summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/i40e/i40e_ptp.c
blob: 1199f0502d6d5169fa211beb15f3b86331428582 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */

#include "i40e.h"
#include <linux/ptp_classify.h>

/* The XL710 timesync is very much like Intel's 82599 design when it comes to
 * the fundamental clock design. However, the clock operations are much simpler
 * in the XL710 because the device supports a full 64 bits of nanoseconds.
 * Because the field is so wide, we can forgo the cycle counter and just
 * operate with the nanosecond field directly without fear of overflow.
 *
 * Much like the 82599, the update period is dependent upon the link speed:
 * At 40Gb link or no link, the period is 1.6ns.
 * At 10Gb link, the period is multiplied by 2. (3.2ns)
 * At 1Gb link, the period is multiplied by 20. (32ns)
 * 1588 functionality is not supported at 100Mbps.
 */
#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
#define I40E_PTP_10GB_INCVAL_MULT	2
#define I40E_PTP_1GB_INCVAL_MULT	20

#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)

/**
 * i40e_ptp_read - Read the PHC time from the device
 * @pf: Board private structure
 * @ts: timespec structure to hold the current time value
 *
 * This function reads the PRTTSYN_TIME registers and stores them in a
 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 * convert the result to a timespec before we can return.
 **/
static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
{
	struct i40e_hw *hw = &pf->hw;
	u32 hi, lo;
	u64 ns;

	/* The timer latches on the lowest register read. */
	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
	hi = rd32(hw, I40E_PRTTSYN_TIME_H);

	ns = (((u64)hi) << 32) | lo;

	*ts = ns_to_timespec64(ns);
}

/**
 * i40e_ptp_write - Write the PHC time to the device
 * @pf: Board private structure
 * @ts: timespec structure that holds the new time value
 *
 * This function writes the PRTTSYN_TIME registers with the user value. Since
 * we receive a timespec from the stack, we must convert that timespec into
 * nanoseconds before programming the registers.
 **/
static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
{
	struct i40e_hw *hw = &pf->hw;
	u64 ns = timespec64_to_ns(ts);

	/* The timer will not update until the high register is written, so
	 * write the low register first.
	 */
	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
}

/**
 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 * @hwtstamps: Timestamp structure to update
 * @timestamp: Timestamp from the hardware
 *
 * We need to convert the NIC clock value into a hwtstamp which can be used by
 * the upper level timestamping functions. Since the timestamp is simply a 64-
 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 **/
static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
					 u64 timestamp)
{
	memset(hwtstamps, 0, sizeof(*hwtstamps));

	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
}

/**
 * i40e_ptp_adjfreq - Adjust the PHC frequency
 * @ptp: The PTP clock structure
 * @ppb: Parts per billion adjustment from the base
 *
 * Adjust the frequency of the PHC by the indicated parts per billion from the
 * base frequency.
 **/
static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
	struct i40e_hw *hw = &pf->hw;
	u64 adj, freq, diff;
	int neg_adj = 0;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}

	freq = I40E_PTP_40GB_INCVAL;
	freq *= ppb;
	diff = div_u64(freq, 1000000000ULL);

	if (neg_adj)
		adj = I40E_PTP_40GB_INCVAL - diff;
	else
		adj = I40E_PTP_40GB_INCVAL + diff;

	/* At some link speeds, the base incval is so large that directly
	 * multiplying by ppb would result in arithmetic overflow even when
	 * using a u64. Avoid this by instead calculating the new incval
	 * always in terms of the 40GbE clock rate and then multiplying by the
	 * link speed factor afterwards. This does result in slightly lower
	 * precision at lower link speeds, but it is fairly minor.
	 */
	smp_mb(); /* Force any pending update before accessing. */
	adj *= READ_ONCE(pf->ptp_adj_mult);

	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);

	return 0;
}

/**
 * i40e_ptp_adjtime - Adjust the PHC time
 * @ptp: The PTP clock structure
 * @delta: Offset in nanoseconds to adjust the PHC time by
 *
 * Adjust the frequency of the PHC by the indicated parts per billion from the
 * base frequency.
 **/
static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
	struct timespec64 now;

	mutex_lock(&pf->tmreg_lock);

	i40e_ptp_read(pf, &now);
	timespec64_add_ns(&now, delta);
	i40e_ptp_write(pf, (const struct timespec64 *)&now);

	mutex_unlock(&pf->tmreg_lock);

	return 0;
}

/**
 * i40e_ptp_gettime - Get the time of the PHC
 * @ptp: The PTP clock structure
 * @ts: timespec structure to hold the current time value
 *
 * Read the device clock and return the correct value on ns, after converting it
 * into a timespec struct.
 **/
static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);

	mutex_lock(&pf->tmreg_lock);
	i40e_ptp_read(pf, ts);
	mutex_unlock(&pf->tmreg_lock);

	return 0;
}

/**
 * i40e_ptp_settime - Set the time of the PHC
 * @ptp: The PTP clock structure
 * @ts: timespec structure that holds the new time value
 *
 * Set the device clock to the user input value. The conversion from timespec
 * to ns happens in the write function.
 **/
static int i40e_ptp_settime(struct ptp_clock_info *ptp,
			    const struct timespec64 *ts)
{
	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);

	mutex_lock(&pf->tmreg_lock);
	i40e_ptp_write(pf, ts);
	mutex_unlock(&pf->tmreg_lock);

	return 0;
}

/**
 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
 * @ptp: The PTP clock structure
 * @rq: The requested feature to change
 * @on: Enable/disable flag
 *
 * The XL710 does not support any of the ancillary features of the PHC
 * subsystem, so this function may just return.
 **/
static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
				   struct ptp_clock_request *rq, int on)
{
	return -EOPNOTSUPP;
}

/**
 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
 * @pf: the PF data structure
 *
 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
 * for noticed latch events. This allows the driver to keep track of the first
 * time a latch event was noticed which will be used to help clear out Rx
 * timestamps for packets that got dropped or lost.
 *
 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
 * expected to be called only while under the ptp_rx_lock.
 **/
static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
{
	struct i40e_hw *hw = &pf->hw;
	u32 prttsyn_stat, new_latch_events;
	int  i;

	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;

	/* Update the jiffies time for any newly latched timestamp. This
	 * ensures that we store the time that we first discovered a timestamp
	 * was latched by the hardware. The service task will later determine
	 * if we should free the latch and drop that timestamp should too much
	 * time pass. This flow ensures that we only update jiffies for new
	 * events latched since the last time we checked, and not all events
	 * currently latched, so that the service task accounting remains
	 * accurate.
	 */
	for (i = 0; i < 4; i++) {
		if (new_latch_events & BIT(i))
			pf->latch_events[i] = jiffies;
	}

	/* Finally, we store the current status of the Rx timestamp latches */
	pf->latch_event_flags = prttsyn_stat;

	return prttsyn_stat;
}

/**
 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 * @pf: The PF private data structure
 * @vsi: The VSI with the rings relevant to 1588
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
 **/
void i40e_ptp_rx_hang(struct i40e_pf *pf)
{
	struct i40e_hw *hw = &pf->hw;
	unsigned int i, cleared = 0;

	/* Since we cannot turn off the Rx timestamp logic if the device is
	 * configured for Tx timestamping, we check if Rx timestamping is
	 * configured. We don't want to spuriously warn about Rx timestamp
	 * hangs if we don't care about the timestamps.
	 */
	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
		return;

	spin_lock_bh(&pf->ptp_rx_lock);

	/* Update current latch times for Rx events */
	i40e_ptp_get_rx_events(pf);

	/* Check all the currently latched Rx events and see whether they have
	 * been latched for over a second. It is assumed that any timestamp
	 * should have been cleared within this time, or else it was captured
	 * for a dropped frame that the driver never received. Thus, we will
	 * clear any timestamp that has been latched for over 1 second.
	 */
	for (i = 0; i < 4; i++) {
		if ((pf->latch_event_flags & BIT(i)) &&
		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
			pf->latch_event_flags &= ~BIT(i);
			cleared++;
		}
	}

	spin_unlock_bh(&pf->ptp_rx_lock);

	/* Log a warning if more than 2 timestamps got dropped in the same
	 * check. We don't want to warn about all drops because it can occur
	 * in normal scenarios such as PTP frames on multicast addresses we
	 * aren't listening to. However, administrator should know if this is
	 * the reason packets aren't receiving timestamps.
	 */
	if (cleared > 2)
		dev_dbg(&pf->pdev->dev,
			"Dropped %d missed RXTIME timestamp events\n",
			cleared);

	/* Finally, update the rx_hwtstamp_cleared counter */
	pf->rx_hwtstamp_cleared += cleared;
}

/**
 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
 * @pf: The PF private data structure
 *
 * This watchdog task is run periodically to make sure that we clear the Tx
 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
 * time. It is unexpected in the normal case but if it occurs it results in
 * permanently preventing timestamps of future packets.
 **/
void i40e_ptp_tx_hang(struct i40e_pf *pf)
{
	struct sk_buff *skb;

	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
		return;

	/* Nothing to do if we're not already waiting for a timestamp */
	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
		return;

	/* We already have a handler routine which is run when we are notified
	 * of a Tx timestamp in the hardware. If we don't get an interrupt
	 * within a second it is reasonable to assume that we never will.
	 */
	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
		skb = pf->ptp_tx_skb;
		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);

		/* Free the skb after we clear the bitlock */
		dev_kfree_skb_any(skb);
		pf->tx_hwtstamp_timeouts++;
	}
}

/**
 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
 * @pf: Board private structure
 *
 * Read the value of the Tx timestamp from the registers, convert it into a
 * value consumable by the stack, and store that result into the shhwtstamps
 * struct before returning it up the stack.
 **/
void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
{
	struct skb_shared_hwtstamps shhwtstamps;
	struct sk_buff *skb = pf->ptp_tx_skb;
	struct i40e_hw *hw = &pf->hw;
	u32 hi, lo;
	u64 ns;

	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
		return;

	/* don't attempt to timestamp if we don't have an skb */
	if (!pf->ptp_tx_skb)
		return;

	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);

	ns = (((u64)hi) << 32) | lo;
	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);

	/* Clear the bit lock as soon as possible after reading the register,
	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
	 * applications might wake up and attempt to request another transmit
	 * timestamp prior to the bit lock being cleared.
	 */
	pf->ptp_tx_skb = NULL;
	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);

	/* Notify the stack and free the skb after we've unlocked */
	skb_tstamp_tx(skb, &shhwtstamps);
	dev_kfree_skb_any(skb);
}

/**
 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
 * @pf: Board private structure
 * @skb: Particular skb to send timestamp with
 * @index: Index into the receive timestamp registers for the timestamp
 *
 * The XL710 receives a notification in the receive descriptor with an offset
 * into the set of RXTIME registers where the timestamp is for that skb. This
 * function goes and fetches the receive timestamp from that offset, if a valid
 * one exists. The RXTIME registers are in ns, so we must convert the result
 * first.
 **/
void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
{
	u32 prttsyn_stat, hi, lo;
	struct i40e_hw *hw;
	u64 ns;

	/* Since we cannot turn off the Rx timestamp logic if the device is
	 * doing Tx timestamping, check if Rx timestamping is configured.
	 */
	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
		return;

	hw = &pf->hw;

	spin_lock_bh(&pf->ptp_rx_lock);

	/* Get current Rx events and update latch times */
	prttsyn_stat = i40e_ptp_get_rx_events(pf);

	/* TODO: Should we warn about missing Rx timestamp event? */
	if (!(prttsyn_stat & BIT(index))) {
		spin_unlock_bh(&pf->ptp_rx_lock);
		return;
	}

	/* Clear the latched event since we're about to read its register */
	pf->latch_event_flags &= ~BIT(index);

	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));

	spin_unlock_bh(&pf->ptp_rx_lock);

	ns = (((u64)hi) << 32) | lo;

	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
}

/**
 * i40e_ptp_set_increment - Utility function to update clock increment rate
 * @pf: Board private structure
 *
 * During a link change, the DMA frequency that drives the 1588 logic will
 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
 * we must update the increment value per clock tick.
 **/
void i40e_ptp_set_increment(struct i40e_pf *pf)
{
	struct i40e_link_status *hw_link_info;
	struct i40e_hw *hw = &pf->hw;
	u64 incval;
	u32 mult;

	hw_link_info = &hw->phy.link_info;

	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);

	switch (hw_link_info->link_speed) {
	case I40E_LINK_SPEED_10GB:
		mult = I40E_PTP_10GB_INCVAL_MULT;
		break;
	case I40E_LINK_SPEED_1GB:
		mult = I40E_PTP_1GB_INCVAL_MULT;
		break;
	case I40E_LINK_SPEED_100MB:
	{
		static int warn_once;

		if (!warn_once) {
			dev_warn(&pf->pdev->dev,
				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
			warn_once++;
		}
		mult = 0;
		break;
	}
	case I40E_LINK_SPEED_40GB:
	default:
		mult = 1;
		break;
	}

	/* The increment value is calculated by taking the base 40GbE incvalue
	 * and multiplying it by a factor based on the link speed.
	 */
	incval = I40E_PTP_40GB_INCVAL * mult;

	/* Write the new increment value into the increment register. The
	 * hardware will not update the clock until both registers have been
	 * written.
	 */
	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);

	/* Update the base adjustement value. */
	WRITE_ONCE(pf->ptp_adj_mult, mult);
	smp_mb(); /* Force the above update. */
}

/**
 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Obtain the current hardware timestamping settigs as requested. To do this,
 * keep a shadow copy of the timestamp settings rather than attempting to
 * deconstruct it from the registers.
 **/
int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config *config = &pf->tstamp_config;

	if (!(pf->flags & I40E_FLAG_PTP))
		return -EOPNOTSUPP;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}

/**
 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
 * @pf: Board private structure
 * @config: hwtstamp settings requested or saved
 *
 * Control hardware registers to enter the specific mode requested by the
 * user. Also used during reset path to ensure that timestamp settings are
 * maintained.
 *
 * Note: modifies config in place, and may update the requested mode to be
 * more broad if the specific filter is not directly supported.
 **/
static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
				       struct hwtstamp_config *config)
{
	struct i40e_hw *hw = &pf->hw;
	u32 tsyntype, regval;

	/* Reserved for future extensions. */
	if (config->flags)
		return -EINVAL;

	switch (config->tx_type) {
	case HWTSTAMP_TX_OFF:
		pf->ptp_tx = false;
		break;
	case HWTSTAMP_TX_ON:
		pf->ptp_tx = true;
		break;
	default:
		return -ERANGE;
	}

	switch (config->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		pf->ptp_rx = false;
		/* We set the type to V1, but do not enable UDP packet
		 * recognition. In this way, we should be as close to
		 * disabling PTP Rx timestamps as possible since V1 packets
		 * are always UDP, since L2 packets are a V2 feature.
		 */
		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
			return -ERANGE;
		pf->ptp_rx = true;
		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
			return -ERANGE;
		/* fall through */
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
		pf->ptp_rx = true;
		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		} else {
			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
		}
		break;
	case HWTSTAMP_FILTER_NTP_ALL:
	case HWTSTAMP_FILTER_ALL:
	default:
		return -ERANGE;
	}

	/* Clear out all 1588-related registers to clear and unlatch them. */
	spin_lock_bh(&pf->ptp_rx_lock);
	rd32(hw, I40E_PRTTSYN_STAT_0);
	rd32(hw, I40E_PRTTSYN_TXTIME_H);
	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
	pf->latch_event_flags = 0;
	spin_unlock_bh(&pf->ptp_rx_lock);

	/* Enable/disable the Tx timestamp interrupt based on user input. */
	regval = rd32(hw, I40E_PRTTSYN_CTL0);
	if (pf->ptp_tx)
		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
	else
		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
	wr32(hw, I40E_PRTTSYN_CTL0, regval);

	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
	if (pf->ptp_tx)
		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
	else
		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
	wr32(hw, I40E_PFINT_ICR0_ENA, regval);

	/* Although there is no simple on/off switch for Rx, we "disable" Rx
	 * timestamps by setting to V1 only mode and clear the UDP
	 * recognition. This ought to disable all PTP Rx timestamps as V1
	 * packets are always over UDP. Note that software is configured to
	 * ignore Rx timestamps via the pf->ptp_rx flag.
	 */
	regval = rd32(hw, I40E_PRTTSYN_CTL1);
	/* clear everything but the enable bit */
	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
	/* now enable bits for desired Rx timestamps */
	regval |= tsyntype;
	wr32(hw, I40E_PRTTSYN_CTL1, regval);

	return 0;
}

/**
 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Respond to the user filter requests and make the appropriate hardware
 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
 * logic, so keep track in software of whether to indicate these timestamps
 * or not.
 *
 * It is permissible to "upgrade" the user request to a broader filter, as long
 * as the user receives the timestamps they care about and the user is notified
 * the filter has been broadened.
 **/
int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config config;
	int err;

	if (!(pf->flags & I40E_FLAG_PTP))
		return -EOPNOTSUPP;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = i40e_ptp_set_timestamp_mode(pf, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	pf->tstamp_config = config;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

/**
 * i40e_ptp_create_clock - Create PTP clock device for userspace
 * @pf: Board private structure
 *
 * This function creates a new PTP clock device. It only creates one if we
 * don't already have one, so it is safe to call. Will return error if it
 * can't create one, but success if we already have a device. Should be used
 * by i40e_ptp_init to create clock initially, and prevent global resets from
 * creating new clock devices.
 **/
static long i40e_ptp_create_clock(struct i40e_pf *pf)
{
	/* no need to create a clock device if we already have one */
	if (!IS_ERR_OR_NULL(pf->ptp_clock))
		return 0;

	strncpy(pf->ptp_caps.name, i40e_driver_name,
		sizeof(pf->ptp_caps.name) - 1);
	pf->ptp_caps.owner = THIS_MODULE;
	pf->ptp_caps.max_adj = 999999999;
	pf->ptp_caps.n_ext_ts = 0;
	pf->ptp_caps.pps = 0;
	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
	pf->ptp_caps.gettime64 = i40e_ptp_gettime;
	pf->ptp_caps.settime64 = i40e_ptp_settime;
	pf->ptp_caps.enable = i40e_ptp_feature_enable;

	/* Attempt to register the clock before enabling the hardware. */
	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
	if (IS_ERR(pf->ptp_clock))
		return PTR_ERR(pf->ptp_clock);

	/* clear the hwtstamp settings here during clock create, instead of
	 * during regular init, so that we can maintain settings across a
	 * reset or suspend.
	 */
	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

	return 0;
}

/**
 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
 * @pf: Board private structure
 *
 * This function sets device up for 1588 support. The first time it is run, it
 * will create a PHC clock device. It does not create a clock device if one
 * already exists. It also reconfigures the device after a reset.
 **/
void i40e_ptp_init(struct i40e_pf *pf)
{
	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
	struct i40e_hw *hw = &pf->hw;
	u32 pf_id;
	long err;

	/* Only one PF is assigned to control 1588 logic per port. Do not
	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
	 */
	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
	if (hw->pf_id != pf_id) {
		pf->flags &= ~I40E_FLAG_PTP;
		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
			 __func__,
			 netdev->name);
		return;
	}

	mutex_init(&pf->tmreg_lock);
	spin_lock_init(&pf->ptp_rx_lock);

	/* ensure we have a clock device */
	err = i40e_ptp_create_clock(pf);
	if (err) {
		pf->ptp_clock = NULL;
		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
			__func__);
	} else if (pf->ptp_clock) {
		struct timespec64 ts;
		u32 regval;

		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
			dev_info(&pf->pdev->dev, "PHC enabled\n");
		pf->flags |= I40E_FLAG_PTP;

		/* Ensure the clocks are running. */
		regval = rd32(hw, I40E_PRTTSYN_CTL0);
		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
		wr32(hw, I40E_PRTTSYN_CTL0, regval);
		regval = rd32(hw, I40E_PRTTSYN_CTL1);
		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
		wr32(hw, I40E_PRTTSYN_CTL1, regval);

		/* Set the increment value per clock tick. */
		i40e_ptp_set_increment(pf);

		/* reset timestamping mode */
		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);

		/* Set the clock value. */
		ts = ktime_to_timespec64(ktime_get_real());
		i40e_ptp_settime(&pf->ptp_caps, &ts);
	}
}

/**
 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
 * @pf: Board private structure
 *
 * This function handles the cleanup work required from the initialization by
 * clearing out the important information and unregistering the PHC.
 **/
void i40e_ptp_stop(struct i40e_pf *pf)
{
	pf->flags &= ~I40E_FLAG_PTP;
	pf->ptp_tx = false;
	pf->ptp_rx = false;

	if (pf->ptp_tx_skb) {
		struct sk_buff *skb = pf->ptp_tx_skb;

		pf->ptp_tx_skb = NULL;
		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
		dev_kfree_skb_any(skb);
	}

	if (pf->ptp_clock) {
		ptp_clock_unregister(pf->ptp_clock);
		pf->ptp_clock = NULL;
		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
			 pf->vsi[pf->lan_vsi]->netdev->name);
	}
}