1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
|
/*
Driver for Philips tda1004xh OFDM Demodulator
(c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This driver needs external firmware. Please use the commands
* "<kerneldir>/scripts/get_dvb_firmware tda10045",
* "<kerneldir>/scripts/get_dvb_firmware tda10046" to
* download/extract them, and then copy them to /usr/lib/hotplug/firmware
* or /lib/firmware (depending on configuration of firmware hotplug).
*/
#define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
#define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <media/dvb_frontend.h>
#include "tda1004x.h"
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "tda1004x: " args); \
} while (0)
#define TDA1004X_CHIPID 0x00
#define TDA1004X_AUTO 0x01
#define TDA1004X_IN_CONF1 0x02
#define TDA1004X_IN_CONF2 0x03
#define TDA1004X_OUT_CONF1 0x04
#define TDA1004X_OUT_CONF2 0x05
#define TDA1004X_STATUS_CD 0x06
#define TDA1004X_CONFC4 0x07
#define TDA1004X_DSSPARE2 0x0C
#define TDA10045H_CODE_IN 0x0D
#define TDA10045H_FWPAGE 0x0E
#define TDA1004X_SCAN_CPT 0x10
#define TDA1004X_DSP_CMD 0x11
#define TDA1004X_DSP_ARG 0x12
#define TDA1004X_DSP_DATA1 0x13
#define TDA1004X_DSP_DATA2 0x14
#define TDA1004X_CONFADC1 0x15
#define TDA1004X_CONFC1 0x16
#define TDA10045H_S_AGC 0x1a
#define TDA10046H_AGC_TUN_LEVEL 0x1a
#define TDA1004X_SNR 0x1c
#define TDA1004X_CONF_TS1 0x1e
#define TDA1004X_CONF_TS2 0x1f
#define TDA1004X_CBER_RESET 0x20
#define TDA1004X_CBER_MSB 0x21
#define TDA1004X_CBER_LSB 0x22
#define TDA1004X_CVBER_LUT 0x23
#define TDA1004X_VBER_MSB 0x24
#define TDA1004X_VBER_MID 0x25
#define TDA1004X_VBER_LSB 0x26
#define TDA1004X_UNCOR 0x27
#define TDA10045H_CONFPLL_P 0x2D
#define TDA10045H_CONFPLL_M_MSB 0x2E
#define TDA10045H_CONFPLL_M_LSB 0x2F
#define TDA10045H_CONFPLL_N 0x30
#define TDA10046H_CONFPLL1 0x2D
#define TDA10046H_CONFPLL2 0x2F
#define TDA10046H_CONFPLL3 0x30
#define TDA10046H_TIME_WREF1 0x31
#define TDA10046H_TIME_WREF2 0x32
#define TDA10046H_TIME_WREF3 0x33
#define TDA10046H_TIME_WREF4 0x34
#define TDA10046H_TIME_WREF5 0x35
#define TDA10045H_UNSURW_MSB 0x31
#define TDA10045H_UNSURW_LSB 0x32
#define TDA10045H_WREF_MSB 0x33
#define TDA10045H_WREF_MID 0x34
#define TDA10045H_WREF_LSB 0x35
#define TDA10045H_MUXOUT 0x36
#define TDA1004X_CONFADC2 0x37
#define TDA10045H_IOFFSET 0x38
#define TDA10046H_CONF_TRISTATE1 0x3B
#define TDA10046H_CONF_TRISTATE2 0x3C
#define TDA10046H_CONF_POLARITY 0x3D
#define TDA10046H_FREQ_OFFSET 0x3E
#define TDA10046H_GPIO_OUT_SEL 0x41
#define TDA10046H_GPIO_SELECT 0x42
#define TDA10046H_AGC_CONF 0x43
#define TDA10046H_AGC_THR 0x44
#define TDA10046H_AGC_RENORM 0x45
#define TDA10046H_AGC_GAINS 0x46
#define TDA10046H_AGC_TUN_MIN 0x47
#define TDA10046H_AGC_TUN_MAX 0x48
#define TDA10046H_AGC_IF_MIN 0x49
#define TDA10046H_AGC_IF_MAX 0x4A
#define TDA10046H_FREQ_PHY2_MSB 0x4D
#define TDA10046H_FREQ_PHY2_LSB 0x4E
#define TDA10046H_CVBER_CTRL 0x4F
#define TDA10046H_AGC_IF_LEVEL 0x52
#define TDA10046H_CODE_CPT 0x57
#define TDA10046H_CODE_IN 0x58
static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
dprintk("%s: reg=0x%x, data=0x%x\n", __func__, reg, data);
msg.addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
__func__, reg, data, ret);
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
{ .flags = I2C_M_RD, .buf = b1, .len = 1 }};
dprintk("%s: reg=0x%x\n", __func__, reg);
msg[0].addr = state->config->demod_address;
msg[1].addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
dprintk("%s: error reg=0x%x, ret=%i\n", __func__, reg,
ret);
return -EINVAL;
}
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __func__,
reg, b1[0], ret);
return b1[0];
}
static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
{
int val;
dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __func__, reg,
mask, data);
// read a byte and check
val = tda1004x_read_byte(state, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda1004x_write_byteI(state, reg, val);
}
static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
{
int i;
int result;
dprintk("%s: reg=0x%x, len=0x%x\n", __func__, reg, len);
result = 0;
for (i = 0; i < len; i++) {
result = tda1004x_write_byteI(state, reg + i, buf[i]);
if (result != 0)
break;
}
return result;
}
static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
{
int result;
dprintk("%s\n", __func__);
result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
msleep(20);
return result;
}
static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
{
dprintk("%s\n", __func__);
return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
}
static int tda10045h_set_bandwidth(struct tda1004x_state *state,
u32 bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
switch (bandwidth) {
case 6000000:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
break;
case 7000000:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
break;
case 8000000:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
break;
default:
return -EINVAL;
}
tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
return 0;
}
static int tda10046h_set_bandwidth(struct tda1004x_state *state,
u32 bandwidth)
{
static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
int tda10046_clk53m;
if ((state->config->if_freq == TDA10046_FREQ_045) ||
(state->config->if_freq == TDA10046_FREQ_052))
tda10046_clk53m = 0;
else
tda10046_clk53m = 1;
switch (bandwidth) {
case 6000000:
if (tda10046_clk53m)
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
sizeof(bandwidth_6mhz_53M));
else
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
sizeof(bandwidth_6mhz_48M));
if (state->config->if_freq == TDA10046_FREQ_045) {
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
}
break;
case 7000000:
if (tda10046_clk53m)
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
sizeof(bandwidth_7mhz_53M));
else
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
sizeof(bandwidth_7mhz_48M));
if (state->config->if_freq == TDA10046_FREQ_045) {
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
}
break;
case 8000000:
if (tda10046_clk53m)
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
sizeof(bandwidth_8mhz_53M));
else
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
sizeof(bandwidth_8mhz_48M));
if (state->config->if_freq == TDA10046_FREQ_045) {
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int tda1004x_do_upload(struct tda1004x_state *state,
const unsigned char *mem, unsigned int len,
u8 dspCodeCounterReg, u8 dspCodeInReg)
{
u8 buf[65];
struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
int tx_size;
int pos = 0;
/* clear code counter */
tda1004x_write_byteI(state, dspCodeCounterReg, 0);
fw_msg.addr = state->config->demod_address;
i2c_lock_bus(state->i2c, I2C_LOCK_SEGMENT);
buf[0] = dspCodeInReg;
while (pos != len) {
// work out how much to send this time
tx_size = len - pos;
if (tx_size > 0x10)
tx_size = 0x10;
// send the chunk
memcpy(buf + 1, mem + pos, tx_size);
fw_msg.len = tx_size + 1;
if (__i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
printk(KERN_ERR "tda1004x: Error during firmware upload\n");
i2c_unlock_bus(state->i2c, I2C_LOCK_SEGMENT);
return -EIO;
}
pos += tx_size;
dprintk("%s: fw_pos=0x%x\n", __func__, pos);
}
i2c_unlock_bus(state->i2c, I2C_LOCK_SEGMENT);
/* give the DSP a chance to settle 03/10/05 Hac */
msleep(100);
return 0;
}
static int tda1004x_check_upload_ok(struct tda1004x_state *state)
{
u8 data1, data2;
unsigned long timeout;
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
timeout = jiffies + 2 * HZ;
while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
break;
}
msleep(1);
}
} else
msleep(100);
// check upload was OK
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
return -EIO;
}
printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
return 0;
}
static int tda10045_fwupload(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int ret;
const struct firmware *fw;
/* don't re-upload unless necessary */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
if (ret) {
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
return ret;
}
/* reset chip */
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
msleep(10);
/* set parameters */
tda10045h_set_bandwidth(state, 8000000);
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
release_firmware(fw);
if (ret)
return ret;
printk(KERN_INFO "tda1004x: firmware upload complete\n");
/* wait for DSP to initialise */
/* DSPREADY doesn't seem to work on the TDA10045H */
msleep(100);
return tda1004x_check_upload_ok(state);
}
static void tda10046_init_plls(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tda10046_clk53m;
if ((state->config->if_freq == TDA10046_FREQ_045) ||
(state->config->if_freq == TDA10046_FREQ_052))
tda10046_clk53m = 0;
else
tda10046_clk53m = 1;
tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
if(tda10046_clk53m) {
printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
} else {
printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
}
if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __func__);
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
} else {
dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __func__);
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
}
if(tda10046_clk53m)
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
else
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
/* Note clock frequency is handled implicitly */
switch (state->config->if_freq) {
case TDA10046_FREQ_045:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
break;
case TDA10046_FREQ_052:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
break;
case TDA10046_FREQ_3617:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
break;
case TDA10046_FREQ_3613:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
break;
}
tda10046h_set_bandwidth(state, 8000000); /* default bandwidth 8 MHz */
/* let the PLLs settle */
msleep(120);
}
static int tda10046_fwupload(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int ret, confc4;
const struct firmware *fw;
/* reset + wake up chip */
if (state->config->xtal_freq == TDA10046_XTAL_4M) {
confc4 = 0;
} else {
dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __func__);
confc4 = 0x80;
}
tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
/* set GPIO 1 and 3 */
if (state->config->gpio_config != TDA10046_GPTRI) {
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE2, 0x33);
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f, state->config->gpio_config &0x0f);
}
/* let the clocks recover from sleep */
msleep(10);
/* The PLLs need to be reprogrammed after sleep */
tda10046_init_plls(fe);
tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0);
/* don't re-upload unless necessary */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
/*
For i2c normal work, we need to slow down the bus speed.
However, the slow down breaks the eeprom firmware load.
So, use normal speed for eeprom booting and then restore the
i2c speed after that. Tested with MSI TV @nyware A/D board,
that comes with firmware version 29 inside their eeprom.
It should also be noticed that no other I2C transfer should
be in course while booting from eeprom, otherwise, tda10046
goes into an instable state. So, proper locking are needed
at the i2c bus master.
*/
printk(KERN_INFO "tda1004x: trying to boot from eeprom\n");
tda1004x_write_byteI(state, TDA1004X_CONFC4, 4);
msleep(300);
tda1004x_write_byteI(state, TDA1004X_CONFC4, confc4);
/* Checks if eeprom firmware went without troubles */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
/* eeprom firmware didn't work. Load one manually. */
if (state->config->request_firmware != NULL) {
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
if (ret) {
/* remain compatible to old bug: try to load with tda10045 image name */
ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
if (ret) {
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
return ret;
} else {
printk(KERN_INFO "tda1004x: please rename the firmware file to %s\n",
TDA10046_DEFAULT_FIRMWARE);
}
}
} else {
printk(KERN_ERR "tda1004x: no request function defined, can't upload from file\n");
return -EIO;
}
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
release_firmware(fw);
return tda1004x_check_upload_ok(state);
}
static int tda1004x_encode_fec(int fec)
{
// convert known FEC values
switch (fec) {
case FEC_1_2:
return 0;
case FEC_2_3:
return 1;
case FEC_3_4:
return 2;
case FEC_5_6:
return 3;
case FEC_7_8:
return 4;
}
// unsupported
return -EINVAL;
}
static int tda1004x_decode_fec(int tdafec)
{
// convert known FEC values
switch (tdafec) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_7_8;
}
// unsupported
return -1;
}
static int tda1004x_write(struct dvb_frontend* fe, const u8 buf[], int len)
{
struct tda1004x_state* state = fe->demodulator_priv;
if (len != 2)
return -EINVAL;
return tda1004x_write_byteI(state, buf[0], buf[1]);
}
static int tda10045_init(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __func__);
if (tda10045_fwupload(fe)) {
printk("tda1004x: firmware upload failed\n");
return -EIO;
}
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
// tda setup
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
return 0;
}
static int tda10046_init(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __func__);
if (tda10046_fwupload(fe)) {
printk("tda1004x: firmware upload failed\n");
return -EIO;
}
// tda setup
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
switch (state->config->agc_config) {
case TDA10046_AGC_DEFAULT:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
break;
case TDA10046_AGC_IFO_AUTO_NEG:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
break;
case TDA10046_AGC_IFO_AUTO_POS:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x00); // set AGC polarities
break;
case TDA10046_AGC_TDA827X:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0xf0, 0x60); // set AGC polarities
break;
}
if (state->config->ts_mode == 0) {
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x40);
tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
} else {
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 0xc0, 0x80);
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x10,
state->config->invert_oclk << 4);
}
tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
tda1004x_write_mask (state, TDA10046H_CONF_TRISTATE1, 0x3e, 0x38); // Turn IF AGC output on
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
// tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
return 0;
}
static int tda1004x_set_fe(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *fe_params = &fe->dtv_property_cache;
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int inversion;
dprintk("%s\n", __func__);
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
// setup auto offset
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
// disable agc_conf[2]
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
}
// set frequency
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
// Hardcoded to use auto as much as possible on the TDA10045 as it
// is very unreliable if AUTO mode is _not_ used.
if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
fe_params->code_rate_HP = FEC_AUTO;
fe_params->guard_interval = GUARD_INTERVAL_AUTO;
fe_params->transmission_mode = TRANSMISSION_MODE_AUTO;
}
// Set standard params.. or put them to auto
if ((fe_params->code_rate_HP == FEC_AUTO) ||
(fe_params->code_rate_LP == FEC_AUTO) ||
(fe_params->modulation == QAM_AUTO) ||
(fe_params->hierarchy == HIERARCHY_AUTO)) {
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); /* turn off modulation bits */
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
} else {
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
// set HP FEC
tmp = tda1004x_encode_fec(fe_params->code_rate_HP);
if (tmp < 0)
return tmp;
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
// set LP FEC
tmp = tda1004x_encode_fec(fe_params->code_rate_LP);
if (tmp < 0)
return tmp;
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
/* set modulation */
switch (fe_params->modulation) {
case QPSK:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
break;
case QAM_16:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
break;
case QAM_64:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
break;
default:
return -EINVAL;
}
// set hierarchy
switch (fe_params->hierarchy) {
case HIERARCHY_NONE:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
break;
case HIERARCHY_1:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
break;
case HIERARCHY_2:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
break;
case HIERARCHY_4:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
break;
default:
return -EINVAL;
}
}
// set bandwidth
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda10045h_set_bandwidth(state, fe_params->bandwidth_hz);
break;
case TDA1004X_DEMOD_TDA10046:
tda10046h_set_bandwidth(state, fe_params->bandwidth_hz);
break;
}
// set inversion
inversion = fe_params->inversion;
if (state->config->invert)
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
switch (inversion) {
case INVERSION_OFF:
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
break;
case INVERSION_ON:
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
break;
default:
return -EINVAL;
}
// set guard interval
switch (fe_params->guard_interval) {
case GUARD_INTERVAL_1_32:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
case GUARD_INTERVAL_1_16:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
break;
case GUARD_INTERVAL_1_8:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
break;
case GUARD_INTERVAL_1_4:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
break;
case GUARD_INTERVAL_AUTO:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
default:
return -EINVAL;
}
// set transmission mode
switch (fe_params->transmission_mode) {
case TRANSMISSION_MODE_2K:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
break;
case TRANSMISSION_MODE_8K:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
break;
case TRANSMISSION_MODE_AUTO:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
break;
default:
return -EINVAL;
}
// start the lock
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
break;
case TDA1004X_DEMOD_TDA10046:
tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
msleep(1);
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
break;
}
msleep(10);
return 0;
}
static int tda1004x_get_fe(struct dvb_frontend *fe,
struct dtv_frontend_properties *fe_params)
{
struct tda1004x_state* state = fe->demodulator_priv;
int status;
dprintk("%s\n", __func__);
status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
if (status == -1)
return -EIO;
/* Only update the properties cache if device is locked */
if (!(status & 8))
return 0;
// inversion status
fe_params->inversion = INVERSION_OFF;
if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
fe_params->inversion = INVERSION_ON;
if (state->config->invert)
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
// bandwidth
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
case 0x14:
fe_params->bandwidth_hz = 8000000;
break;
case 0xdb:
fe_params->bandwidth_hz = 7000000;
break;
case 0x4f:
fe_params->bandwidth_hz = 6000000;
break;
}
break;
case TDA1004X_DEMOD_TDA10046:
switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
case 0x5c:
case 0x54:
fe_params->bandwidth_hz = 8000000;
break;
case 0x6a:
case 0x60:
fe_params->bandwidth_hz = 7000000;
break;
case 0x7b:
case 0x70:
fe_params->bandwidth_hz = 6000000;
break;
}
break;
}
// FEC
fe_params->code_rate_HP =
tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
fe_params->code_rate_LP =
tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
/* modulation */
switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
case 0:
fe_params->modulation = QPSK;
break;
case 1:
fe_params->modulation = QAM_16;
break;
case 2:
fe_params->modulation = QAM_64;
break;
}
// transmission mode
fe_params->transmission_mode = TRANSMISSION_MODE_2K;
if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
fe_params->transmission_mode = TRANSMISSION_MODE_8K;
// guard interval
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
case 0:
fe_params->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
fe_params->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fe_params->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fe_params->guard_interval = GUARD_INTERVAL_1_4;
break;
}
// hierarchy
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
case 0:
fe_params->hierarchy = HIERARCHY_NONE;
break;
case 1:
fe_params->hierarchy = HIERARCHY_1;
break;
case 2:
fe_params->hierarchy = HIERARCHY_2;
break;
case 3:
fe_params->hierarchy = HIERARCHY_4;
break;
}
return 0;
}
static int tda1004x_read_status(struct dvb_frontend *fe,
enum fe_status *fe_status)
{
struct tda1004x_state* state = fe->demodulator_priv;
int status;
int cber;
int vber;
dprintk("%s\n", __func__);
// read status
status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
if (status == -1)
return -EIO;
// decode
*fe_status = 0;
if (status & 4)
*fe_status |= FE_HAS_SIGNAL;
if (status & 2)
*fe_status |= FE_HAS_CARRIER;
if (status & 8)
*fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
// is getting anything valid
if (!(*fe_status & FE_HAS_VITERBI)) {
// read the CBER
cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
if (cber == -1)
return -EIO;
status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
if (status == -1)
return -EIO;
cber |= (status << 8);
// The address 0x20 should be read to cope with a TDA10046 bug
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
if (cber != 65535)
*fe_status |= FE_HAS_VITERBI;
}
// if we DO have some valid VITERBI output, but don't already have SYNC
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
// read the VBER
vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
if (vber == -1)
return -EIO;
status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
if (status == -1)
return -EIO;
vber |= (status << 8);
status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
if (status == -1)
return -EIO;
vber |= (status & 0x0f) << 16;
// The CVBER_LUT should be read to cope with TDA10046 hardware bug
tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
// if RS has passed some valid TS packets, then we must be
// getting some SYNC bytes
if (vber < 16632)
*fe_status |= FE_HAS_SYNC;
}
// success
dprintk("%s: fe_status=0x%x\n", __func__, *fe_status);
return 0;
}
static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int reg = 0;
dprintk("%s\n", __func__);
// determine the register to use
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
reg = TDA10045H_S_AGC;
break;
case TDA1004X_DEMOD_TDA10046:
reg = TDA10046H_AGC_IF_LEVEL;
break;
}
// read it
tmp = tda1004x_read_byte(state, reg);
if (tmp < 0)
return -EIO;
*signal = (tmp << 8) | tmp;
dprintk("%s: signal=0x%x\n", __func__, *signal);
return 0;
}
static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
dprintk("%s\n", __func__);
// read it
tmp = tda1004x_read_byte(state, TDA1004X_SNR);
if (tmp < 0)
return -EIO;
tmp = 255 - tmp;
*snr = ((tmp << 8) | tmp);
dprintk("%s: snr=0x%x\n", __func__, *snr);
return 0;
}
static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int tmp2;
int counter;
dprintk("%s\n", __func__);
// read the UCBLOCKS and reset
counter = 0;
tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
if (tmp < 0)
return -EIO;
tmp &= 0x7f;
while (counter++ < 5) {
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
if (tmp2 < 0)
return -EIO;
tmp2 &= 0x7f;
if ((tmp2 < tmp) || (tmp2 == 0))
break;
}
if (tmp != 0x7f)
*ucblocks = tmp;
else
*ucblocks = 0xffffffff;
dprintk("%s: ucblocks=0x%x\n", __func__, *ucblocks);
return 0;
}
static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
dprintk("%s\n", __func__);
// read it in
tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
if (tmp < 0)
return -EIO;
*ber = tmp << 1;
tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
if (tmp < 0)
return -EIO;
*ber |= (tmp << 9);
// The address 0x20 should be read to cope with a TDA10046 bug
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
dprintk("%s: ber=0x%x\n", __func__, *ber);
return 0;
}
static int tda1004x_sleep(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int gpio_conf;
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
break;
case TDA1004X_DEMOD_TDA10046:
/* set outputs to tristate */
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
/* invert GPIO 1 and 3 if desired*/
gpio_conf = state->config->gpio_config;
if (gpio_conf >= TDA10046_GP00_I)
tda1004x_write_mask(state, TDA10046H_CONF_POLARITY, 0x0f,
(gpio_conf & 0x0f) ^ 0x0a);
tda1004x_write_mask(state, TDA1004X_CONFADC2, 0xc0, 0xc0);
tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
break;
}
return 0;
}
static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct tda1004x_state* state = fe->demodulator_priv;
if (enable) {
return tda1004x_enable_tuner_i2c(state);
} else {
return tda1004x_disable_tuner_i2c(state);
}
}
static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 800;
/* Drift compensation makes no sense for DVB-T */
fesettings->step_size = 0;
fesettings->max_drift = 0;
return 0;
}
static void tda1004x_release(struct dvb_frontend* fe)
{
struct tda1004x_state *state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops tda10045_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Philips TDA10045H DVB-T",
.frequency_min_hz = 51 * MHz,
.frequency_max_hz = 858 * MHz,
.frequency_stepsize_hz = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10045_init,
.sleep = tda1004x_sleep,
.write = tda1004x_write,
.i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
struct i2c_adapter* i2c)
{
struct tda1004x_state *state;
int id;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state) {
printk(KERN_ERR "Can't allocate memory for tda10045 state\n");
return NULL;
}
/* setup the state */
state->config = config;
state->i2c = i2c;
state->demod_type = TDA1004X_DEMOD_TDA10045;
/* check if the demod is there */
id = tda1004x_read_byte(state, TDA1004X_CHIPID);
if (id < 0) {
printk(KERN_ERR "tda10045: chip is not answering. Giving up.\n");
kfree(state);
return NULL;
}
if (id != 0x25) {
printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
kfree(state);
return NULL;
}
/* create dvb_frontend */
memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
}
static const struct dvb_frontend_ops tda10046_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Philips TDA10046H DVB-T",
.frequency_min_hz = 51 * MHz,
.frequency_max_hz = 858 * MHz,
.frequency_stepsize_hz = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10046_init,
.sleep = tda1004x_sleep,
.write = tda1004x_write,
.i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
struct i2c_adapter* i2c)
{
struct tda1004x_state *state;
int id;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state) {
printk(KERN_ERR "Can't allocate memory for tda10046 state\n");
return NULL;
}
/* setup the state */
state->config = config;
state->i2c = i2c;
state->demod_type = TDA1004X_DEMOD_TDA10046;
/* check if the demod is there */
id = tda1004x_read_byte(state, TDA1004X_CHIPID);
if (id < 0) {
printk(KERN_ERR "tda10046: chip is not answering. Giving up.\n");
kfree(state);
return NULL;
}
if (id != 0x46) {
printk(KERN_ERR "Invalid tda1004x ID = 0x%02x. Can't proceed\n", id);
kfree(state);
return NULL;
}
/* create dvb_frontend */
memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
}
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL_GPL(tda10045_attach);
EXPORT_SYMBOL_GPL(tda10046_attach);
|