:
+ /* Now schedule reads for blocks from sector_nr to last */
+ r10_bio = raid10_alloc_init_r10buf(conf);
+ r10_bio->state = 0;
+ raise_barrier(conf, 1);
+ atomic_set(&r10_bio->remaining, 0);
+ r10_bio->mddev = mddev;
+ r10_bio->sector = sector_nr;
+ set_bit(R10BIO_IsReshape, &r10_bio->state);
+ r10_bio->sectors = last - sector_nr + 1;
+ rdev = read_balance(conf, r10_bio, &max_sectors);
+ BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
+
+ if (!rdev) {
+ /* Cannot read from here, so need to record bad blocks
+ * on all the target devices.
+ */
+ // FIXME
+ mempool_free(r10_bio, &conf->r10buf_pool);
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ return sectors_done;
+ }
+
+ read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
+
+ bio_set_dev(read_bio, rdev->bdev);
+ read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
+ + rdev->data_offset);
+ read_bio->bi_private = r10_bio;
+ read_bio->bi_end_io = end_reshape_read;
+ bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
+ read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
+ read_bio->bi_status = 0;
+ read_bio->bi_vcnt = 0;
+ read_bio->bi_iter.bi_size = 0;
+ r10_bio->master_bio = read_bio;
+ r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
+
+ /* Now find the locations in the new layout */
+ __raid10_find_phys(&conf->geo, r10_bio);
+
+ blist = read_bio;
+ read_bio->bi_next = NULL;
+
+ rcu_read_lock();
+ for (s = 0; s < conf->copies*2; s++) {
+ struct bio *b;
+ int d = r10_bio->devs[s/2].devnum;
+ struct md_rdev *rdev2;
+ if (s&1) {
+ rdev2 = rcu_dereference(conf->mirrors[d].replacement);
+ b = r10_bio->devs[s/2].repl_bio;
+ } else {
+ rdev2 = rcu_dereference(conf->mirrors[d].rdev);
+ b = r10_bio->devs[s/2].bio;
+ }
+ if (!rdev2 || test_bit(Faulty, &rdev2->flags))
+ continue;
+
+ bio_set_dev(b, rdev2->bdev);
+ b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
+ rdev2->new_data_offset;
+ b->bi_end_io = end_reshape_write;
+ bio_set_op_attrs(b, REQ_OP_WRITE, 0);
+ b->bi_next = blist;
+ blist = b;
+ }
+
+ /* Now add as many pages as possible to all of these bios. */
+
+ nr_sectors = 0;
+ pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
+ for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
+ struct page *page = pages[s / (PAGE_SIZE >> 9)];
+ int len = (max_sectors - s) << 9;
+ if (len > PAGE_SIZE)
+ len = PAGE_SIZE;
+ for (bio = blist; bio ; bio = bio->bi_next) {
+ /*
+ * won't fail because the vec table is big enough
+ * to hold all these pages
+ */
+ bio_add_page(bio, page, len, 0);
+ }
+ sector_nr += len >> 9;
+ nr_sectors += len >> 9;
+ }
+ rcu_read_unlock();
+ r10_bio->sectors = nr_sectors;
+
+ /* Now submit the read */
+ md_sync_acct_bio(read_bio, r10_bio->sectors);
+ atomic_inc(&r10_bio->remaining);
+ read_bio->bi_next = NULL;
+ generic_make_request(read_bio);
+ sectors_done += nr_sectors;
+ if (sector_nr <= last)
+ goto read_more;
+
+ lower_barrier(conf);
+
+ /* Now that we have done the whole section we can
+ * update reshape_progress
+ */
+ if (mddev->reshape_backwards)
+ conf->reshape_progress -= sectors_done;
+ else
+ conf->reshape_progress += sectors_done;
+
+ return sectors_done;
+}
+
+static void end_reshape_request(struct r10bio *r10_bio);
+static int handle_reshape_read_error(struct mddev *mddev,
+ struct r10bio *r10_bio);
+static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ /* Reshape read completed. Hopefully we have a block
+ * to write out.
+ * If we got a read error then we do sync 1-page reads from
+ * elsewhere until we find the data - or give up.
+ */
+ struct r10conf *conf = mddev->private;
+ int s;
+
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
+ if (handle_reshape_read_error(mddev, r10_bio) < 0) {
+ /* Reshape has been aborted */
+ md_done_sync(mddev, r10_bio->sectors, 0);
+ return;
+ }
+
+ /* We definitely have the data in the pages, schedule the
+ * writes.
+ */
+ atomic_set(&r10_bio->remaining, 1);
+ for (s = 0; s < conf->copies*2; s++) {
+ struct bio *b;
+ int d = r10_bio->devs[s/2].devnum;
+ struct md_rdev *rdev;
+ rcu_read_lock();
+ if (s&1) {
+ rdev = rcu_dereference(conf->mirrors[d].replacement);
+ b = r10_bio->devs[s/2].repl_bio;
+ } else {
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ b = r10_bio->devs[s/2].bio;
+ }
+ if (!rdev || test_bit(Faulty, &rdev->flags)) {
+ rcu_read_unlock();
+ continue;
+ }
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ md_sync_acct_bio(b, r10_bio->sectors);
+ atomic_inc(&r10_bio->remaining);
+ b->bi_next = NULL;
+ generic_make_request(b);
+ }
+ end_reshape_request(r10_bio);
+}
+
+static void end_reshape(struct r10conf *conf)
+{
+ if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
+ return;
+
+ spin_lock_irq(&conf->device_lock);
+ conf->prev = conf->geo;
+ md_finish_reshape(conf->mddev);
+ smp_wmb();
+ conf->reshape_progress = MaxSector;
+ conf->reshape_safe = MaxSector;
+ spin_unlock_irq(&conf->device_lock);
+
+ /* read-ahead size must cover two whole stripes, which is
+ * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
+ */
+ if (conf->mddev->queue) {
+ int stripe = conf->geo.raid_disks *
+ ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
+ stripe /= conf->geo.near_copies;
+ if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
+ conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
+ }
+ conf->fullsync = 0;
+}
+
+static int handle_reshape_read_error(struct mddev *mddev,
+ struct r10bio *r10_bio)
+{
+ /* Use sync reads to get the blocks from somewhere else */
+ int sectors = r10_bio->sectors;
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10b;
+ int slot = 0;
+ int idx = 0;
+ struct page **pages;
+
+ r10b = kmalloc(sizeof(*r10b) +
+ sizeof(struct r10dev) * conf->copies, GFP_NOIO);
+ if (!r10b) {
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ return -ENOMEM;
+ }
+
+ /* reshape IOs share pages from .devs[0].bio */
+ pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
+
+ r10b->sector = r10_bio->sector;
+ __raid10_find_phys(&conf->prev, r10b);
+
+ while (sectors) {
+ int s = sectors;
+ int success = 0;
+ int first_slot = slot;
+
+ if (s > (PAGE_SIZE >> 9))
+ s = PAGE_SIZE >> 9;
+
+ rcu_read_lock();
+ while (!success) {
+ int d = r10b->devs[slot].devnum;
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
+ sector_t addr;
+ if (rdev == NULL ||
+ test_bit(Faulty, &rdev->flags) ||
+ !test_bit(In_sync, &rdev->flags))
+ goto failed;
+
+ addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ success = sync_page_io(rdev,
+ addr,
+ s << 9,
+ pages[idx],
+ REQ_OP_READ, 0, false);
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ if (success)
+ break;
+ failed:
+ slot++;
+ if (slot >= conf->copies)
+ slot = 0;
+ if (slot == first_slot)
+ break;
+ }
+ rcu_read_unlock();
+ if (!success) {
+ /* couldn't read this block, must give up */
+ set_bit(MD_RECOVERY_INTR,
+ &mddev->recovery);
+ kfree(r10b);
+ return -EIO;
+ }
+ sectors -= s;
+ idx++;
+ }
+ kfree(r10b);
+ return 0;
+}
+
+static void end_reshape_write(struct bio *bio)
+{
+ struct r10bio *r10_bio = get_resync_r10bio(bio);
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ int d;
+ int slot;
+ int repl;
+ struct md_rdev *rdev = NULL;
+
+ d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+ if (repl)
+ rdev = conf->mirrors[d].replacement;
+ if (!rdev) {
+ smp_mb();
+ rdev = conf->mirrors[d].rdev;
+ }
+
+ if (bio->bi_status) {
+ /* FIXME should record badblock */
+ md_error(mddev, rdev);
+ }
+
+ rdev_dec_pending(rdev, mddev);
+ end_reshape_request(r10_bio);
+}
+
+static void end_reshape_request(struct r10bio *r10_bio)
+{
+ if (!atomic_dec_and_test(&r10_bio->remaining))
+ return;
+ md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
+ bio_put(r10_bio->master_bio);
+ put_buf(r10_bio);
+}
+
+static void raid10_finish_reshape(struct mddev *mddev)
+{
+ struct r10conf *conf = mddev->private;
+
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ return;
+
+ if (mddev->delta_disks > 0) {
+ if (mddev->recovery_cp > mddev->resync_max_sectors) {
+ mddev->recovery_cp = mddev->resync_max_sectors;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ }
+ mddev->resync_max_sectors = mddev->array_sectors;
+ } else {
+ int d;
+ rcu_read_lock();
+ for (d = conf->geo.raid_disks ;
+ d < conf->geo.raid_disks - mddev->delta_disks;
+ d++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev)
+ clear_bit(In_sync, &rdev->flags);
+ rdev = rcu_dereference(conf->mirrors[d].replacement);
+ if (rdev)
+ clear_bit(In_sync, &rdev->flags);
+ }
+ rcu_read_unlock();
+ }
+ mddev->layout = mddev->new_layout;
+ mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
+ mddev->reshape_position = MaxSector;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+}
+
+static struct md_personality raid10_personality =
+{
+ .name = "raid10",
+ .level = 10,
+ .owner = THIS_MODULE,
+ .make_request = raid10_make_request,
+ .run = raid10_run,
+ .free = raid10_free,
+ .status = raid10_status,
+ .error_handler = raid10_error,
+ .hot_add_disk = raid10_add_disk,
+ .hot_remove_disk= raid10_remove_disk,
+ .spare_active = raid10_spare_active,
+ .sync_request = raid10_sync_request,
+ .quiesce = raid10_quiesce,
+ .size = raid10_size,
+ .resize = raid10_resize,
+ .takeover = raid10_takeover,
+ .check_reshape = raid10_check_reshape,
+ .start_reshape = raid10_start_reshape,
+ .finish_reshape = raid10_finish_reshape,
+ .congested = raid10_congested,
+};
+
+static int __init raid_init(void)
+{
+ return register_md_personality(&raid10_personality);
+}
+
+static void raid_exit(void)
+{
+ unregister_md_personality(&raid10_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
+MODULE_ALIAS("md-personality-9"); /* RAID10 */
+MODULE_ALIAS("md-raid10");
+MODULE_ALIAS("md-level-10");
+
+module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);