summaryrefslogtreecommitdiffstats
path: root/drivers/dma/ti/edma.c
blob: 44158fa859737c64d43ca2ca3c2fdd691fdcd6f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/edma.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>

#include <linux/platform_data/edma.h>

#include "../dmaengine.h"
#include "../virt-dma.h"

/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

/* CCSTAT register */
#define EDMA_CCSTAT_ACTV	BIT(4)

/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

struct edma_pset {
	u32				len;
	dma_addr_t			addr;
	struct edmacc_param		param;
};

struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
	enum dma_transfer_direction	direction;
	int				cyclic;
	int				absync;
	int				pset_nr;
	struct edma_chan		*echan;
	int				processed;

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
	int				processed_stat;
	u32				sg_len;
	u32				residue;
	u32				residue_stat;

	struct edma_pset		pset[0];
};

struct edma_cc;

struct edma_tc {
	struct device_node		*node;
	u16				id;
};

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	struct edma_tc			*tc;
	int				ch_num;
	bool				alloced;
	bool				hw_triggered;
	int				slot[EDMA_MAX_SLOTS];
	int				missed;
	struct dma_slave_config		cfg;
};

struct edma_cc {
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;
	bool				legacy_mode;

	/* eDMA3 resource information */
	unsigned			num_channels;
	unsigned			num_qchannels;
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
	bool				chmap_exist;
	enum dma_event_q		default_queue;

	unsigned int			ccint;
	unsigned int			ccerrint;

	/*
	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
	 * in use by Linux or if it is allocated to be used by DSP.
	 */
	unsigned long *slot_inuse;

	struct dma_device		dma_slave;
	struct dma_device		*dma_memcpy;
	struct edma_chan		*slave_chans;
	struct edma_tc			*tc_list;
	int				dummy_slot;
};

/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

#define EDMA_BINDING_LEGACY	0
#define EDMA_BINDING_TPCC	1
static const u32 edma_binding_type[] = {
	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
};

static const struct of_device_id edma_of_ids[] = {
	{
		.compatible = "ti,edma3",
		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
	},
	{
		.compatible = "ti,edma3-tpcc",
		.data = &edma_binding_type[EDMA_BINDING_TPCC],
	},
	{}
};
MODULE_DEVICE_TABLE(of, edma_of_ids);

static const struct of_device_id edma_tptc_of_ids[] = {
	{ .compatible = "ti,edma3-tptc", },
	{}
};
MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);

static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void edma_set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

static void edma_set_chmap(struct edma_chan *echan, int slot)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
}

static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

	if (enable) {
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
	} else {
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
	}
}

/*
 * paRAM slot management functions
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return -EINVAL;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);

	return 0;
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
	if (slot >= 0) {
		slot = EDMA_CHAN_SLOT(slot);
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

	if (slot < 0) {
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
		for (;;) {
			slot = find_next_zero_bit(ecc->slot_inuse,
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
			if (!test_and_set_bit(slot, ecc->slot_inuse))
				break;
		}
	} else if (slot >= ecc->num_slots) {
		return -EINVAL;
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
	clear_bit(slot, ecc->slot_inuse);
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

/*
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
static void edma_start(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);

	if (!echan->hw_triggered) {
		/* EDMA channels without event association */
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
		/* EDMA channel with event association */
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
	}
}

static void edma_stop(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);

	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);

	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);

	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));

	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
}

/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
 */
static void edma_pause(struct edma_chan *echan)
{
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);

	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
}

/* Re-enable EDMA hardware events on the specified channel.  */
static void edma_resume(struct edma_chan *echan)
{
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);

	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
}

static void edma_trigger_channel(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
}

static void edma_clean_channel(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);

	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
}

/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

static int edma_alloc_channel(struct edma_chan *echan,
			      enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
	edma_stop(echan);

	edma_setup_interrupt(echan, true);

	edma_assign_channel_eventq(echan, eventq_no);

	return 0;
}

static void edma_free_channel(struct edma_chan *echan)
{
	/* ensure no events are pending */
	edma_stop(echan);
	/* REVISIT should probably take out of shadow region 0 */
	edma_setup_interrupt(echan, false);
}

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct virt_dma_desc *vdesc;
	struct edma_desc *edesc;
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
		vdesc = vchan_next_desc(&echan->vchan);
		if (!vdesc)
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
	}

	edesc = echan->edesc;

	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
	edesc->sg_len = 0;

	/* Write descriptor PaRAM set(s) */
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
		edesc->sg_len += edesc->pset[j].len;
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
		/* Link to the previous slot if not the last set */
		if (i != (nslots - 1))
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
	}

	edesc->processed += nslots;

	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
		else
			edma_link(ecc, echan->slot[nslots - 1],
				  echan->ecc->dummy_slot);
	}

	if (echan->missed) {
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
		echan->missed = 0;
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
		edma_start(echan);
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
		edma_resume(echan);
	}
}

static int edma_terminate_all(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
		edma_stop(echan);
		/* Move the cyclic channel back to default queue */
		if (!echan->tc && echan->edesc->cyclic)
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);

		vchan_terminate_vdesc(&echan->edesc->vdesc);
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

static void edma_synchronize(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);

	vchan_synchronize(&echan->vchan);
}

static int edma_slave_config(struct dma_chan *chan,
	struct dma_slave_config *cfg)
{
	struct edma_chan *echan = to_edma_chan(chan);

	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
		return -EINVAL;

	if (cfg->src_maxburst > chan->device->max_burst ||
	    cfg->dst_maxburst > chan->device->max_burst)
		return -EINVAL;

	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));

	return 0;
}

static int edma_dma_pause(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);

	if (!echan->edesc)
		return -EINVAL;

	edma_pause(echan);
	return 0;
}

static int edma_dma_resume(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);

	edma_resume(echan);
	return 0;
}

/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
			    unsigned int acnt, unsigned int dma_length,
			    enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edmacc_param *param = &epset->param;
	int bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

	epset->len = dma_length;

	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
		epset->addr = src_addr;
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
		epset->addr = dst_addr;
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
	/* Configure A or AB synchronized transfers */
	if (absync)
		param->opt |= SYNCDIM;

	param->src = src_addr;
	param->dst = dst_addr;

	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;

	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
	param->link_bcntrld = 0xffffffff;
	return absync;
}

static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr = 0, dst_addr = 0;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	struct scatterlist *sg;
	int i, nslots, ret;

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
		return NULL;
	}

	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
	if (!edesc)
		return NULL;

	edesc->pset_nr = sg_len;
	edesc->residue = 0;
	edesc->direction = direction;
	edesc->echan = echan;

	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->absync = ret;
		edesc->residue += sg_dma_len(sg);

		if (i == sg_len - 1)
			/* Enable completion interrupt */
			edesc->pset[i].param.opt |= TCINTEN;
		else if (!((i+1) % MAX_NR_SG))
			/*
			 * Enable early completion interrupt for the
			 * intermediateset. In this case the driver will be
			 * notified when the paRAM set is submitted to TC. This
			 * will allow more time to set up the next set of slots.
			 */
			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
	}
	edesc->residue_stat = edesc->residue;

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret, nslots;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned int width, pset_len, array_size;

	if (unlikely(!echan || !len))
		return NULL;

	/* Align the array size (acnt block) with the transfer properties */
	switch (__ffs((src | dest | len))) {
	case 0:
		array_size = SZ_32K - 1;
		break;
	case 1:
		array_size = SZ_32K - 2;
		break;
	default:
		array_size = SZ_32K - 4;
		break;
	}

	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = array_size;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
	if (!edesc)
		return NULL;

	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
		return NULL;
	}

	edesc->absync = ret;

	edesc->pset[0].param.opt |= ITCCHEN;
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % array_size;

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
	unsigned long tx_flags)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	bool use_intermediate = false;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG) {
		/*
		 * If the burst and period sizes are the same, we can put
		 * the full buffer into a single period and activate
		 * intermediate interrupts. This will produce interrupts
		 * after each burst, which is also after each desired period.
		 */
		if (burst == period_len) {
			period_len = buf_len;
			nslots = 2;
			use_intermediate = true;
		} else {
			return NULL;
		}
	}

	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
	if (!edesc)
		return NULL;

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = buf_len;
	edesc->direction = direction;
	edesc->echan = echan;

	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;

		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);

		edesc->absync = ret;

		/*
		 * Enable period interrupt only if it is requested
		 */
		if (tx_flags & DMA_PREP_INTERRUPT) {
			edesc->pset[i].param.opt |= TCINTEN;

			/* Also enable intermediate interrupts if necessary */
			if (use_intermediate)
				edesc->pset[i].param.opt |= ITCINTEN;
		}
	}

	/* Place the cyclic channel to highest priority queue */
	if (!echan->tc)
		edma_assign_channel_eventq(echan, EVENTQ_0);

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_completion_handler(struct edma_chan *echan)
{
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;

	spin_lock(&echan->vchan.lock);
	edesc = echan->edesc;
	if (edesc) {
		if (edesc->cyclic) {
			vchan_cyclic_callback(&edesc->vdesc);
			spin_unlock(&echan->vchan.lock);
			return;
		} else if (edesc->processed == edesc->pset_nr) {
			edesc->residue = 0;
			edma_stop(echan);
			vchan_cookie_complete(&edesc->vdesc);
			echan->edesc = NULL;

			dev_dbg(dev, "Transfer completed on channel %d\n",
				echan->ch_num);
		} else {
			dev_dbg(dev, "Sub transfer completed on channel %d\n",
				echan->ch_num);

			edma_pause(echan);

			/* Update statistics for tx_status */
			edesc->residue -= edesc->sg_len;
			edesc->residue_stat = edesc->residue;
			edesc->processed_stat = edesc->processed;
		}
		edma_execute(echan);
	}

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
		}
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;
	int err;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);

	err = edma_read_slot(ecc, echan->slot[0], &p);

	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
		/*
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
		 */
		dev_dbg(dev, "Missed event, TRIGGERING\n");
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
	}
	spin_unlock(&echan->vchan.lock);
}

static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int i, j;
	int ctlr;
	unsigned int cnt = 0;
	unsigned int val;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

	if (!edma_error_pending(ecc)) {
		/*
		 * The registers indicate no pending error event but the irq
		 * handler has been called.
		 * Ask eDMA to re-evaluate the error registers.
		 */
		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
			__func__);
		edma_write(ecc, EDMA_EEVAL, 1);
		return IRQ_NONE;
	}

	while (1) {
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
				int k = (j << 5) + i;

				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
							 BIT(i));
				edma_error_handler(&ecc->slave_chans[k]);
			}
		}

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

		if (!edma_error_pending(ecc))
			break;
		cnt++;
		if (cnt > 10)
			break;
	}
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = ecc->dev;
	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
	int ret;

	if (echan->tc) {
		eventq_no = echan->tc->id;
	} else if (ecc->tc_list) {
		/* memcpy channel */
		echan->tc = &ecc->tc_list[ecc->info->default_queue];
		eventq_no = echan->tc->id;
	}

	ret = edma_alloc_channel(echan, eventq_no);
	if (ret)
		return ret;

	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = echan->slot[0];
		goto err_slot;
	}

	/* Set up channel -> slot mapping for the entry slot */
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;

	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
		echan->hw_triggered ? "HW" : "SW");

	return 0;

err_slot:
	edma_free_channel(echan);
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = echan->ecc->dev;
	int i;

	/* Terminate transfers */
	edma_stop(echan);

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
			edma_free_slot(echan->ecc, echan->slot[i]);
			echan->slot[i] = -1;
		}
	}

	/* Set entry slot to the dummy slot */
	edma_set_chmap(echan, echan->ecc->dummy_slot);

	/* Free EDMA channel */
	if (echan->alloced) {
		edma_free_channel(echan);
		echan->alloced = false;
	}

	echan->tc = NULL;
	echan->hw_triggered = false;

	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

/*
 * This limit exists to avoid a possible infinite loop when waiting for proof
 * that a particular transfer is completed. This limit can be hit if there
 * are large bursts to/from slow devices or the CPU is never able to catch
 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
 * RX-FIFO, as many as 55 loops have been seen.
 */
#define EDMA_MAX_TR_WAIT_LOOPS 1000

static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
	struct edma_chan *echan = edesc->echan;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
	pos = edma_get_position(echan->ecc, echan->slot[0], dst);

	/*
	 * "pos" may represent a transfer request that is still being
	 * processed by the EDMACC or EDMATC. We will busy wait until
	 * any one of the situations occurs:
	 *   1. the DMA hardware is idle
	 *   2. a new transfer request is setup
	 *   3. we hit the loop limit
	 */
	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
		/* check if a new transfer request is setup */
		if (edma_get_position(echan->ecc,
				      echan->slot[0], dst) != pos) {
			break;
		}

		if (!--loop_count) {
			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
				"%s: timeout waiting for PaRAM update\n",
				__func__);
			break;
		}

		cpu_relax();
	}

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
		txstate->residue = edma_residue(echan->edesc);
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
{
	if (!memcpy_channels)
		return false;
	while (*memcpy_channels != -1) {
		if (*memcpy_channels == ch_num)
			return true;
		memcpy_channels++;
	}
	return false;
}

#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
{
	struct dma_device *s_ddev = &ecc->dma_slave;
	struct dma_device *m_ddev = NULL;
	s32 *memcpy_channels = ecc->info->memcpy_channels;
	int i, j;

	dma_cap_zero(s_ddev->cap_mask);
	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
	if (ecc->legacy_mode && !memcpy_channels) {
		dev_warn(ecc->dev,
			 "Legacy memcpy is enabled, things might not work\n");

		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
	}

	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
	s_ddev->device_free_chan_resources = edma_free_chan_resources;
	s_ddev->device_issue_pending = edma_issue_pending;
	s_ddev->device_tx_status = edma_tx_status;
	s_ddev->device_config = edma_slave_config;
	s_ddev->device_pause = edma_dma_pause;
	s_ddev->device_resume = edma_dma_resume;
	s_ddev->device_terminate_all = edma_terminate_all;
	s_ddev->device_synchronize = edma_synchronize;

	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */

	s_ddev->dev = ecc->dev;
	INIT_LIST_HEAD(&s_ddev->channels);

	if (memcpy_channels) {
		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
		if (!m_ddev) {
			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
			memcpy_channels = NULL;
			goto ch_setup;
		}
		ecc->dma_memcpy = m_ddev;

		dma_cap_zero(m_ddev->cap_mask);
		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);

		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
		m_ddev->device_free_chan_resources = edma_free_chan_resources;
		m_ddev->device_issue_pending = edma_issue_pending;
		m_ddev->device_tx_status = edma_tx_status;
		m_ddev->device_config = edma_slave_config;
		m_ddev->device_pause = edma_dma_pause;
		m_ddev->device_resume = edma_dma_resume;
		m_ddev->device_terminate_all = edma_terminate_all;
		m_ddev->device_synchronize = edma_synchronize;

		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

		m_ddev->dev = ecc->dev;
		INIT_LIST_HEAD(&m_ddev->channels);
	} else if (!ecc->legacy_mode) {
		dev_info(ecc->dev, "memcpy is disabled\n");
	}

ch_setup:
	for (i = 0; i < ecc->num_channels; i++) {
		struct edma_chan *echan = &ecc->slave_chans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
			vchan_init(&echan->vchan, m_ddev);
		else
			vchan_init(&echan->vchan, s_ddev);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
{
	struct edma_soc_info *info;
	struct property *prop;
	int sz, ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

	if (legacy_mode) {
		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
					&sz);
		if (prop) {
			ret = edma_xbar_event_map(dev, info, sz);
			if (ret)
				return ERR_PTR(ret);
		}
		return info;
	}

	/* Get the list of channels allocated to be used for memcpy */
	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
	if (prop) {
		const char pname[] = "ti,edma-memcpy-channels";
		size_t nelm = sz / sizeof(s32);
		s32 *memcpy_ch;

		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
					 GFP_KERNEL);
		if (!memcpy_ch)
			return ERR_PTR(-ENOMEM);

		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)memcpy_ch, nelm);
		if (ret)
			return ERR_PTR(ret);

		memcpy_ch[nelm] = -1;
		info->memcpy_channels = memcpy_ch;
	}

	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
				&sz);
	if (prop) {
		const char pname[] = "ti,edma-reserved-slot-ranges";
		u32 (*tmp)[2];
		s16 (*rsv_slots)[2];
		size_t nelm = sz / sizeof(*tmp);
		struct edma_rsv_info *rsv_info;
		int i;

		if (!nelm)
			return info;

		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
		if (!tmp)
			return ERR_PTR(-ENOMEM);

		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
		if (!rsv_info) {
			kfree(tmp);
			return ERR_PTR(-ENOMEM);
		}

		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
					 GFP_KERNEL);
		if (!rsv_slots) {
			kfree(tmp);
			return ERR_PTR(-ENOMEM);
		}

		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)tmp, nelm * 2);
		if (ret) {
			kfree(tmp);
			return ERR_PTR(ret);
		}

		for (i = 0; i < nelm; i++) {
			rsv_slots[i][0] = tmp[i][0];
			rsv_slots[i][1] = tmp[i][1];
		}
		rsv_slots[nelm][0] = -1;
		rsv_slots[nelm][1] = -1;

		info->rsv = rsv_info;
		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;

		kfree(tmp);
	}

	return info;
}

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	struct edma_cc *ecc = ofdma->of_dma_data;
	struct dma_chan *chan = NULL;
	struct edma_chan *echan;
	int i;

	if (!ecc || dma_spec->args_count < 1)
		return NULL;

	for (i = 0; i < ecc->num_channels; i++) {
		echan = &ecc->slave_chans[i];
		if (echan->ch_num == dma_spec->args[0]) {
			chan = &echan->vchan.chan;
			break;
		}
	}

	if (!chan)
		return NULL;

	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
		goto out;

	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
	    dma_spec->args[1] < echan->ecc->num_tc) {
		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
		goto out;
	}

	return NULL;
out:
	/* The channel is going to be used as HW synchronized */
	echan->hw_triggered = true;
	return dma_get_slave_channel(chan);
}
#else
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
{
	return ERR_PTR(-EINVAL);
}

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	return NULL;
}
#endif

static int edma_probe(struct platform_device *pdev)
{
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
	bool			legacy_mode = true;
	int ret;

	if (node) {
		const struct of_device_id *match;

		match = of_match_node(edma_of_ids, node);
		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
			legacy_mode = false;

		info = edma_setup_info_from_dt(dev, legacy_mode);
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc)
		return -ENOMEM;

	ecc->dev = dev;
	ecc->id = pdev->id;
	ecc->legacy_mode = legacy_mode;
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
				       sizeof(unsigned long), GFP_KERNEL);
	if (!ecc->slot_inuse)
		return -ENOMEM;

	ecc->default_queue = info->default_queue;

	if (info->rsv) {
		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
				edma_set_bits(off, ln, ecc->slot_inuse);
			}
		}
	}

	for (i = 0; i < ecc->num_slots; i++) {
		/* Reset only unused - not reserved - paRAM slots */
		if (!test_bit(i, ecc->slot_inuse))
			edma_write_slot(ecc, i, &dummy_paramset);
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
		ecc->ccint = irq;
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
		ecc->ccerrint = irq;
	}

	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

	queue_priority_mapping = info->queue_priority_mapping;

	if (!ecc->legacy_mode) {
		int lowest_priority = 0;
		struct of_phandle_args tc_args;

		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
					    sizeof(*ecc->tc_list), GFP_KERNEL);
		if (!ecc->tc_list) {
			ret = -ENOMEM;
			goto err_reg1;
		}

		for (i = 0;; i++) {
			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
							       1, i, &tc_args);
			if (ret || i == ecc->num_tc)
				break;

			ecc->tc_list[i].node = tc_args.np;
			ecc->tc_list[i].id = i;
			queue_priority_mapping[i][1] = tc_args.args[0];
			if (queue_priority_mapping[i][1] > lowest_priority) {
				lowest_priority = queue_priority_mapping[i][1];
				info->default_queue = i;
			}
		}
	}

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

	/* Init the dma device and channels */
	edma_dma_init(ecc, legacy_mode);

	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

	ecc->dma_slave.filter.map = info->slave_map;
	ecc->dma_slave.filter.mapcnt = info->slavecnt;
	ecc->dma_slave.filter.fn = edma_filter_fn;

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret) {
		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
		goto err_reg1;
	}

	if (ecc->dma_memcpy) {
		ret = dma_async_device_register(ecc->dma_memcpy);
		if (ret) {
			dev_err(dev, "memcpy ddev registration failed (%d)\n",
				ret);
			dma_async_device_unregister(&ecc->dma_slave);
			goto err_reg1;
		}
	}

	if (node)
		of_dma_controller_register(node, of_edma_xlate, ecc);

	dev_info(dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
	edma_free_slot(ecc, ecc->dummy_slot);
	return ret;
}

static void edma_cleanupp_vchan(struct dma_device *dmadev)
{
	struct edma_chan *echan, *_echan;

	list_for_each_entry_safe(echan, _echan,
			&dmadev->channels, vchan.chan.device_node) {
		list_del(&echan->vchan.chan.device_node);
		tasklet_kill(&echan->vchan.task);
	}
}

static int edma_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

	devm_free_irq(dev, ecc->ccint, ecc);
	devm_free_irq(dev, ecc->ccerrint, ecc);

	edma_cleanupp_vchan(&ecc->dma_slave);

	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
	dma_async_device_unregister(&ecc->dma_slave);
	if (ecc->dma_memcpy)
		dma_async_device_unregister(ecc->dma_memcpy);
	edma_free_slot(ecc, ecc->dummy_slot);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int edma_pm_suspend(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;

	for (i = 0; i < ecc->num_channels; i++) {
		if (echan[i].alloced)
			edma_setup_interrupt(&echan[i], false);
	}

	return 0;
}

static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;
	s8 (*queue_priority_mapping)[2];

	/* re initialize dummy slot to dummy param set */
	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
		if (echan[i].alloced) {
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

			edma_setup_interrupt(&echan[i], true);

			/* Set up channel -> slot mapping for the entry slot */
			edma_set_chmap(&echan[i], echan[i].slot[0]);
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
};

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
	.remove		= edma_remove,
	.driver = {
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
	},
};

static int edma_tptc_probe(struct platform_device *pdev)
{
	pm_runtime_enable(&pdev->dev);
	return pm_runtime_get_sync(&pdev->dev);
}

static struct platform_driver edma_tptc_driver = {
	.probe		= edma_tptc_probe,
	.driver = {
		.name	= "edma3-tptc",
		.of_match_table = edma_tptc_of_ids,
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	bool match = false;

	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		if (ch_req == echan->ch_num) {
			/* The channel is going to be used as HW synchronized */
			echan->hw_triggered = true;
			match = true;
		}
	}
	return match;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
	int ret;

	ret = platform_driver_register(&edma_tptc_driver);
	if (ret)
		return ret;

	return platform_driver_register(&edma_driver);
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
	platform_driver_unregister(&edma_tptc_driver);
}
module_exit(edma_exit);

MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");