summaryrefslogtreecommitdiffstats
path: root/drivers/net/dsa/bcm_sf2_cfp.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/dsa/bcm_sf2_cfp.c')
-rw-r--r--drivers/net/dsa/bcm_sf2_cfp.c1307
1 files changed, 1307 insertions, 0 deletions
diff --git a/drivers/net/dsa/bcm_sf2_cfp.c b/drivers/net/dsa/bcm_sf2_cfp.c
new file mode 100644
index 000000000..12156ab18
--- /dev/null
+++ b/drivers/net/dsa/bcm_sf2_cfp.c
@@ -0,0 +1,1307 @@
+/*
+ * Broadcom Starfighter 2 DSA switch CFP support
+ *
+ * Copyright (C) 2016, Broadcom
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/list.h>
+#include <linux/ethtool.h>
+#include <linux/if_ether.h>
+#include <linux/in.h>
+#include <linux/netdevice.h>
+#include <net/dsa.h>
+#include <linux/bitmap.h>
+
+#include "bcm_sf2.h"
+#include "bcm_sf2_regs.h"
+
+struct cfp_udf_slice_layout {
+ u8 slices[UDFS_PER_SLICE];
+ u32 mask_value;
+ u32 base_offset;
+};
+
+struct cfp_udf_layout {
+ struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
+};
+
+static const u8 zero_slice[UDFS_PER_SLICE] = { };
+
+/* UDF slices layout for a TCPv4/UDPv4 specification */
+static const struct cfp_udf_layout udf_tcpip4_layout = {
+ .udfs = {
+ [1] = {
+ .slices = {
+ /* End of L2, byte offset 12, src IP[0:15] */
+ CFG_UDF_EOL2 | 6,
+ /* End of L2, byte offset 14, src IP[16:31] */
+ CFG_UDF_EOL2 | 7,
+ /* End of L2, byte offset 16, dst IP[0:15] */
+ CFG_UDF_EOL2 | 8,
+ /* End of L2, byte offset 18, dst IP[16:31] */
+ CFG_UDF_EOL2 | 9,
+ /* End of L3, byte offset 0, src port */
+ CFG_UDF_EOL3 | 0,
+ /* End of L3, byte offset 2, dst port */
+ CFG_UDF_EOL3 | 1,
+ 0, 0, 0
+ },
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+ .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
+ },
+ },
+};
+
+/* UDF slices layout for a TCPv6/UDPv6 specification */
+static const struct cfp_udf_layout udf_tcpip6_layout = {
+ .udfs = {
+ [0] = {
+ .slices = {
+ /* End of L2, byte offset 8, src IP[0:15] */
+ CFG_UDF_EOL2 | 4,
+ /* End of L2, byte offset 10, src IP[16:31] */
+ CFG_UDF_EOL2 | 5,
+ /* End of L2, byte offset 12, src IP[32:47] */
+ CFG_UDF_EOL2 | 6,
+ /* End of L2, byte offset 14, src IP[48:63] */
+ CFG_UDF_EOL2 | 7,
+ /* End of L2, byte offset 16, src IP[64:79] */
+ CFG_UDF_EOL2 | 8,
+ /* End of L2, byte offset 18, src IP[80:95] */
+ CFG_UDF_EOL2 | 9,
+ /* End of L2, byte offset 20, src IP[96:111] */
+ CFG_UDF_EOL2 | 10,
+ /* End of L2, byte offset 22, src IP[112:127] */
+ CFG_UDF_EOL2 | 11,
+ /* End of L3, byte offset 0, src port */
+ CFG_UDF_EOL3 | 0,
+ },
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+ .base_offset = CORE_UDF_0_B_0_8_PORT_0,
+ },
+ [3] = {
+ .slices = {
+ /* End of L2, byte offset 24, dst IP[0:15] */
+ CFG_UDF_EOL2 | 12,
+ /* End of L2, byte offset 26, dst IP[16:31] */
+ CFG_UDF_EOL2 | 13,
+ /* End of L2, byte offset 28, dst IP[32:47] */
+ CFG_UDF_EOL2 | 14,
+ /* End of L2, byte offset 30, dst IP[48:63] */
+ CFG_UDF_EOL2 | 15,
+ /* End of L2, byte offset 32, dst IP[64:79] */
+ CFG_UDF_EOL2 | 16,
+ /* End of L2, byte offset 34, dst IP[80:95] */
+ CFG_UDF_EOL2 | 17,
+ /* End of L2, byte offset 36, dst IP[96:111] */
+ CFG_UDF_EOL2 | 18,
+ /* End of L2, byte offset 38, dst IP[112:127] */
+ CFG_UDF_EOL2 | 19,
+ /* End of L3, byte offset 2, dst port */
+ CFG_UDF_EOL3 | 1,
+ },
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
+ .base_offset = CORE_UDF_0_D_0_11_PORT_0,
+ },
+ },
+};
+
+static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
+{
+ unsigned int i, count = 0;
+
+ for (i = 0; i < UDFS_PER_SLICE; i++) {
+ if (layout[i] != 0)
+ count++;
+ }
+
+ return count;
+}
+
+static inline u32 udf_upper_bits(unsigned int num_udf)
+{
+ return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
+}
+
+static inline u32 udf_lower_bits(unsigned int num_udf)
+{
+ return (u8)GENMASK(num_udf - 1, 0);
+}
+
+static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
+ unsigned int start)
+{
+ const struct cfp_udf_slice_layout *slice_layout;
+ unsigned int slice_idx;
+
+ for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
+ slice_layout = &l->udfs[slice_idx];
+ if (memcmp(slice_layout->slices, zero_slice,
+ sizeof(zero_slice)))
+ break;
+ }
+
+ return slice_idx;
+}
+
+static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
+ const struct cfp_udf_layout *layout,
+ unsigned int slice_num)
+{
+ u32 offset = layout->udfs[slice_num].base_offset;
+ unsigned int i;
+
+ for (i = 0; i < UDFS_PER_SLICE; i++)
+ core_writel(priv, layout->udfs[slice_num].slices[i],
+ offset + i * 4);
+}
+
+static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
+{
+ unsigned int timeout = 1000;
+ u32 reg;
+
+ reg = core_readl(priv, CORE_CFP_ACC);
+ reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
+ reg |= OP_STR_DONE | op;
+ core_writel(priv, reg, CORE_CFP_ACC);
+
+ do {
+ reg = core_readl(priv, CORE_CFP_ACC);
+ if (!(reg & OP_STR_DONE))
+ break;
+
+ cpu_relax();
+ } while (timeout--);
+
+ if (!timeout)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
+ unsigned int addr)
+{
+ u32 reg;
+
+ WARN_ON(addr >= priv->num_cfp_rules);
+
+ reg = core_readl(priv, CORE_CFP_ACC);
+ reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
+ reg |= addr << XCESS_ADDR_SHIFT;
+ core_writel(priv, reg, CORE_CFP_ACC);
+}
+
+static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
+{
+ /* Entry #0 is reserved */
+ return priv->num_cfp_rules - 1;
+}
+
+static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
+ unsigned int rule_index,
+ unsigned int port_num,
+ unsigned int queue_num,
+ bool fwd_map_change)
+{
+ int ret;
+ u32 reg;
+
+ /* Replace ARL derived destination with DST_MAP derived, define
+ * which port and queue this should be forwarded to.
+ */
+ if (fwd_map_change)
+ reg = CHANGE_FWRD_MAP_IB_REP_ARL |
+ BIT(port_num + DST_MAP_IB_SHIFT) |
+ CHANGE_TC | queue_num << NEW_TC_SHIFT;
+ else
+ reg = 0;
+
+ core_writel(priv, reg, CORE_ACT_POL_DATA0);
+
+ /* Set classification ID that needs to be put in Broadcom tag */
+ core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
+
+ core_writel(priv, 0, CORE_ACT_POL_DATA2);
+
+ /* Configure policer RAM now */
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
+ if (ret) {
+ pr_err("Policer entry at %d failed\n", rule_index);
+ return ret;
+ }
+
+ /* Disable the policer */
+ core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
+
+ /* Now the rate meter */
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
+ if (ret) {
+ pr_err("Meter entry at %d failed\n", rule_index);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
+ struct ethtool_tcpip4_spec *v4_spec,
+ unsigned int slice_num,
+ bool mask)
+{
+ u32 reg, offset;
+
+ /* C-Tag [31:24]
+ * UDF_n_A8 [23:8]
+ * UDF_n_A7 [7:0]
+ */
+ reg = 0;
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(4);
+ else
+ offset = CORE_CFP_DATA_PORT(4);
+ core_writel(priv, reg, offset);
+
+ /* UDF_n_A7 [31:24]
+ * UDF_n_A6 [23:8]
+ * UDF_n_A5 [7:0]
+ */
+ reg = be16_to_cpu(v4_spec->pdst) >> 8;
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(3);
+ else
+ offset = CORE_CFP_DATA_PORT(3);
+ core_writel(priv, reg, offset);
+
+ /* UDF_n_A5 [31:24]
+ * UDF_n_A4 [23:8]
+ * UDF_n_A3 [7:0]
+ */
+ reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
+ (u32)be16_to_cpu(v4_spec->psrc) << 8 |
+ (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(2);
+ else
+ offset = CORE_CFP_DATA_PORT(2);
+ core_writel(priv, reg, offset);
+
+ /* UDF_n_A3 [31:24]
+ * UDF_n_A2 [23:8]
+ * UDF_n_A1 [7:0]
+ */
+ reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
+ (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
+ (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(1);
+ else
+ offset = CORE_CFP_DATA_PORT(1);
+ core_writel(priv, reg, offset);
+
+ /* UDF_n_A1 [31:24]
+ * UDF_n_A0 [23:8]
+ * Reserved [7:4]
+ * Slice ID [3:2]
+ * Slice valid [1:0]
+ */
+ reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
+ (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
+ SLICE_NUM(slice_num) | SLICE_VALID;
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(0);
+ else
+ offset = CORE_CFP_DATA_PORT(0);
+ core_writel(priv, reg, offset);
+}
+
+static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
+ unsigned int port_num,
+ unsigned int queue_num,
+ struct ethtool_rx_flow_spec *fs)
+{
+ struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
+ const struct cfp_udf_layout *layout;
+ unsigned int slice_num, rule_index;
+ u8 ip_proto, ip_frag;
+ u8 num_udf;
+ u32 reg;
+ int ret;
+
+ switch (fs->flow_type & ~FLOW_EXT) {
+ case TCP_V4_FLOW:
+ ip_proto = IPPROTO_TCP;
+ v4_spec = &fs->h_u.tcp_ip4_spec;
+ v4_m_spec = &fs->m_u.tcp_ip4_spec;
+ break;
+ case UDP_V4_FLOW:
+ ip_proto = IPPROTO_UDP;
+ v4_spec = &fs->h_u.udp_ip4_spec;
+ v4_m_spec = &fs->m_u.udp_ip4_spec;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ip_frag = be32_to_cpu(fs->m_ext.data[0]);
+
+ /* Locate the first rule available */
+ if (fs->location == RX_CLS_LOC_ANY)
+ rule_index = find_first_zero_bit(priv->cfp.used,
+ priv->num_cfp_rules);
+ else
+ rule_index = fs->location;
+
+ if (rule_index > bcm_sf2_cfp_rule_size(priv))
+ return -ENOSPC;
+
+ layout = &udf_tcpip4_layout;
+ /* We only use one UDF slice for now */
+ slice_num = bcm_sf2_get_slice_number(layout, 0);
+ if (slice_num == UDF_NUM_SLICES)
+ return -EINVAL;
+
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+ /* Apply the UDF layout for this filter */
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+ /* Apply to all packets received through this port */
+ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
+
+ /* Source port map match */
+ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
+
+ /* S-Tag status [31:30]
+ * C-Tag status [29:28]
+ * L2 framing [27:26]
+ * L3 framing [25:24]
+ * IP ToS [23:16]
+ * IP proto [15:08]
+ * IP Fragm [7]
+ * Non 1st frag [6]
+ * IP Authen [5]
+ * TTL range [4:3]
+ * PPPoE session [2]
+ * Reserved [1]
+ * UDF_Valid[8] [0]
+ */
+ core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
+ ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
+ udf_upper_bits(num_udf),
+ CORE_CFP_DATA_PORT(6));
+
+ /* Mask with the specific layout for IPv4 packets */
+ core_writel(priv, layout->udfs[slice_num].mask_value |
+ udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
+
+ /* UDF_Valid[7:0] [31:24]
+ * S-Tag [23:8]
+ * C-Tag [7:0]
+ */
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
+
+ /* Mask all but valid UDFs */
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
+
+ /* Program the match and the mask */
+ bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
+ bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
+
+ /* Insert into TCAM now */
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+ if (ret) {
+ pr_err("TCAM entry at addr %d failed\n", rule_index);
+ return ret;
+ }
+
+ /* Insert into Action and policer RAMs now */
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
+ queue_num, true);
+ if (ret)
+ return ret;
+
+ /* Turn on CFP for this rule now */
+ reg = core_readl(priv, CORE_CFP_CTL_REG);
+ reg |= BIT(port);
+ core_writel(priv, reg, CORE_CFP_CTL_REG);
+
+ /* Flag the rule as being used and return it */
+ set_bit(rule_index, priv->cfp.used);
+ set_bit(rule_index, priv->cfp.unique);
+ fs->location = rule_index;
+
+ return 0;
+}
+
+static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
+ const __be32 *ip6_addr, const __be16 port,
+ unsigned int slice_num,
+ bool mask)
+{
+ u32 reg, tmp, val, offset;
+
+ /* C-Tag [31:24]
+ * UDF_n_B8 [23:8] (port)
+ * UDF_n_B7 (upper) [7:0] (addr[15:8])
+ */
+ reg = be32_to_cpu(ip6_addr[3]);
+ val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(4);
+ else
+ offset = CORE_CFP_DATA_PORT(4);
+ core_writel(priv, val, offset);
+
+ /* UDF_n_B7 (lower) [31:24] (addr[7:0])
+ * UDF_n_B6 [23:8] (addr[31:16])
+ * UDF_n_B5 (upper) [7:0] (addr[47:40])
+ */
+ tmp = be32_to_cpu(ip6_addr[2]);
+ val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
+ ((tmp >> 8) & 0xff);
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(3);
+ else
+ offset = CORE_CFP_DATA_PORT(3);
+ core_writel(priv, val, offset);
+
+ /* UDF_n_B5 (lower) [31:24] (addr[39:32])
+ * UDF_n_B4 [23:8] (addr[63:48])
+ * UDF_n_B3 (upper) [7:0] (addr[79:72])
+ */
+ reg = be32_to_cpu(ip6_addr[1]);
+ val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
+ ((reg >> 8) & 0xff);
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(2);
+ else
+ offset = CORE_CFP_DATA_PORT(2);
+ core_writel(priv, val, offset);
+
+ /* UDF_n_B3 (lower) [31:24] (addr[71:64])
+ * UDF_n_B2 [23:8] (addr[95:80])
+ * UDF_n_B1 (upper) [7:0] (addr[111:104])
+ */
+ tmp = be32_to_cpu(ip6_addr[0]);
+ val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
+ ((tmp >> 8) & 0xff);
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(1);
+ else
+ offset = CORE_CFP_DATA_PORT(1);
+ core_writel(priv, val, offset);
+
+ /* UDF_n_B1 (lower) [31:24] (addr[103:96])
+ * UDF_n_B0 [23:8] (addr[127:112])
+ * Reserved [7:4]
+ * Slice ID [3:2]
+ * Slice valid [1:0]
+ */
+ reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
+ SLICE_NUM(slice_num) | SLICE_VALID;
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(0);
+ else
+ offset = CORE_CFP_DATA_PORT(0);
+ core_writel(priv, reg, offset);
+}
+
+static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
+ unsigned int port_num,
+ unsigned int queue_num,
+ struct ethtool_rx_flow_spec *fs)
+{
+ struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
+ unsigned int slice_num, rule_index[2];
+ const struct cfp_udf_layout *layout;
+ u8 ip_proto, ip_frag;
+ int ret = 0;
+ u8 num_udf;
+ u32 reg;
+
+ switch (fs->flow_type & ~FLOW_EXT) {
+ case TCP_V6_FLOW:
+ ip_proto = IPPROTO_TCP;
+ v6_spec = &fs->h_u.tcp_ip6_spec;
+ v6_m_spec = &fs->m_u.tcp_ip6_spec;
+ break;
+ case UDP_V6_FLOW:
+ ip_proto = IPPROTO_UDP;
+ v6_spec = &fs->h_u.udp_ip6_spec;
+ v6_m_spec = &fs->m_u.udp_ip6_spec;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ip_frag = be32_to_cpu(fs->m_ext.data[0]);
+
+ layout = &udf_tcpip6_layout;
+ slice_num = bcm_sf2_get_slice_number(layout, 0);
+ if (slice_num == UDF_NUM_SLICES)
+ return -EINVAL;
+
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+ /* Negotiate two indexes, one for the second half which we are chained
+ * from, which is what we will return to user-space, and a second one
+ * which is used to store its first half. That first half does not
+ * allow any choice of placement, so it just needs to find the next
+ * available bit. We return the second half as fs->location because
+ * that helps with the rule lookup later on since the second half is
+ * chained from its first half, we can easily identify IPv6 CFP rules
+ * by looking whether they carry a CHAIN_ID.
+ *
+ * We also want the second half to have a lower rule_index than its
+ * first half because the HW search is by incrementing addresses.
+ */
+ if (fs->location == RX_CLS_LOC_ANY)
+ rule_index[1] = find_first_zero_bit(priv->cfp.used,
+ priv->num_cfp_rules);
+ else
+ rule_index[1] = fs->location;
+ if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
+ return -ENOSPC;
+
+ /* Flag it as used (cleared on error path) such that we can immediately
+ * obtain a second one to chain from.
+ */
+ set_bit(rule_index[1], priv->cfp.used);
+
+ rule_index[0] = find_first_zero_bit(priv->cfp.used,
+ priv->num_cfp_rules);
+ if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
+ ret = -ENOSPC;
+ goto out_err;
+ }
+
+ /* Apply the UDF layout for this filter */
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+ /* Apply to all packets received through this port */
+ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
+
+ /* Source port map match */
+ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
+
+ /* S-Tag status [31:30]
+ * C-Tag status [29:28]
+ * L2 framing [27:26]
+ * L3 framing [25:24]
+ * IP ToS [23:16]
+ * IP proto [15:08]
+ * IP Fragm [7]
+ * Non 1st frag [6]
+ * IP Authen [5]
+ * TTL range [4:3]
+ * PPPoE session [2]
+ * Reserved [1]
+ * UDF_Valid[8] [0]
+ */
+ reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
+ ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
+
+ /* Mask with the specific layout for IPv6 packets including
+ * UDF_Valid[8]
+ */
+ reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
+ core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
+
+ /* UDF_Valid[7:0] [31:24]
+ * S-Tag [23:8]
+ * C-Tag [7:0]
+ */
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
+
+ /* Mask all but valid UDFs */
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
+
+ /* Slice the IPv6 source address and port */
+ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
+ slice_num, false);
+ bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
+ SLICE_NUM_MASK, true);
+
+ /* Insert into TCAM now because we need to insert a second rule */
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+ if (ret) {
+ pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
+ goto out_err;
+ }
+
+ /* Insert into Action and policer RAMs now */
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
+ queue_num, false);
+ if (ret)
+ goto out_err;
+
+ /* Now deal with the second slice to chain this rule */
+ slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
+ if (slice_num == UDF_NUM_SLICES) {
+ ret = -EINVAL;
+ goto out_err;
+ }
+
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
+
+ /* Apply the UDF layout for this filter */
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
+
+ /* Chained rule, source port match is coming from the rule we are
+ * chained from.
+ */
+ core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
+ core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
+
+ /*
+ * CHAIN ID [31:24] chain to previous slice
+ * Reserved [23:20]
+ * UDF_Valid[11:8] [19:16]
+ * UDF_Valid[7:0] [15:8]
+ * UDF_n_D11 [7:0]
+ */
+ reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
+ udf_lower_bits(num_udf) << 8;
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
+
+ /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
+ reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
+ udf_lower_bits(num_udf) << 8;
+ core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
+
+ /* Don't care */
+ core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
+
+ /* Mask all */
+ core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
+
+ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
+ false);
+ bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
+ SLICE_NUM_MASK, true);
+
+ /* Insert into TCAM now */
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+ if (ret) {
+ pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
+ goto out_err;
+ }
+
+ /* Insert into Action and policer RAMs now, set chain ID to
+ * the one we are chained to
+ */
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
+ queue_num, true);
+ if (ret)
+ goto out_err;
+
+ /* Turn on CFP for this rule now */
+ reg = core_readl(priv, CORE_CFP_CTL_REG);
+ reg |= BIT(port);
+ core_writel(priv, reg, CORE_CFP_CTL_REG);
+
+ /* Flag the second half rule as being used now, return it as the
+ * location, and flag it as unique while dumping rules
+ */
+ set_bit(rule_index[0], priv->cfp.used);
+ set_bit(rule_index[1], priv->cfp.unique);
+ fs->location = rule_index[1];
+
+ return ret;
+
+out_err:
+ clear_bit(rule_index[1], priv->cfp.used);
+ return ret;
+}
+
+static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
+ struct ethtool_rx_flow_spec *fs)
+{
+ struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+ s8 cpu_port = ds->ports[port].cpu_dp->index;
+ __u64 ring_cookie = fs->ring_cookie;
+ unsigned int queue_num, port_num;
+ int ret = -EINVAL;
+
+ /* Check for unsupported extensions */
+ if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
+ fs->m_ext.data[1]))
+ return -EINVAL;
+
+ if (fs->location != RX_CLS_LOC_ANY &&
+ fs->location > bcm_sf2_cfp_rule_size(priv))
+ return -EINVAL;
+
+ if (fs->location != RX_CLS_LOC_ANY &&
+ test_bit(fs->location, priv->cfp.used))
+ return -EBUSY;
+
+ /* This rule is a Wake-on-LAN filter and we must specifically
+ * target the CPU port in order for it to be working.
+ */
+ if (ring_cookie == RX_CLS_FLOW_WAKE)
+ ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
+
+ /* We do not support discarding packets, check that the
+ * destination port is enabled and that we are within the
+ * number of ports supported by the switch
+ */
+ port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
+
+ if (ring_cookie == RX_CLS_FLOW_DISC ||
+ !(dsa_is_user_port(ds, port_num) ||
+ dsa_is_cpu_port(ds, port_num)) ||
+ port_num >= priv->hw_params.num_ports)
+ return -EINVAL;
+ /*
+ * We have a small oddity where Port 6 just does not have a
+ * valid bit here (so we substract by one).
+ */
+ queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
+ if (port_num >= 7)
+ port_num -= 1;
+
+ switch (fs->flow_type & ~FLOW_EXT) {
+ case TCP_V4_FLOW:
+ case UDP_V4_FLOW:
+ ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
+ queue_num, fs);
+ break;
+ case TCP_V6_FLOW:
+ case UDP_V6_FLOW:
+ ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
+ queue_num, fs);
+ break;
+ default:
+ break;
+ }
+
+ return ret;
+}
+
+static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
+ u32 loc, u32 *next_loc)
+{
+ int ret;
+ u32 reg;
+
+ /* Indicate which rule we want to read */
+ bcm_sf2_cfp_rule_addr_set(priv, loc);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
+ if (ret)
+ return ret;
+
+ /* Check if this is possibly an IPv6 rule that would
+ * indicate we need to delete its companion rule
+ * as well
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+ if (next_loc)
+ *next_loc = (reg >> 24) & CHAIN_ID_MASK;
+
+ /* Clear its valid bits */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
+ reg &= ~SLICE_VALID;
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
+
+ /* Write back this entry into the TCAM now */
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
+ if (ret)
+ return ret;
+
+ clear_bit(loc, priv->cfp.used);
+ clear_bit(loc, priv->cfp.unique);
+
+ return 0;
+}
+
+static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
+ u32 loc)
+{
+ u32 next_loc = 0;
+ int ret;
+
+ if (loc > bcm_sf2_cfp_rule_size(priv))
+ return -EINVAL;
+
+ /* Refuse deleting unused rules, and those that are not unique since
+ * that could leave IPv6 rules with one of the chained rule in the
+ * table.
+ */
+ if (!test_bit(loc, priv->cfp.unique) || loc == 0)
+ return -EINVAL;
+
+ ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
+ if (ret)
+ return ret;
+
+ /* If this was an IPv6 rule, delete is companion rule too */
+ if (next_loc)
+ ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
+
+ return ret;
+}
+
+static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
+{
+ unsigned int i;
+
+ for (i = 0; i < sizeof(flow->m_u); i++)
+ flow->m_u.hdata[i] ^= 0xff;
+
+ flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
+ flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
+ flow->m_ext.data[0] ^= cpu_to_be32(~0);
+ flow->m_ext.data[1] ^= cpu_to_be32(~0);
+}
+
+static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
+ struct ethtool_tcpip4_spec *v4_spec,
+ bool mask)
+{
+ u32 reg, offset, ipv4;
+ u16 src_dst_port;
+
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(3);
+ else
+ offset = CORE_CFP_DATA_PORT(3);
+
+ reg = core_readl(priv, offset);
+ /* src port [15:8] */
+ src_dst_port = reg << 8;
+
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(2);
+ else
+ offset = CORE_CFP_DATA_PORT(2);
+
+ reg = core_readl(priv, offset);
+ /* src port [7:0] */
+ src_dst_port |= (reg >> 24);
+
+ v4_spec->pdst = cpu_to_be16(src_dst_port);
+ v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
+
+ /* IPv4 dst [15:8] */
+ ipv4 = (reg & 0xff) << 8;
+
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(1);
+ else
+ offset = CORE_CFP_DATA_PORT(1);
+
+ reg = core_readl(priv, offset);
+ /* IPv4 dst [31:16] */
+ ipv4 |= ((reg >> 8) & 0xffff) << 16;
+ /* IPv4 dst [7:0] */
+ ipv4 |= (reg >> 24) & 0xff;
+ v4_spec->ip4dst = cpu_to_be32(ipv4);
+
+ /* IPv4 src [15:8] */
+ ipv4 = (reg & 0xff) << 8;
+
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(0);
+ else
+ offset = CORE_CFP_DATA_PORT(0);
+ reg = core_readl(priv, offset);
+
+ /* Once the TCAM is programmed, the mask reflects the slice number
+ * being matched, don't bother checking it when reading back the
+ * mask spec
+ */
+ if (!mask && !(reg & SLICE_VALID))
+ return -EINVAL;
+
+ /* IPv4 src [7:0] */
+ ipv4 |= (reg >> 24) & 0xff;
+ /* IPv4 src [31:16] */
+ ipv4 |= ((reg >> 8) & 0xffff) << 16;
+ v4_spec->ip4src = cpu_to_be32(ipv4);
+
+ return 0;
+}
+
+static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
+ struct ethtool_rx_flow_spec *fs)
+{
+ struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
+ u32 reg;
+ int ret;
+
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+
+ switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
+ case IPPROTO_TCP:
+ fs->flow_type = TCP_V4_FLOW;
+ v4_spec = &fs->h_u.tcp_ip4_spec;
+ v4_m_spec = &fs->m_u.tcp_ip4_spec;
+ break;
+ case IPPROTO_UDP:
+ fs->flow_type = UDP_V4_FLOW;
+ v4_spec = &fs->h_u.udp_ip4_spec;
+ v4_m_spec = &fs->m_u.udp_ip4_spec;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
+ v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
+
+ ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
+ if (ret)
+ return ret;
+
+ return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
+}
+
+static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
+ __be32 *ip6_addr, __be16 *port,
+ bool mask)
+{
+ u32 reg, tmp, offset;
+
+ /* C-Tag [31:24]
+ * UDF_n_B8 [23:8] (port)
+ * UDF_n_B7 (upper) [7:0] (addr[15:8])
+ */
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(4);
+ else
+ offset = CORE_CFP_DATA_PORT(4);
+ reg = core_readl(priv, offset);
+ *port = cpu_to_be32(reg) >> 8;
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B7 (lower) [31:24] (addr[7:0])
+ * UDF_n_B6 [23:8] (addr[31:16])
+ * UDF_n_B5 (upper) [7:0] (addr[47:40])
+ */
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(3);
+ else
+ offset = CORE_CFP_DATA_PORT(3);
+ reg = core_readl(priv, offset);
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_addr[3] = cpu_to_be32(tmp);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B5 (lower) [31:24] (addr[39:32])
+ * UDF_n_B4 [23:8] (addr[63:48])
+ * UDF_n_B3 (upper) [7:0] (addr[79:72])
+ */
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(2);
+ else
+ offset = CORE_CFP_DATA_PORT(2);
+ reg = core_readl(priv, offset);
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_addr[2] = cpu_to_be32(tmp);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B3 (lower) [31:24] (addr[71:64])
+ * UDF_n_B2 [23:8] (addr[95:80])
+ * UDF_n_B1 (upper) [7:0] (addr[111:104])
+ */
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(1);
+ else
+ offset = CORE_CFP_DATA_PORT(1);
+ reg = core_readl(priv, offset);
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_addr[1] = cpu_to_be32(tmp);
+ tmp = (u32)(reg & 0xff) << 8;
+
+ /* UDF_n_B1 (lower) [31:24] (addr[103:96])
+ * UDF_n_B0 [23:8] (addr[127:112])
+ * Reserved [7:4]
+ * Slice ID [3:2]
+ * Slice valid [1:0]
+ */
+ if (mask)
+ offset = CORE_CFP_MASK_PORT(0);
+ else
+ offset = CORE_CFP_DATA_PORT(0);
+ reg = core_readl(priv, offset);
+ tmp |= (reg >> 24) & 0xff;
+ tmp |= (u32)((reg >> 8) << 16);
+ ip6_addr[0] = cpu_to_be32(tmp);
+
+ if (!mask && !(reg & SLICE_VALID))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
+ struct ethtool_rx_flow_spec *fs,
+ u32 next_loc)
+{
+ struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
+ u32 reg;
+ int ret;
+
+ /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
+ * assuming tcp_ip6_spec here being an union.
+ */
+ v6_spec = &fs->h_u.tcp_ip6_spec;
+ v6_m_spec = &fs->m_u.tcp_ip6_spec;
+
+ /* Read the second half first */
+ ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
+ false);
+ if (ret)
+ return ret;
+
+ ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
+ &v6_m_spec->pdst, true);
+ if (ret)
+ return ret;
+
+ /* Read last to avoid next entry clobbering the results during search
+ * operations. We would not have the port enabled for this rule, so
+ * don't bother checking it.
+ */
+ (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
+
+ /* The slice number is valid, so read the rule we are chained from now
+ * which is our first half.
+ */
+ bcm_sf2_cfp_rule_addr_set(priv, next_loc);
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
+ if (ret)
+ return ret;
+
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+
+ switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
+ case IPPROTO_TCP:
+ fs->flow_type = TCP_V6_FLOW;
+ break;
+ case IPPROTO_UDP:
+ fs->flow_type = UDP_V6_FLOW;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
+ false);
+ if (ret)
+ return ret;
+
+ return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
+ &v6_m_spec->psrc, true);
+}
+
+static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
+ struct ethtool_rxnfc *nfc)
+{
+ u32 reg, ipv4_or_chain_id;
+ unsigned int queue_num;
+ int ret;
+
+ bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
+ if (ret)
+ return ret;
+
+ reg = core_readl(priv, CORE_ACT_POL_DATA0);
+
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
+ if (ret)
+ return ret;
+
+ /* Extract the destination port */
+ nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
+ DST_MAP_IB_MASK) - 1;
+
+ /* There is no Port 6, so we compensate for that here */
+ if (nfc->fs.ring_cookie >= 6)
+ nfc->fs.ring_cookie++;
+ nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
+
+ /* Extract the destination queue */
+ queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
+ nfc->fs.ring_cookie += queue_num;
+
+ /* Extract the L3_FRAMING or CHAIN_ID */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
+
+ /* With IPv6 rules this would contain a non-zero chain ID since
+ * we reserve entry 0 and it cannot be used. So if we read 0 here
+ * this means an IPv4 rule.
+ */
+ ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
+ if (ipv4_or_chain_id == 0)
+ ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
+ else
+ ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
+ ipv4_or_chain_id);
+ if (ret)
+ return ret;
+
+ /* Read last to avoid next entry clobbering the results during search
+ * operations
+ */
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
+ if (!(reg & 1 << port))
+ return -EINVAL;
+
+ bcm_sf2_invert_masks(&nfc->fs);
+
+ /* Put the TCAM size here */
+ nfc->data = bcm_sf2_cfp_rule_size(priv);
+
+ return 0;
+}
+
+/* We implement the search doing a TCAM search operation */
+static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
+ int port, struct ethtool_rxnfc *nfc,
+ u32 *rule_locs)
+{
+ unsigned int index = 1, rules_cnt = 0;
+
+ for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
+ rule_locs[rules_cnt] = index;
+ rules_cnt++;
+ }
+
+ /* Put the TCAM size here */
+ nfc->data = bcm_sf2_cfp_rule_size(priv);
+ nfc->rule_cnt = rules_cnt;
+
+ return 0;
+}
+
+int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
+ struct ethtool_rxnfc *nfc, u32 *rule_locs)
+{
+ struct net_device *p = ds->ports[port].cpu_dp->master;
+ struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+ int ret = 0;
+
+ mutex_lock(&priv->cfp.lock);
+
+ switch (nfc->cmd) {
+ case ETHTOOL_GRXCLSRLCNT:
+ /* Subtract the default, unusable rule */
+ nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
+ priv->num_cfp_rules) - 1;
+ /* We support specifying rule locations */
+ nfc->data |= RX_CLS_LOC_SPECIAL;
+ break;
+ case ETHTOOL_GRXCLSRULE:
+ ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
+ break;
+ case ETHTOOL_GRXCLSRLALL:
+ ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
+ break;
+ default:
+ ret = -EOPNOTSUPP;
+ break;
+ }
+
+ mutex_unlock(&priv->cfp.lock);
+
+ if (ret)
+ return ret;
+
+ /* Pass up the commands to the attached master network device */
+ if (p->ethtool_ops->get_rxnfc) {
+ ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
+ if (ret == -EOPNOTSUPP)
+ ret = 0;
+ }
+
+ return ret;
+}
+
+int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
+ struct ethtool_rxnfc *nfc)
+{
+ struct net_device *p = ds->ports[port].cpu_dp->master;
+ struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
+ int ret = 0;
+
+ mutex_lock(&priv->cfp.lock);
+
+ switch (nfc->cmd) {
+ case ETHTOOL_SRXCLSRLINS:
+ ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
+ break;
+
+ case ETHTOOL_SRXCLSRLDEL:
+ ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
+ break;
+ default:
+ ret = -EOPNOTSUPP;
+ break;
+ }
+
+ mutex_unlock(&priv->cfp.lock);
+
+ if (ret)
+ return ret;
+
+ /* Pass up the commands to the attached master network device.
+ * This can fail, so rollback the operation if we need to.
+ */
+ if (p->ethtool_ops->set_rxnfc) {
+ ret = p->ethtool_ops->set_rxnfc(p, nfc);
+ if (ret && ret != -EOPNOTSUPP) {
+ mutex_lock(&priv->cfp.lock);
+ bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
+ mutex_unlock(&priv->cfp.lock);
+ } else {
+ ret = 0;
+ }
+ }
+
+ return ret;
+}
+
+int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
+{
+ unsigned int timeout = 1000;
+ u32 reg;
+
+ reg = core_readl(priv, CORE_CFP_ACC);
+ reg |= TCAM_RESET;
+ core_writel(priv, reg, CORE_CFP_ACC);
+
+ do {
+ reg = core_readl(priv, CORE_CFP_ACC);
+ if (!(reg & TCAM_RESET))
+ break;
+
+ cpu_relax();
+ } while (timeout--);
+
+ if (!timeout)
+ return -ETIMEDOUT;
+
+ return 0;
+}