summaryrefslogtreecommitdiffstats
path: root/Documentation/acpi/dsd/graph.txt
blob: b9ce910781dcd09b9f308dac6218a0b3b27da7ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
Graphs


_DSD
----

_DSD (Device Specific Data) [7] is a predefined ACPI device
configuration object that can be used to convey information on
hardware features which are not specifically covered by the ACPI
specification [1][6]. There are two _DSD extensions that are relevant
for graphs: property [4] and hierarchical data extensions [5]. The
property extension provides generic key-value pairs whereas the
hierarchical data extension supports nodes with references to other
nodes, forming a tree. The nodes in the tree may contain properties as
defined by the property extension. The two extensions together provide
a tree-like structure with zero or more properties (key-value pairs)
in each node of the tree.

The data structure may be accessed at runtime by using the device_*
and fwnode_* functions defined in include/linux/fwnode.h .

Fwnode represents a generic firmware node object. It is independent on
the firmware type. In ACPI, fwnodes are _DSD hierarchical data
extensions objects. A device's _DSD object is represented by an
fwnode.

The data structure may be referenced to elsewhere in the ACPI tables
by using a hard reference to the device itself and an index to the
hierarchical data extension array on each depth.


Ports and endpoints
-------------------

The port and endpoint concepts are very similar to those in Devicetree
[3]. A port represents an interface in a device, and an endpoint
represents a connection to that interface.

All port nodes are located under the device's "_DSD" node in the hierarchical
data extension tree. The data extension related to each port node must begin
with "port" and must be followed by the "@" character and the number of the port
as its key. The target object it refers to should be called "PRTX", where "X" is
the number of the port. An example of such a package would be:

    Package() { "port@4", PRT4 }

Further on, endpoints are located under the port nodes. The hierarchical
data extension key of the endpoint nodes must begin with
"endpoint" and must be followed by the "@" character and the number of the
endpoint. The object it refers to should be called "EPXY", where "X" is the
number of the port and "Y" is the number of the endpoint. An example of such a
package would be:

    Package() { "endpoint@0", EP40 }

Each port node contains a property extension key "port", the value of which is
the number of the port. Each endpoint is similarly numbered with a property
extension key "reg", the value of which is the number of the endpoint. Port
numbers must be unique within a device and endpoint numbers must be unique
within a port. If a device object may only has a single port, then the number
of that port shall be zero. Similarly, if a port may only have a single
endpoint, the number of that endpoint shall be zero.

The endpoint reference uses property extension with "remote-endpoint" property
name followed by a reference in the same package. Such references consist of the
the remote device reference, the first package entry of the port data extension
reference under the device and finally the first package entry of the endpoint
data extension reference under the port. Individual references thus appear as:

    Package() { device, "port@X", "endpoint@Y" }

In the above example, "X" is the number of the port and "Y" is the number of the
endpoint.

The references to endpoints must be always done both ways, to the
remote endpoint and back from the referred remote endpoint node.

A simple example of this is show below:

    Scope (\_SB.PCI0.I2C2)
    {
	Device (CAM0)
	{
	    Name (_DSD, Package () {
		ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
		Package () {
		    Package () { "compatible", Package () { "nokia,smia" } },
		},
		ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
		Package () {
		    Package () { "port@0", PRT0 },
		}
	    })
	    Name (PRT0, Package() {
		ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
		Package () {
		    Package () { "reg", 0 },
		},
		ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
		Package () {
		    Package () { "endpoint@0", EP00 },
		}
	    })
	    Name (EP00, Package() {
		ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
		Package () {
		    Package () { "reg", 0 },
		    Package () { "remote-endpoint", Package() { \_SB.PCI0.ISP, "port@4", "endpoint@0" } },
		}
	    })
	}
    }

    Scope (\_SB.PCI0)
    {
	Device (ISP)
	{
	    Name (_DSD, Package () {
		ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
		Package () {
		    Package () { "port@4", PRT4 },
		}
	    })

	    Name (PRT4, Package() {
		ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
		Package () {
		    Package () { "reg", 4 }, /* CSI-2 port number */
		},
		ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
		Package () {
		    Package () { "endpoint@0", EP40 },
		}
	    })

	    Name (EP40, Package() {
		ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
		Package () {
		    Package () { "reg", 0 },
		    Package () { "remote-endpoint", Package () { \_SB.PCI0.I2C2.CAM0, "port@0", "endpoint@0" } },
		}
	    })
	}
    }

Here, the port 0 of the "CAM0" device is connected to the port 4 of
the "ISP" device and vice versa.


References
----------

[1] _DSD (Device Specific Data) Implementation Guide.
    <URL:http://www.uefi.org/sites/default/files/resources/_DSD-implementation-guide-toplevel-1_1.htm>,
    referenced 2016-10-03.

[2] Devicetree. <URL:http://www.devicetree.org>, referenced 2016-10-03.

[3] Documentation/devicetree/bindings/graph.txt

[4] Device Properties UUID For _DSD.
    <URL:http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf>,
    referenced 2016-10-04.

[5] Hierarchical Data Extension UUID For _DSD.
    <URL:http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.1.pdf>,
    referenced 2016-10-04.

[6] Advanced Configuration and Power Interface Specification.
    <URL:http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf>,
    referenced 2016-10-04.

[7] _DSD Device Properties Usage Rules.
    Documentation/acpi/DSD-properties-rules.txt