diff options
Diffstat (limited to 'drivers/net/wireless/ralink/rt2x00/rt61pci.c')
-rw-r--r-- | drivers/net/wireless/ralink/rt2x00/rt61pci.c | 3112 |
1 files changed, 3112 insertions, 0 deletions
diff --git a/drivers/net/wireless/ralink/rt2x00/rt61pci.c b/drivers/net/wireless/ralink/rt2x00/rt61pci.c new file mode 100644 index 000000000..cb0e1196f --- /dev/null +++ b/drivers/net/wireless/ralink/rt2x00/rt61pci.c @@ -0,0 +1,3112 @@ +/* + Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> + <http://rt2x00.serialmonkey.com> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, see <http://www.gnu.org/licenses/>. + */ + +/* + Module: rt61pci + Abstract: rt61pci device specific routines. + Supported chipsets: RT2561, RT2561s, RT2661. + */ + +#include <linux/crc-itu-t.h> +#include <linux/delay.h> +#include <linux/etherdevice.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/pci.h> +#include <linux/eeprom_93cx6.h> + +#include "rt2x00.h" +#include "rt2x00mmio.h" +#include "rt2x00pci.h" +#include "rt61pci.h" + +/* + * Allow hardware encryption to be disabled. + */ +static bool modparam_nohwcrypt = false; +module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444); +MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); + +/* + * Register access. + * BBP and RF register require indirect register access, + * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. + * These indirect registers work with busy bits, + * and we will try maximal REGISTER_BUSY_COUNT times to access + * the register while taking a REGISTER_BUSY_DELAY us delay + * between each attempt. When the busy bit is still set at that time, + * the access attempt is considered to have failed, + * and we will print an error. + */ +#define WAIT_FOR_BBP(__dev, __reg) \ + rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) +#define WAIT_FOR_RF(__dev, __reg) \ + rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) +#define WAIT_FOR_MCU(__dev, __reg) \ + rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \ + H2M_MAILBOX_CSR_OWNER, (__reg)) + +static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, + const unsigned int word, const u8 value) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the BBP becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_BBP(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, PHY_CSR3_VALUE, value); + rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); + rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); + rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); + + rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); + } + + mutex_unlock(&rt2x00dev->csr_mutex); +} + +static u8 rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, + const unsigned int word) +{ + u32 reg; + u8 value; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the BBP becomes available, afterwards we + * can safely write the read request into the register. + * After the data has been written, we wait until hardware + * returns the correct value, if at any time the register + * doesn't become available in time, reg will be 0xffffffff + * which means we return 0xff to the caller. + */ + if (WAIT_FOR_BBP(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); + rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); + rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); + + rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); + + WAIT_FOR_BBP(rt2x00dev, ®); + } + + value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); + + mutex_unlock(&rt2x00dev->csr_mutex); + + return value; +} + +static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, + const unsigned int word, const u32 value) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the RF becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_RF(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, PHY_CSR4_VALUE, value); + rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); + rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); + rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); + + rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg); + rt2x00_rf_write(rt2x00dev, word, value); + } + + mutex_unlock(&rt2x00dev->csr_mutex); +} + +static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, + const u8 command, const u8 token, + const u8 arg0, const u8 arg1) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the MCU becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_MCU(rt2x00dev, ®)) { + rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); + rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); + rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); + rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); + rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR); + rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); + rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); + rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg); + } + + mutex_unlock(&rt2x00dev->csr_mutex); + +} + +static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) +{ + struct rt2x00_dev *rt2x00dev = eeprom->data; + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR); + + eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); + eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); + eeprom->reg_data_clock = + !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); + eeprom->reg_chip_select = + !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); +} + +static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) +{ + struct rt2x00_dev *rt2x00dev = eeprom->data; + u32 reg = 0; + + rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); + rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); + rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, + !!eeprom->reg_data_clock); + rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, + !!eeprom->reg_chip_select); + + rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg); +} + +#ifdef CONFIG_RT2X00_LIB_DEBUGFS +static const struct rt2x00debug rt61pci_rt2x00debug = { + .owner = THIS_MODULE, + .csr = { + .read = rt2x00mmio_register_read, + .write = rt2x00mmio_register_write, + .flags = RT2X00DEBUGFS_OFFSET, + .word_base = CSR_REG_BASE, + .word_size = sizeof(u32), + .word_count = CSR_REG_SIZE / sizeof(u32), + }, + .eeprom = { + .read = rt2x00_eeprom_read, + .write = rt2x00_eeprom_write, + .word_base = EEPROM_BASE, + .word_size = sizeof(u16), + .word_count = EEPROM_SIZE / sizeof(u16), + }, + .bbp = { + .read = rt61pci_bbp_read, + .write = rt61pci_bbp_write, + .word_base = BBP_BASE, + .word_size = sizeof(u8), + .word_count = BBP_SIZE / sizeof(u8), + }, + .rf = { + .read = rt2x00_rf_read, + .write = rt61pci_rf_write, + .word_base = RF_BASE, + .word_size = sizeof(u32), + .word_count = RF_SIZE / sizeof(u32), + }, +}; +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ + +static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13); + return rt2x00_get_field32(reg, MAC_CSR13_VAL5); +} + +#ifdef CONFIG_RT2X00_LIB_LEDS +static void rt61pci_brightness_set(struct led_classdev *led_cdev, + enum led_brightness brightness) +{ + struct rt2x00_led *led = + container_of(led_cdev, struct rt2x00_led, led_dev); + unsigned int enabled = brightness != LED_OFF; + unsigned int a_mode = + (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ); + unsigned int bg_mode = + (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ); + + if (led->type == LED_TYPE_RADIO) { + rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, + MCU_LEDCS_RADIO_STATUS, enabled); + + rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, + (led->rt2x00dev->led_mcu_reg & 0xff), + ((led->rt2x00dev->led_mcu_reg >> 8))); + } else if (led->type == LED_TYPE_ASSOC) { + rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, + MCU_LEDCS_LINK_BG_STATUS, bg_mode); + rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, + MCU_LEDCS_LINK_A_STATUS, a_mode); + + rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, + (led->rt2x00dev->led_mcu_reg & 0xff), + ((led->rt2x00dev->led_mcu_reg >> 8))); + } else if (led->type == LED_TYPE_QUALITY) { + /* + * The brightness is divided into 6 levels (0 - 5), + * this means we need to convert the brightness + * argument into the matching level within that range. + */ + rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, + brightness / (LED_FULL / 6), 0); + } +} + +static int rt61pci_blink_set(struct led_classdev *led_cdev, + unsigned long *delay_on, + unsigned long *delay_off) +{ + struct rt2x00_led *led = + container_of(led_cdev, struct rt2x00_led, led_dev); + u32 reg; + + reg = rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14); + rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); + rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); + rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg); + + return 0; +} + +static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev, + struct rt2x00_led *led, + enum led_type type) +{ + led->rt2x00dev = rt2x00dev; + led->type = type; + led->led_dev.brightness_set = rt61pci_brightness_set; + led->led_dev.blink_set = rt61pci_blink_set; + led->flags = LED_INITIALIZED; +} +#endif /* CONFIG_RT2X00_LIB_LEDS */ + +/* + * Configuration handlers. + */ +static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_crypto *crypto, + struct ieee80211_key_conf *key) +{ + struct hw_key_entry key_entry; + struct rt2x00_field32 field; + u32 mask; + u32 reg; + + if (crypto->cmd == SET_KEY) { + /* + * rt2x00lib can't determine the correct free + * key_idx for shared keys. We have 1 register + * with key valid bits. The goal is simple, read + * the register, if that is full we have no slots + * left. + * Note that each BSS is allowed to have up to 4 + * shared keys, so put a mask over the allowed + * entries. + */ + mask = (0xf << crypto->bssidx); + + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0); + reg &= mask; + + if (reg && reg == mask) + return -ENOSPC; + + key->hw_key_idx += reg ? ffz(reg) : 0; + + /* + * Upload key to hardware + */ + memcpy(key_entry.key, crypto->key, + sizeof(key_entry.key)); + memcpy(key_entry.tx_mic, crypto->tx_mic, + sizeof(key_entry.tx_mic)); + memcpy(key_entry.rx_mic, crypto->rx_mic, + sizeof(key_entry.rx_mic)); + + reg = SHARED_KEY_ENTRY(key->hw_key_idx); + rt2x00mmio_register_multiwrite(rt2x00dev, reg, + &key_entry, sizeof(key_entry)); + + /* + * The cipher types are stored over 2 registers. + * bssidx 0 and 1 keys are stored in SEC_CSR1 and + * bssidx 1 and 2 keys are stored in SEC_CSR5. + * Using the correct defines correctly will cause overhead, + * so just calculate the correct offset. + */ + if (key->hw_key_idx < 8) { + field.bit_offset = (3 * key->hw_key_idx); + field.bit_mask = 0x7 << field.bit_offset; + + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR1); + rt2x00_set_field32(®, field, crypto->cipher); + rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg); + } else { + field.bit_offset = (3 * (key->hw_key_idx - 8)); + field.bit_mask = 0x7 << field.bit_offset; + + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR5); + rt2x00_set_field32(®, field, crypto->cipher); + rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg); + } + + /* + * The driver does not support the IV/EIV generation + * in hardware. However it doesn't support the IV/EIV + * inside the ieee80211 frame either, but requires it + * to be provided separately for the descriptor. + * rt2x00lib will cut the IV/EIV data out of all frames + * given to us by mac80211, but we must tell mac80211 + * to generate the IV/EIV data. + */ + key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; + } + + /* + * SEC_CSR0 contains only single-bit fields to indicate + * a particular key is valid. Because using the FIELD32() + * defines directly will cause a lot of overhead, we use + * a calculation to determine the correct bit directly. + */ + mask = 1 << key->hw_key_idx; + + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR0); + if (crypto->cmd == SET_KEY) + reg |= mask; + else if (crypto->cmd == DISABLE_KEY) + reg &= ~mask; + rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg); + + return 0; +} + +static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_crypto *crypto, + struct ieee80211_key_conf *key) +{ + struct hw_pairwise_ta_entry addr_entry; + struct hw_key_entry key_entry; + u32 mask; + u32 reg; + + if (crypto->cmd == SET_KEY) { + /* + * rt2x00lib can't determine the correct free + * key_idx for pairwise keys. We have 2 registers + * with key valid bits. The goal is simple: read + * the first register. If that is full, move to + * the next register. + * When both registers are full, we drop the key. + * Otherwise, we use the first invalid entry. + */ + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2); + if (reg && reg == ~0) { + key->hw_key_idx = 32; + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3); + if (reg && reg == ~0) + return -ENOSPC; + } + + key->hw_key_idx += reg ? ffz(reg) : 0; + + /* + * Upload key to hardware + */ + memcpy(key_entry.key, crypto->key, + sizeof(key_entry.key)); + memcpy(key_entry.tx_mic, crypto->tx_mic, + sizeof(key_entry.tx_mic)); + memcpy(key_entry.rx_mic, crypto->rx_mic, + sizeof(key_entry.rx_mic)); + + memset(&addr_entry, 0, sizeof(addr_entry)); + memcpy(&addr_entry, crypto->address, ETH_ALEN); + addr_entry.cipher = crypto->cipher; + + reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); + rt2x00mmio_register_multiwrite(rt2x00dev, reg, + &key_entry, sizeof(key_entry)); + + reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); + rt2x00mmio_register_multiwrite(rt2x00dev, reg, + &addr_entry, sizeof(addr_entry)); + + /* + * Enable pairwise lookup table for given BSS idx. + * Without this, received frames will not be decrypted + * by the hardware. + */ + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR4); + reg |= (1 << crypto->bssidx); + rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg); + + /* + * The driver does not support the IV/EIV generation + * in hardware. However it doesn't support the IV/EIV + * inside the ieee80211 frame either, but requires it + * to be provided separately for the descriptor. + * rt2x00lib will cut the IV/EIV data out of all frames + * given to us by mac80211, but we must tell mac80211 + * to generate the IV/EIV data. + */ + key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; + } + + /* + * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate + * a particular key is valid. Because using the FIELD32() + * defines directly will cause a lot of overhead, we use + * a calculation to determine the correct bit directly. + */ + if (key->hw_key_idx < 32) { + mask = 1 << key->hw_key_idx; + + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR2); + if (crypto->cmd == SET_KEY) + reg |= mask; + else if (crypto->cmd == DISABLE_KEY) + reg &= ~mask; + rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg); + } else { + mask = 1 << (key->hw_key_idx - 32); + + reg = rt2x00mmio_register_read(rt2x00dev, SEC_CSR3); + if (crypto->cmd == SET_KEY) + reg |= mask; + else if (crypto->cmd == DISABLE_KEY) + reg &= ~mask; + rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg); + } + + return 0; +} + +static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, + const unsigned int filter_flags) +{ + u32 reg; + + /* + * Start configuration steps. + * Note that the version error will always be dropped + * and broadcast frames will always be accepted since + * there is no filter for it at this time. + */ + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, + !(filter_flags & FIF_FCSFAIL)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, + !(filter_flags & FIF_PLCPFAIL)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, + !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); + rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, + !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, + !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && + !rt2x00dev->intf_ap_count); + rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); + rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, + !(filter_flags & FIF_ALLMULTI)); + rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); + rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, + !(filter_flags & FIF_CONTROL)); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); +} + +static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, + struct rt2x00_intf *intf, + struct rt2x00intf_conf *conf, + const unsigned int flags) +{ + u32 reg; + + if (flags & CONFIG_UPDATE_TYPE) { + /* + * Enable synchronisation. + */ + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + } + + if (flags & CONFIG_UPDATE_MAC) { + reg = le32_to_cpu(conf->mac[1]); + rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); + conf->mac[1] = cpu_to_le32(reg); + + rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2, + conf->mac, sizeof(conf->mac)); + } + + if (flags & CONFIG_UPDATE_BSSID) { + reg = le32_to_cpu(conf->bssid[1]); + rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); + conf->bssid[1] = cpu_to_le32(reg); + + rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4, + conf->bssid, + sizeof(conf->bssid)); + } +} + +static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_erp *erp, + u32 changed) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); + rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); + + if (changed & BSS_CHANGED_ERP_PREAMBLE) { + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4); + rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); + rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, + !!erp->short_preamble); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); + } + + if (changed & BSS_CHANGED_BASIC_RATES) + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5, + erp->basic_rates); + + if (changed & BSS_CHANGED_BEACON_INT) { + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, + erp->beacon_int * 16); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + } + + if (changed & BSS_CHANGED_ERP_SLOT) { + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9); + rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR8); + rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); + rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); + rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg); + } +} + +static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + u8 r3; + u8 r4; + u8 r77; + + r3 = rt61pci_bbp_read(rt2x00dev, 3); + r4 = rt61pci_bbp_read(rt2x00dev, 4); + r77 = rt61pci_bbp_read(rt2x00dev, 77); + + rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325)); + + /* + * Configure the RX antenna. + */ + switch (ant->rx) { + case ANTENNA_HW_DIVERSITY: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, + (rt2x00dev->curr_band != NL80211_BAND_5GHZ)); + break; + case ANTENNA_A: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + else + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + break; + case ANTENNA_B: + default: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + else + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + break; + } + + rt61pci_bbp_write(rt2x00dev, 77, r77); + rt61pci_bbp_write(rt2x00dev, 3, r3); + rt61pci_bbp_write(rt2x00dev, 4, r4); +} + +static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + u8 r3; + u8 r4; + u8 r77; + + r3 = rt61pci_bbp_read(rt2x00dev, 3); + r4 = rt61pci_bbp_read(rt2x00dev, 4); + r77 = rt61pci_bbp_read(rt2x00dev, 77); + + rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529)); + rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, + !rt2x00_has_cap_frame_type(rt2x00dev)); + + /* + * Configure the RX antenna. + */ + switch (ant->rx) { + case ANTENNA_HW_DIVERSITY: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); + break; + case ANTENNA_A: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + break; + case ANTENNA_B: + default: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + break; + } + + rt61pci_bbp_write(rt2x00dev, 77, r77); + rt61pci_bbp_write(rt2x00dev, 3, r3); + rt61pci_bbp_write(rt2x00dev, 4, r4); +} + +static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, + const int p1, const int p2) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13); + + rt2x00_set_field32(®, MAC_CSR13_DIR4, 0); + rt2x00_set_field32(®, MAC_CSR13_VAL4, p1); + + rt2x00_set_field32(®, MAC_CSR13_DIR3, 0); + rt2x00_set_field32(®, MAC_CSR13_VAL3, !p2); + + rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); +} + +static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + u8 r3; + u8 r4; + u8 r77; + + r3 = rt61pci_bbp_read(rt2x00dev, 3); + r4 = rt61pci_bbp_read(rt2x00dev, 4); + r77 = rt61pci_bbp_read(rt2x00dev, 77); + + /* + * Configure the RX antenna. + */ + switch (ant->rx) { + case ANTENNA_A: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); + rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); + break; + case ANTENNA_HW_DIVERSITY: + /* + * FIXME: Antenna selection for the rf 2529 is very confusing + * in the legacy driver. Just default to antenna B until the + * legacy code can be properly translated into rt2x00 code. + */ + case ANTENNA_B: + default: + rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); + rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); + rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); + break; + } + + rt61pci_bbp_write(rt2x00dev, 77, r77); + rt61pci_bbp_write(rt2x00dev, 3, r3); + rt61pci_bbp_write(rt2x00dev, 4, r4); +} + +struct antenna_sel { + u8 word; + /* + * value[0] -> non-LNA + * value[1] -> LNA + */ + u8 value[2]; +}; + +static const struct antenna_sel antenna_sel_a[] = { + { 96, { 0x58, 0x78 } }, + { 104, { 0x38, 0x48 } }, + { 75, { 0xfe, 0x80 } }, + { 86, { 0xfe, 0x80 } }, + { 88, { 0xfe, 0x80 } }, + { 35, { 0x60, 0x60 } }, + { 97, { 0x58, 0x58 } }, + { 98, { 0x58, 0x58 } }, +}; + +static const struct antenna_sel antenna_sel_bg[] = { + { 96, { 0x48, 0x68 } }, + { 104, { 0x2c, 0x3c } }, + { 75, { 0xfe, 0x80 } }, + { 86, { 0xfe, 0x80 } }, + { 88, { 0xfe, 0x80 } }, + { 35, { 0x50, 0x50 } }, + { 97, { 0x48, 0x48 } }, + { 98, { 0x48, 0x48 } }, +}; + +static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + const struct antenna_sel *sel; + unsigned int lna; + unsigned int i; + u32 reg; + + /* + * We should never come here because rt2x00lib is supposed + * to catch this and send us the correct antenna explicitely. + */ + BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || + ant->tx == ANTENNA_SW_DIVERSITY); + + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { + sel = antenna_sel_a; + lna = rt2x00_has_cap_external_lna_a(rt2x00dev); + } else { + sel = antenna_sel_bg; + lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); + } + + for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) + rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); + + reg = rt2x00mmio_register_read(rt2x00dev, PHY_CSR0); + + rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, + rt2x00dev->curr_band == NL80211_BAND_2GHZ); + rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, + rt2x00dev->curr_band == NL80211_BAND_5GHZ); + + rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg); + + if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) + rt61pci_config_antenna_5x(rt2x00dev, ant); + else if (rt2x00_rf(rt2x00dev, RF2527)) + rt61pci_config_antenna_2x(rt2x00dev, ant); + else if (rt2x00_rf(rt2x00dev, RF2529)) { + if (rt2x00_has_cap_double_antenna(rt2x00dev)) + rt61pci_config_antenna_2x(rt2x00dev, ant); + else + rt61pci_config_antenna_2529(rt2x00dev, ant); + } +} + +static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + u16 eeprom; + short lna_gain = 0; + + if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) { + if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) + lna_gain += 14; + + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); + lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); + } else { + if (rt2x00_has_cap_external_lna_a(rt2x00dev)) + lna_gain += 14; + + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); + lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); + } + + rt2x00dev->lna_gain = lna_gain; +} + +static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, + struct rf_channel *rf, const int txpower) +{ + u8 r3; + u8 r94; + u8 smart; + + rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); + rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); + + smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); + + r3 = rt61pci_bbp_read(rt2x00dev, 3); + rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); + rt61pci_bbp_write(rt2x00dev, 3, r3); + + r94 = 6; + if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) + r94 += txpower - MAX_TXPOWER; + else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) + r94 += txpower; + rt61pci_bbp_write(rt2x00dev, 94, r94); + + rt61pci_rf_write(rt2x00dev, 1, rf->rf1); + rt61pci_rf_write(rt2x00dev, 2, rf->rf2); + rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); + rt61pci_rf_write(rt2x00dev, 4, rf->rf4); + + udelay(200); + + rt61pci_rf_write(rt2x00dev, 1, rf->rf1); + rt61pci_rf_write(rt2x00dev, 2, rf->rf2); + rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); + rt61pci_rf_write(rt2x00dev, 4, rf->rf4); + + udelay(200); + + rt61pci_rf_write(rt2x00dev, 1, rf->rf1); + rt61pci_rf_write(rt2x00dev, 2, rf->rf2); + rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); + rt61pci_rf_write(rt2x00dev, 4, rf->rf4); + + msleep(1); +} + +static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, + const int txpower) +{ + struct rf_channel rf; + + rf.rf1 = rt2x00_rf_read(rt2x00dev, 1); + rf.rf2 = rt2x00_rf_read(rt2x00dev, 2); + rf.rf3 = rt2x00_rf_read(rt2x00dev, 3); + rf.rf4 = rt2x00_rf_read(rt2x00dev, 4); + + rt61pci_config_channel(rt2x00dev, &rf, txpower); +} + +static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4); + rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); + rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); + rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); + rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, + libconf->conf->long_frame_max_tx_count); + rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, + libconf->conf->short_frame_max_tx_count); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); +} + +static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + enum dev_state state = + (libconf->conf->flags & IEEE80211_CONF_PS) ? + STATE_SLEEP : STATE_AWAKE; + u32 reg; + + if (state == STATE_SLEEP) { + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11); + rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, + rt2x00dev->beacon_int - 10); + rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, + libconf->conf->listen_interval - 1); + rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); + + /* We must first disable autowake before it can be enabled */ + rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); + + rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); + + rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, + 0x00000005); + rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); + rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); + + rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0); + } else { + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR11); + rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); + rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); + rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); + rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); + + rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, + 0x00000007); + rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); + rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); + + rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); + } +} + +static void rt61pci_config(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf, + const unsigned int flags) +{ + /* Always recalculate LNA gain before changing configuration */ + rt61pci_config_lna_gain(rt2x00dev, libconf); + + if (flags & IEEE80211_CONF_CHANGE_CHANNEL) + rt61pci_config_channel(rt2x00dev, &libconf->rf, + libconf->conf->power_level); + if ((flags & IEEE80211_CONF_CHANGE_POWER) && + !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) + rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); + if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) + rt61pci_config_retry_limit(rt2x00dev, libconf); + if (flags & IEEE80211_CONF_CHANGE_PS) + rt61pci_config_ps(rt2x00dev, libconf); +} + +/* + * Link tuning + */ +static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual) +{ + u32 reg; + + /* + * Update FCS error count from register. + */ + reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0); + qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); + + /* + * Update False CCA count from register. + */ + reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1); + qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); +} + +static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual, u8 vgc_level) +{ + if (qual->vgc_level != vgc_level) { + rt61pci_bbp_write(rt2x00dev, 17, vgc_level); + qual->vgc_level = vgc_level; + qual->vgc_level_reg = vgc_level; + } +} + +static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual) +{ + rt61pci_set_vgc(rt2x00dev, qual, 0x20); +} + +static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual, const u32 count) +{ + u8 up_bound; + u8 low_bound; + + /* + * Determine r17 bounds. + */ + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { + low_bound = 0x28; + up_bound = 0x48; + if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { + low_bound += 0x10; + up_bound += 0x10; + } + } else { + low_bound = 0x20; + up_bound = 0x40; + if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { + low_bound += 0x10; + up_bound += 0x10; + } + } + + /* + * If we are not associated, we should go straight to the + * dynamic CCA tuning. + */ + if (!rt2x00dev->intf_associated) + goto dynamic_cca_tune; + + /* + * Special big-R17 for very short distance + */ + if (qual->rssi >= -35) { + rt61pci_set_vgc(rt2x00dev, qual, 0x60); + return; + } + + /* + * Special big-R17 for short distance + */ + if (qual->rssi >= -58) { + rt61pci_set_vgc(rt2x00dev, qual, up_bound); + return; + } + + /* + * Special big-R17 for middle-short distance + */ + if (qual->rssi >= -66) { + rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10); + return; + } + + /* + * Special mid-R17 for middle distance + */ + if (qual->rssi >= -74) { + rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08); + return; + } + + /* + * Special case: Change up_bound based on the rssi. + * Lower up_bound when rssi is weaker then -74 dBm. + */ + up_bound -= 2 * (-74 - qual->rssi); + if (low_bound > up_bound) + up_bound = low_bound; + + if (qual->vgc_level > up_bound) { + rt61pci_set_vgc(rt2x00dev, qual, up_bound); + return; + } + +dynamic_cca_tune: + + /* + * r17 does not yet exceed upper limit, continue and base + * the r17 tuning on the false CCA count. + */ + if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) + rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); + else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) + rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); +} + +/* + * Queue handlers. + */ +static void rt61pci_start_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_RX: + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); + break; + case QID_BEACON: + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); + rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + break; + default: + break; + } +} + +static void rt61pci_kick_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_AC_VO: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_AC_VI: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_AC_BE: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_AC_BK: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + default: + break; + } +} + +static void rt61pci_stop_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_AC_VO: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_AC_VI: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_AC_BE: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_AC_BK: + reg = rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR); + rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); + rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); + break; + case QID_RX: + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); + break; + case QID_BEACON: + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); + rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Wait for possibly running tbtt tasklets. + */ + tasklet_kill(&rt2x00dev->tbtt_tasklet); + break; + default: + break; + } +} + +/* + * Firmware functions + */ +static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) +{ + u16 chip; + char *fw_name; + + pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip); + switch (chip) { + case RT2561_PCI_ID: + fw_name = FIRMWARE_RT2561; + break; + case RT2561s_PCI_ID: + fw_name = FIRMWARE_RT2561s; + break; + case RT2661_PCI_ID: + fw_name = FIRMWARE_RT2661; + break; + default: + fw_name = NULL; + break; + } + + return fw_name; +} + +static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev, + const u8 *data, const size_t len) +{ + u16 fw_crc; + u16 crc; + + /* + * Only support 8kb firmware files. + */ + if (len != 8192) + return FW_BAD_LENGTH; + + /* + * The last 2 bytes in the firmware array are the crc checksum itself. + * This means that we should never pass those 2 bytes to the crc + * algorithm. + */ + fw_crc = (data[len - 2] << 8 | data[len - 1]); + + /* + * Use the crc itu-t algorithm. + */ + crc = crc_itu_t(0, data, len - 2); + crc = crc_itu_t_byte(crc, 0); + crc = crc_itu_t_byte(crc, 0); + + return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; +} + +static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, + const u8 *data, const size_t len) +{ + int i; + u32 reg; + + /* + * Wait for stable hardware. + */ + for (i = 0; i < 100; i++) { + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0); + if (reg) + break; + msleep(1); + } + + if (!reg) { + rt2x00_err(rt2x00dev, "Unstable hardware\n"); + return -EBUSY; + } + + /* + * Prepare MCU and mailbox for firmware loading. + */ + reg = 0; + rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); + rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); + rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); + rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); + rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0); + + /* + * Write firmware to device. + */ + reg = 0; + rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); + rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); + rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); + + rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, + data, len); + + rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); + rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); + + rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); + rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); + + for (i = 0; i < 100; i++) { + reg = rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR); + if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) + break; + msleep(1); + } + + if (i == 100) { + rt2x00_err(rt2x00dev, "MCU Control register not ready\n"); + return -EBUSY; + } + + /* + * Hardware needs another millisecond before it is ready. + */ + msleep(1); + + /* + * Reset MAC and BBP registers. + */ + reg = 0; + rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); + rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); + rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); + + return 0; +} + +/* + * Initialization functions. + */ +static bool rt61pci_get_entry_state(struct queue_entry *entry) +{ + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + u32 word; + + if (entry->queue->qid == QID_RX) { + word = rt2x00_desc_read(entry_priv->desc, 0); + + return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); + } else { + word = rt2x00_desc_read(entry_priv->desc, 0); + + return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || + rt2x00_get_field32(word, TXD_W0_VALID)); + } +} + +static void rt61pci_clear_entry(struct queue_entry *entry) +{ + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); + u32 word; + + if (entry->queue->qid == QID_RX) { + word = rt2x00_desc_read(entry_priv->desc, 5); + rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, + skbdesc->skb_dma); + rt2x00_desc_write(entry_priv->desc, 5, word); + + word = rt2x00_desc_read(entry_priv->desc, 0); + rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); + rt2x00_desc_write(entry_priv->desc, 0, word); + } else { + word = rt2x00_desc_read(entry_priv->desc, 0); + rt2x00_set_field32(&word, TXD_W0_VALID, 0); + rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); + rt2x00_desc_write(entry_priv->desc, 0, word); + } +} + +static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) +{ + struct queue_entry_priv_mmio *entry_priv; + u32 reg; + + /* + * Initialize registers. + */ + reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0); + rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, + rt2x00dev->tx[0].limit); + rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, + rt2x00dev->tx[1].limit); + rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, + rt2x00dev->tx[2].limit); + rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, + rt2x00dev->tx[3].limit); + rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1); + rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, + rt2x00dev->tx[0].desc_size / 4); + rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg); + + entry_priv = rt2x00dev->tx[0].entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR); + rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg); + + entry_priv = rt2x00dev->tx[1].entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR); + rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg); + + entry_priv = rt2x00dev->tx[2].entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR); + rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg); + + entry_priv = rt2x00dev->tx[3].entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR); + rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR); + rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); + rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, + rt2x00dev->rx->desc_size / 4); + rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); + rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg); + + entry_priv = rt2x00dev->rx->entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR); + rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR); + rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); + rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); + rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); + rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); + rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR); + rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); + rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); + rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); + rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); + rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR); + rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); + rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); + + return 0; +} + +static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0); + rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); + rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); + rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ + rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg); + + /* + * CCK TXD BBP registers + */ + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); + rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg); + + /* + * OFDM TXD BBP registers + */ + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); + rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); + rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); + rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); + rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); + rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); + rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); + + rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR9); + rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); + + rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); + + if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) + return -EBUSY; + + rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); + + /* + * Invalidate all Shared Keys (SEC_CSR0), + * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) + */ + rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000); + rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000); + rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000); + + rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); + rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); + rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606); + rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); + + rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); + + rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); + + rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); + + /* + * Clear all beacons + * For the Beacon base registers we only need to clear + * the first byte since that byte contains the VALID and OWNER + * bits which (when set to 0) will invalidate the entire beacon. + */ + rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0); + rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0); + rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0); + rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0); + + /* + * We must clear the error counters. + * These registers are cleared on read, + * so we may pass a useless variable to store the value. + */ + reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR0); + reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR1); + reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR2); + + /* + * Reset MAC and BBP registers. + */ + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); + rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); + rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR1); + rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); + + return 0; +} + +static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u8 value; + + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + value = rt61pci_bbp_read(rt2x00dev, 0); + if ((value != 0xff) && (value != 0x00)) + return 0; + udelay(REGISTER_BUSY_DELAY); + } + + rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); + return -EACCES; +} + +static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u16 eeprom; + u8 reg_id; + u8 value; + + if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev))) + return -EACCES; + + rt61pci_bbp_write(rt2x00dev, 3, 0x00); + rt61pci_bbp_write(rt2x00dev, 15, 0x30); + rt61pci_bbp_write(rt2x00dev, 21, 0xc8); + rt61pci_bbp_write(rt2x00dev, 22, 0x38); + rt61pci_bbp_write(rt2x00dev, 23, 0x06); + rt61pci_bbp_write(rt2x00dev, 24, 0xfe); + rt61pci_bbp_write(rt2x00dev, 25, 0x0a); + rt61pci_bbp_write(rt2x00dev, 26, 0x0d); + rt61pci_bbp_write(rt2x00dev, 34, 0x12); + rt61pci_bbp_write(rt2x00dev, 37, 0x07); + rt61pci_bbp_write(rt2x00dev, 39, 0xf8); + rt61pci_bbp_write(rt2x00dev, 41, 0x60); + rt61pci_bbp_write(rt2x00dev, 53, 0x10); + rt61pci_bbp_write(rt2x00dev, 54, 0x18); + rt61pci_bbp_write(rt2x00dev, 60, 0x10); + rt61pci_bbp_write(rt2x00dev, 61, 0x04); + rt61pci_bbp_write(rt2x00dev, 62, 0x04); + rt61pci_bbp_write(rt2x00dev, 75, 0xfe); + rt61pci_bbp_write(rt2x00dev, 86, 0xfe); + rt61pci_bbp_write(rt2x00dev, 88, 0xfe); + rt61pci_bbp_write(rt2x00dev, 90, 0x0f); + rt61pci_bbp_write(rt2x00dev, 99, 0x00); + rt61pci_bbp_write(rt2x00dev, 102, 0x16); + rt61pci_bbp_write(rt2x00dev, 107, 0x04); + + for (i = 0; i < EEPROM_BBP_SIZE; i++) { + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); + + if (eeprom != 0xffff && eeprom != 0x0000) { + reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); + value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); + rt61pci_bbp_write(rt2x00dev, reg_id, value); + } + } + + return 0; +} + +/* + * Device state switch handlers. + */ +static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + int mask = (state == STATE_RADIO_IRQ_OFF); + u32 reg; + unsigned long flags; + + /* + * When interrupts are being enabled, the interrupt registers + * should clear the register to assure a clean state. + */ + if (state == STATE_RADIO_IRQ_ON) { + reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR); + rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR); + rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); + } + + /* + * Only toggle the interrupts bits we are going to use. + * Non-checked interrupt bits are disabled by default. + */ + spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); + + reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); + rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); + rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); + rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, mask); + rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); + rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); + rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); + rt2x00_set_field32(®, MCU_INT_MASK_CSR_TWAKEUP, mask); + rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); + + spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); + + if (state == STATE_RADIO_IRQ_OFF) { + /* + * Ensure that all tasklets are finished. + */ + tasklet_kill(&rt2x00dev->txstatus_tasklet); + tasklet_kill(&rt2x00dev->rxdone_tasklet); + tasklet_kill(&rt2x00dev->autowake_tasklet); + tasklet_kill(&rt2x00dev->tbtt_tasklet); + } +} + +static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + /* + * Initialize all registers. + */ + if (unlikely(rt61pci_init_queues(rt2x00dev) || + rt61pci_init_registers(rt2x00dev) || + rt61pci_init_bbp(rt2x00dev))) + return -EIO; + + /* + * Enable RX. + */ + reg = rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR); + rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); + rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); + + return 0; +} + +static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) +{ + /* + * Disable power + */ + rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818); +} + +static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) +{ + u32 reg, reg2; + unsigned int i; + char put_to_sleep; + + put_to_sleep = (state != STATE_AWAKE); + + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12); + rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); + rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); + + /* + * Device is not guaranteed to be in the requested state yet. + * We must wait until the register indicates that the + * device has entered the correct state. + */ + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + reg2 = rt2x00mmio_register_read(rt2x00dev, MAC_CSR12); + state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); + if (state == !put_to_sleep) + return 0; + rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); + msleep(10); + } + + return -EBUSY; +} + +static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + int retval = 0; + + switch (state) { + case STATE_RADIO_ON: + retval = rt61pci_enable_radio(rt2x00dev); + break; + case STATE_RADIO_OFF: + rt61pci_disable_radio(rt2x00dev); + break; + case STATE_RADIO_IRQ_ON: + case STATE_RADIO_IRQ_OFF: + rt61pci_toggle_irq(rt2x00dev, state); + break; + case STATE_DEEP_SLEEP: + case STATE_SLEEP: + case STATE_STANDBY: + case STATE_AWAKE: + retval = rt61pci_set_state(rt2x00dev, state); + break; + default: + retval = -ENOTSUPP; + break; + } + + if (unlikely(retval)) + rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", + state, retval); + + return retval; +} + +/* + * TX descriptor initialization + */ +static void rt61pci_write_tx_desc(struct queue_entry *entry, + struct txentry_desc *txdesc) +{ + struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + __le32 *txd = entry_priv->desc; + u32 word; + + /* + * Start writing the descriptor words. + */ + word = rt2x00_desc_read(txd, 1); + rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); + rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); + rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); + rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); + rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); + rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, + test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); + rt2x00_desc_write(txd, 1, word); + + word = rt2x00_desc_read(txd, 2); + rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); + rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); + rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, + txdesc->u.plcp.length_low); + rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, + txdesc->u.plcp.length_high); + rt2x00_desc_write(txd, 2, word); + + if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { + _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); + _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); + } + + word = rt2x00_desc_read(txd, 5); + rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid); + rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx); + rt2x00_set_field32(&word, TXD_W5_TX_POWER, + TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); + rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); + rt2x00_desc_write(txd, 5, word); + + if (entry->queue->qid != QID_BEACON) { + word = rt2x00_desc_read(txd, 6); + rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, + skbdesc->skb_dma); + rt2x00_desc_write(txd, 6, word); + + word = rt2x00_desc_read(txd, 11); + rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, + txdesc->length); + rt2x00_desc_write(txd, 11, word); + } + + /* + * Writing TXD word 0 must the last to prevent a race condition with + * the device, whereby the device may take hold of the TXD before we + * finished updating it. + */ + word = rt2x00_desc_read(txd, 0); + rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); + rt2x00_set_field32(&word, TXD_W0_VALID, 1); + rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, + test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_ACK, + test_bit(ENTRY_TXD_ACK, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, + test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_OFDM, + (txdesc->rate_mode == RATE_MODE_OFDM)); + rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); + rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, + test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, + test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, + test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); + rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); + rt2x00_set_field32(&word, TXD_W0_BURST, + test_bit(ENTRY_TXD_BURST, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); + rt2x00_desc_write(txd, 0, word); + + /* + * Register descriptor details in skb frame descriptor. + */ + skbdesc->desc = txd; + skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE : + TXD_DESC_SIZE; +} + +/* + * TX data initialization + */ +static void rt61pci_write_beacon(struct queue_entry *entry, + struct txentry_desc *txdesc) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + unsigned int beacon_base; + unsigned int padding_len; + u32 orig_reg, reg; + + /* + * Disable beaconing while we are reloading the beacon data, + * otherwise we might be sending out invalid data. + */ + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + orig_reg = reg; + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Write the TX descriptor for the beacon. + */ + rt61pci_write_tx_desc(entry, txdesc); + + /* + * Dump beacon to userspace through debugfs. + */ + rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); + + /* + * Write entire beacon with descriptor and padding to register. + */ + padding_len = roundup(entry->skb->len, 4) - entry->skb->len; + if (padding_len && skb_pad(entry->skb, padding_len)) { + rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); + /* skb freed by skb_pad() on failure */ + entry->skb = NULL; + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); + return; + } + + beacon_base = HW_BEACON_OFFSET(entry->entry_idx); + rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base, + entry_priv->desc, TXINFO_SIZE); + rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE, + entry->skb->data, + entry->skb->len + padding_len); + + /* + * Enable beaconing again. + * + * For Wi-Fi faily generated beacons between participating + * stations. Set TBTT phase adaptive adjustment step to 8us. + */ + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); + + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Clean up beacon skb. + */ + dev_kfree_skb_any(entry->skb); + entry->skb = NULL; +} + +static void rt61pci_clear_beacon(struct queue_entry *entry) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + u32 orig_reg, reg; + + /* + * Disable beaconing while we are reloading the beacon data, + * otherwise we might be sending out invalid data. + */ + orig_reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9); + reg = orig_reg; + rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); + + /* + * Clear beacon. + */ + rt2x00mmio_register_write(rt2x00dev, + HW_BEACON_OFFSET(entry->entry_idx), 0); + + /* + * Restore global beaconing state. + */ + rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); +} + +/* + * RX control handlers + */ +static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) +{ + u8 offset = rt2x00dev->lna_gain; + u8 lna; + + lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); + switch (lna) { + case 3: + offset += 90; + break; + case 2: + offset += 74; + break; + case 1: + offset += 64; + break; + default: + return 0; + } + + if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) { + if (lna == 3 || lna == 2) + offset += 10; + } + + return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; +} + +static void rt61pci_fill_rxdone(struct queue_entry *entry, + struct rxdone_entry_desc *rxdesc) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + u32 word0; + u32 word1; + + word0 = rt2x00_desc_read(entry_priv->desc, 0); + word1 = rt2x00_desc_read(entry_priv->desc, 1); + + if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) + rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; + + rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); + rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); + + if (rxdesc->cipher != CIPHER_NONE) { + rxdesc->iv[0] = _rt2x00_desc_read(entry_priv->desc, 2); + rxdesc->iv[1] = _rt2x00_desc_read(entry_priv->desc, 3); + rxdesc->dev_flags |= RXDONE_CRYPTO_IV; + + rxdesc->icv = _rt2x00_desc_read(entry_priv->desc, 4); + rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; + + /* + * Hardware has stripped IV/EIV data from 802.11 frame during + * decryption. It has provided the data separately but rt2x00lib + * should decide if it should be reinserted. + */ + rxdesc->flags |= RX_FLAG_IV_STRIPPED; + + /* + * The hardware has already checked the Michael Mic and has + * stripped it from the frame. Signal this to mac80211. + */ + rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; + + if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) + rxdesc->flags |= RX_FLAG_DECRYPTED; + else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) + rxdesc->flags |= RX_FLAG_MMIC_ERROR; + } + + /* + * Obtain the status about this packet. + * When frame was received with an OFDM bitrate, + * the signal is the PLCP value. If it was received with + * a CCK bitrate the signal is the rate in 100kbit/s. + */ + rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); + rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1); + rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); + + if (rt2x00_get_field32(word0, RXD_W0_OFDM)) + rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; + else + rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; + if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) + rxdesc->dev_flags |= RXDONE_MY_BSS; +} + +/* + * Interrupt functions. + */ +static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) +{ + struct data_queue *queue; + struct queue_entry *entry; + struct queue_entry *entry_done; + struct queue_entry_priv_mmio *entry_priv; + struct txdone_entry_desc txdesc; + u32 word; + u32 reg; + int type; + int index; + int i; + + /* + * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO + * at most X times and also stop processing once the TX_STA_FIFO_VALID + * flag is not set anymore. + * + * The legacy drivers use X=TX_RING_SIZE but state in a comment + * that the TX_STA_FIFO stack has a size of 16. We stick to our + * tx ring size for now. + */ + for (i = 0; i < rt2x00dev->tx->limit; i++) { + reg = rt2x00mmio_register_read(rt2x00dev, STA_CSR4); + if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) + break; + + /* + * Skip this entry when it contains an invalid + * queue identication number. + */ + type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); + queue = rt2x00queue_get_tx_queue(rt2x00dev, type); + if (unlikely(!queue)) + continue; + + /* + * Skip this entry when it contains an invalid + * index number. + */ + index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); + if (unlikely(index >= queue->limit)) + continue; + + entry = &queue->entries[index]; + entry_priv = entry->priv_data; + word = rt2x00_desc_read(entry_priv->desc, 0); + + if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || + !rt2x00_get_field32(word, TXD_W0_VALID)) + return; + + entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); + while (entry != entry_done) { + /* Catch up. + * Just report any entries we missed as failed. + */ + rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n", + entry_done->entry_idx); + + rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN); + entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); + } + + /* + * Obtain the status about this packet. + */ + txdesc.flags = 0; + switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) { + case 0: /* Success, maybe with retry */ + __set_bit(TXDONE_SUCCESS, &txdesc.flags); + break; + case 6: /* Failure, excessive retries */ + __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); + /* Don't break, this is a failed frame! */ + default: /* Failure */ + __set_bit(TXDONE_FAILURE, &txdesc.flags); + } + txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); + + /* + * the frame was retried at least once + * -> hw used fallback rates + */ + if (txdesc.retry) + __set_bit(TXDONE_FALLBACK, &txdesc.flags); + + rt2x00lib_txdone(entry, &txdesc); + } +} + +static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev) +{ + struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf }; + + rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); +} + +static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, + struct rt2x00_field32 irq_field) +{ + u32 reg; + + /* + * Enable a single interrupt. The interrupt mask register + * access needs locking. + */ + spin_lock_irq(&rt2x00dev->irqmask_lock); + + reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); + rt2x00_set_field32(®, irq_field, 0); + rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); + + spin_unlock_irq(&rt2x00dev->irqmask_lock); +} + +static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev, + struct rt2x00_field32 irq_field) +{ + u32 reg; + + /* + * Enable a single MCU interrupt. The interrupt mask register + * access needs locking. + */ + spin_lock_irq(&rt2x00dev->irqmask_lock); + + reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR); + rt2x00_set_field32(®, irq_field, 0); + rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); + + spin_unlock_irq(&rt2x00dev->irqmask_lock); +} + +static void rt61pci_txstatus_tasklet(unsigned long data) +{ + struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; + rt61pci_txdone(rt2x00dev); + if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE); +} + +static void rt61pci_tbtt_tasklet(unsigned long data) +{ + struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; + rt2x00lib_beacondone(rt2x00dev); + if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE); +} + +static void rt61pci_rxdone_tasklet(unsigned long data) +{ + struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; + if (rt2x00mmio_rxdone(rt2x00dev)) + tasklet_schedule(&rt2x00dev->rxdone_tasklet); + else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE); +} + +static void rt61pci_autowake_tasklet(unsigned long data) +{ + struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; + rt61pci_wakeup(rt2x00dev); + rt2x00mmio_register_write(rt2x00dev, + M2H_CMD_DONE_CSR, 0xffffffff); + if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP); +} + +static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) +{ + struct rt2x00_dev *rt2x00dev = dev_instance; + u32 reg_mcu, mask_mcu; + u32 reg, mask; + + /* + * Get the interrupt sources & saved to local variable. + * Write register value back to clear pending interrupts. + */ + reg_mcu = rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR); + rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); + + reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR); + rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); + + if (!reg && !reg_mcu) + return IRQ_NONE; + + if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + return IRQ_HANDLED; + + /* + * Schedule tasklets for interrupt handling. + */ + if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) + tasklet_schedule(&rt2x00dev->rxdone_tasklet); + + if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) + tasklet_schedule(&rt2x00dev->txstatus_tasklet); + + if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE)) + tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); + + if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP)) + tasklet_schedule(&rt2x00dev->autowake_tasklet); + + /* + * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits + * for interrupts and interrupt masks we can just use the value of + * INT_SOURCE_CSR to create the interrupt mask. + */ + mask = reg; + mask_mcu = reg_mcu; + + /* + * Disable all interrupts for which a tasklet was scheduled right now, + * the tasklet will reenable the appropriate interrupts. + */ + spin_lock(&rt2x00dev->irqmask_lock); + + reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR); + reg |= mask; + rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR); + reg |= mask_mcu; + rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); + + spin_unlock(&rt2x00dev->irqmask_lock); + + return IRQ_HANDLED; +} + +/* + * Device probe functions. + */ +static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) +{ + struct eeprom_93cx6 eeprom; + u32 reg; + u16 word; + u8 *mac; + s8 value; + + reg = rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR); + + eeprom.data = rt2x00dev; + eeprom.register_read = rt61pci_eepromregister_read; + eeprom.register_write = rt61pci_eepromregister_write; + eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? + PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; + eeprom.reg_data_in = 0; + eeprom.reg_data_out = 0; + eeprom.reg_data_clock = 0; + eeprom.reg_chip_select = 0; + + eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, + EEPROM_SIZE / sizeof(u16)); + + /* + * Start validation of the data that has been read. + */ + mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); + rt2x00lib_set_mac_address(rt2x00dev, mac); + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); + rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, + ANTENNA_B); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, + ANTENNA_B); + rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); + rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); + rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); + rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); + rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0); + rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0); + rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); + rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); + rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); + rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, + LED_MODE_DEFAULT); + rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); + rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); + rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); + rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); + rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); + } else { + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); + rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); + } else { + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); + value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); + if (value < -10 || value > 10) + rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); + } + + return 0; +} + +static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + u16 value; + u16 eeprom; + + /* + * Read EEPROM word for configuration. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); + + /* + * Identify RF chipset. + */ + value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR0); + rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), + value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); + + if (!rt2x00_rf(rt2x00dev, RF5225) && + !rt2x00_rf(rt2x00dev, RF5325) && + !rt2x00_rf(rt2x00dev, RF2527) && + !rt2x00_rf(rt2x00dev, RF2529)) { + rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); + return -ENODEV; + } + + /* + * Determine number of antennas. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) + __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags); + + /* + * Identify default antenna configuration. + */ + rt2x00dev->default_ant.tx = + rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); + rt2x00dev->default_ant.rx = + rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); + + /* + * Read the Frame type. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) + __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); + + /* + * Detect if this device has a hardware controlled radio. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) + __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); + + /* + * Read frequency offset and RF programming sequence. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ); + if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) + __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags); + + rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); + + /* + * Read external LNA informations. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); + + if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) + __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); + if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) + __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); + + /* + * When working with a RF2529 chip without double antenna, + * the antenna settings should be gathered from the NIC + * eeprom word. + */ + if (rt2x00_rf(rt2x00dev, RF2529) && + !rt2x00_has_cap_double_antenna(rt2x00dev)) { + rt2x00dev->default_ant.rx = + ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED); + rt2x00dev->default_ant.tx = + ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED); + + if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) + rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; + if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) + rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; + } + + /* + * Store led settings, for correct led behaviour. + * If the eeprom value is invalid, + * switch to default led mode. + */ +#ifdef CONFIG_RT2X00_LIB_LEDS + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED); + value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); + + rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); + rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); + if (value == LED_MODE_SIGNAL_STRENGTH) + rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual, + LED_TYPE_QUALITY); + + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_0)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_1)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_2)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_3)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_GPIO_4)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, + rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_RDY_G)); + rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, + rt2x00_get_field16(eeprom, + EEPROM_LED_POLARITY_RDY_A)); +#endif /* CONFIG_RT2X00_LIB_LEDS */ + + return 0; +} + +/* + * RF value list for RF5225 & RF5325 + * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled + */ +static const struct rf_channel rf_vals_noseq[] = { + { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, + { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, + { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, + { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, + { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, + { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, + { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, + { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, + { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, + { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, + { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, + { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, + { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, + { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, + + /* 802.11 UNI / HyperLan 2 */ + { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, + { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, + { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, + { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, + { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, + { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, + { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, + { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, + + /* 802.11 HyperLan 2 */ + { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, + { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, + { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, + { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, + { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, + { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, + { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, + { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, + { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, + { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, + + /* 802.11 UNII */ + { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, + { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, + { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, + { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, + { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, + { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, + + /* MMAC(Japan)J52 ch 34,38,42,46 */ + { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, + { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, + { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, + { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, +}; + +/* + * RF value list for RF5225 & RF5325 + * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled + */ +static const struct rf_channel rf_vals_seq[] = { + { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, + { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, + { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, + { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, + { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, + { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, + { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, + { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, + { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, + { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, + { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, + { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, + { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, + { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, + + /* 802.11 UNI / HyperLan 2 */ + { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, + { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, + { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, + { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, + { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, + { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, + { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, + { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, + + /* 802.11 HyperLan 2 */ + { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, + { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, + { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, + { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, + { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, + { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, + { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, + { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, + { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, + { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, + + /* 802.11 UNII */ + { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, + { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, + { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, + { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, + { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, + { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, + + /* MMAC(Japan)J52 ch 34,38,42,46 */ + { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, + { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, + { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, + { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, +}; + +static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) +{ + struct hw_mode_spec *spec = &rt2x00dev->spec; + struct channel_info *info; + char *tx_power; + unsigned int i; + + /* + * Disable powersaving as default. + */ + rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; + + /* + * Initialize all hw fields. + */ + ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); + ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); + ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); + ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); + + SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); + SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, + rt2x00_eeprom_addr(rt2x00dev, + EEPROM_MAC_ADDR_0)); + + /* + * As rt61 has a global fallback table we cannot specify + * more then one tx rate per frame but since the hw will + * try several rates (based on the fallback table) we should + * initialize max_report_rates to the maximum number of rates + * we are going to try. Otherwise mac80211 will truncate our + * reported tx rates and the rc algortihm will end up with + * incorrect data. + */ + rt2x00dev->hw->max_rates = 1; + rt2x00dev->hw->max_report_rates = 7; + rt2x00dev->hw->max_rate_tries = 1; + + /* + * Initialize hw_mode information. + */ + spec->supported_bands = SUPPORT_BAND_2GHZ; + spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; + + if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) { + spec->num_channels = 14; + spec->channels = rf_vals_noseq; + } else { + spec->num_channels = 14; + spec->channels = rf_vals_seq; + } + + if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) { + spec->supported_bands |= SUPPORT_BAND_5GHZ; + spec->num_channels = ARRAY_SIZE(rf_vals_seq); + } + + /* + * Create channel information array + */ + info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + spec->channels_info = info; + + tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); + for (i = 0; i < 14; i++) { + info[i].max_power = MAX_TXPOWER; + info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); + } + + if (spec->num_channels > 14) { + tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); + for (i = 14; i < spec->num_channels; i++) { + info[i].max_power = MAX_TXPOWER; + info[i].default_power1 = + TXPOWER_FROM_DEV(tx_power[i - 14]); + } + } + + return 0; +} + +static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) +{ + int retval; + u32 reg; + + /* + * Disable power saving. + */ + rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); + + /* + * Allocate eeprom data. + */ + retval = rt61pci_validate_eeprom(rt2x00dev); + if (retval) + return retval; + + retval = rt61pci_init_eeprom(rt2x00dev); + if (retval) + return retval; + + /* + * Enable rfkill polling by setting GPIO direction of the + * rfkill switch GPIO pin correctly. + */ + reg = rt2x00mmio_register_read(rt2x00dev, MAC_CSR13); + rt2x00_set_field32(®, MAC_CSR13_DIR5, 1); + rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); + + /* + * Initialize hw specifications. + */ + retval = rt61pci_probe_hw_mode(rt2x00dev); + if (retval) + return retval; + + /* + * This device has multiple filters for control frames, + * but has no a separate filter for PS Poll frames. + */ + __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); + + /* + * This device requires firmware and DMA mapped skbs. + */ + __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); + __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); + if (!modparam_nohwcrypt) + __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); + __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); + + /* + * Set the rssi offset. + */ + rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; + + return 0; +} + +/* + * IEEE80211 stack callback functions. + */ +static int rt61pci_conf_tx(struct ieee80211_hw *hw, + struct ieee80211_vif *vif, u16 queue_idx, + const struct ieee80211_tx_queue_params *params) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + struct data_queue *queue; + struct rt2x00_field32 field; + int retval; + u32 reg; + u32 offset; + + /* + * First pass the configuration through rt2x00lib, that will + * update the queue settings and validate the input. After that + * we are free to update the registers based on the value + * in the queue parameter. + */ + retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); + if (retval) + return retval; + + /* + * We only need to perform additional register initialization + * for WMM queues. + */ + if (queue_idx >= 4) + return 0; + + queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); + + /* Update WMM TXOP register */ + offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); + field.bit_offset = (queue_idx & 1) * 16; + field.bit_mask = 0xffff << field.bit_offset; + + reg = rt2x00mmio_register_read(rt2x00dev, offset); + rt2x00_set_field32(®, field, queue->txop); + rt2x00mmio_register_write(rt2x00dev, offset, reg); + + /* Update WMM registers */ + field.bit_offset = queue_idx * 4; + field.bit_mask = 0xf << field.bit_offset; + + reg = rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR); + rt2x00_set_field32(®, field, queue->aifs); + rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR); + rt2x00_set_field32(®, field, queue->cw_min); + rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR); + rt2x00_set_field32(®, field, queue->cw_max); + rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg); + + return 0; +} + +static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u64 tsf; + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13); + tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; + reg = rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12); + tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); + + return tsf; +} + +static const struct ieee80211_ops rt61pci_mac80211_ops = { + .tx = rt2x00mac_tx, + .start = rt2x00mac_start, + .stop = rt2x00mac_stop, + .add_interface = rt2x00mac_add_interface, + .remove_interface = rt2x00mac_remove_interface, + .config = rt2x00mac_config, + .configure_filter = rt2x00mac_configure_filter, + .set_key = rt2x00mac_set_key, + .sw_scan_start = rt2x00mac_sw_scan_start, + .sw_scan_complete = rt2x00mac_sw_scan_complete, + .get_stats = rt2x00mac_get_stats, + .bss_info_changed = rt2x00mac_bss_info_changed, + .conf_tx = rt61pci_conf_tx, + .get_tsf = rt61pci_get_tsf, + .rfkill_poll = rt2x00mac_rfkill_poll, + .flush = rt2x00mac_flush, + .set_antenna = rt2x00mac_set_antenna, + .get_antenna = rt2x00mac_get_antenna, + .get_ringparam = rt2x00mac_get_ringparam, + .tx_frames_pending = rt2x00mac_tx_frames_pending, +}; + +static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { + .irq_handler = rt61pci_interrupt, + .txstatus_tasklet = rt61pci_txstatus_tasklet, + .tbtt_tasklet = rt61pci_tbtt_tasklet, + .rxdone_tasklet = rt61pci_rxdone_tasklet, + .autowake_tasklet = rt61pci_autowake_tasklet, + .probe_hw = rt61pci_probe_hw, + .get_firmware_name = rt61pci_get_firmware_name, + .check_firmware = rt61pci_check_firmware, + .load_firmware = rt61pci_load_firmware, + .initialize = rt2x00mmio_initialize, + .uninitialize = rt2x00mmio_uninitialize, + .get_entry_state = rt61pci_get_entry_state, + .clear_entry = rt61pci_clear_entry, + .set_device_state = rt61pci_set_device_state, + .rfkill_poll = rt61pci_rfkill_poll, + .link_stats = rt61pci_link_stats, + .reset_tuner = rt61pci_reset_tuner, + .link_tuner = rt61pci_link_tuner, + .start_queue = rt61pci_start_queue, + .kick_queue = rt61pci_kick_queue, + .stop_queue = rt61pci_stop_queue, + .flush_queue = rt2x00mmio_flush_queue, + .write_tx_desc = rt61pci_write_tx_desc, + .write_beacon = rt61pci_write_beacon, + .clear_beacon = rt61pci_clear_beacon, + .fill_rxdone = rt61pci_fill_rxdone, + .config_shared_key = rt61pci_config_shared_key, + .config_pairwise_key = rt61pci_config_pairwise_key, + .config_filter = rt61pci_config_filter, + .config_intf = rt61pci_config_intf, + .config_erp = rt61pci_config_erp, + .config_ant = rt61pci_config_ant, + .config = rt61pci_config, +}; + +static void rt61pci_queue_init(struct data_queue *queue) +{ + switch (queue->qid) { + case QID_RX: + queue->limit = 32; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = RXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + case QID_AC_VO: + case QID_AC_VI: + case QID_AC_BE: + case QID_AC_BK: + queue->limit = 32; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = TXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + case QID_BEACON: + queue->limit = 4; + queue->data_size = 0; /* No DMA required for beacons */ + queue->desc_size = TXINFO_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + case QID_ATIM: + /* fallthrough */ + default: + BUG(); + break; + } +} + +static const struct rt2x00_ops rt61pci_ops = { + .name = KBUILD_MODNAME, + .max_ap_intf = 4, + .eeprom_size = EEPROM_SIZE, + .rf_size = RF_SIZE, + .tx_queues = NUM_TX_QUEUES, + .queue_init = rt61pci_queue_init, + .lib = &rt61pci_rt2x00_ops, + .hw = &rt61pci_mac80211_ops, +#ifdef CONFIG_RT2X00_LIB_DEBUGFS + .debugfs = &rt61pci_rt2x00debug, +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ +}; + +/* + * RT61pci module information. + */ +static const struct pci_device_id rt61pci_device_table[] = { + /* RT2561s */ + { PCI_DEVICE(0x1814, 0x0301) }, + /* RT2561 v2 */ + { PCI_DEVICE(0x1814, 0x0302) }, + /* RT2661 */ + { PCI_DEVICE(0x1814, 0x0401) }, + { 0, } +}; + +MODULE_AUTHOR(DRV_PROJECT); +MODULE_VERSION(DRV_VERSION); +MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); +MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " + "PCI & PCMCIA chipset based cards"); +MODULE_DEVICE_TABLE(pci, rt61pci_device_table); +MODULE_FIRMWARE(FIRMWARE_RT2561); +MODULE_FIRMWARE(FIRMWARE_RT2561s); +MODULE_FIRMWARE(FIRMWARE_RT2661); +MODULE_LICENSE("GPL"); + +static int rt61pci_probe(struct pci_dev *pci_dev, + const struct pci_device_id *id) +{ + return rt2x00pci_probe(pci_dev, &rt61pci_ops); +} + +static struct pci_driver rt61pci_driver = { + .name = KBUILD_MODNAME, + .id_table = rt61pci_device_table, + .probe = rt61pci_probe, + .remove = rt2x00pci_remove, + .suspend = rt2x00pci_suspend, + .resume = rt2x00pci_resume, +}; + +module_pci_driver(rt61pci_driver); |