1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
|
menu "Kernel hacking"
menu "printk and dmesg options"
config PRINTK_TIME
bool "Show timing information on printks"
depends on PRINTK
help
Selecting this option causes time stamps of the printk()
messages to be added to the output of the syslog() system
call and at the console.
The timestamp is always recorded internally, and exported
to /dev/kmsg. This flag just specifies if the timestamp should
be included, not that the timestamp is recorded.
The behavior is also controlled by the kernel command line
parameter printk.time=1. See Documentation/admin-guide/kernel-parameters.rst
config CONSOLE_LOGLEVEL_DEFAULT
int "Default console loglevel (1-15)"
range 1 15
default "7"
help
Default loglevel to determine what will be printed on the console.
Setting a default here is equivalent to passing in loglevel=<x> in
the kernel bootargs. loglevel=<x> continues to override whatever
value is specified here as well.
Note: This does not affect the log level of un-prefixed printk()
usage in the kernel. That is controlled by the MESSAGE_LOGLEVEL_DEFAULT
option.
config CONSOLE_LOGLEVEL_QUIET
int "quiet console loglevel (1-15)"
range 1 15
default "4"
help
loglevel to use when "quiet" is passed on the kernel commandline.
When "quiet" is passed on the kernel commandline this loglevel
will be used as the loglevel. IOW passing "quiet" will be the
equivalent of passing "loglevel=<CONSOLE_LOGLEVEL_QUIET>"
config MESSAGE_LOGLEVEL_DEFAULT
int "Default message log level (1-7)"
range 1 7
default "4"
help
Default log level for printk statements with no specified priority.
This was hard-coded to KERN_WARNING since at least 2.6.10 but folks
that are auditing their logs closely may want to set it to a lower
priority.
Note: This does not affect what message level gets printed on the console
by default. To change that, use loglevel=<x> in the kernel bootargs,
or pick a different CONSOLE_LOGLEVEL_DEFAULT configuration value.
config BOOT_PRINTK_DELAY
bool "Delay each boot printk message by N milliseconds"
depends on DEBUG_KERNEL && PRINTK && GENERIC_CALIBRATE_DELAY
help
This build option allows you to read kernel boot messages
by inserting a short delay after each one. The delay is
specified in milliseconds on the kernel command line,
using "boot_delay=N".
It is likely that you would also need to use "lpj=M" to preset
the "loops per jiffie" value.
See a previous boot log for the "lpj" value to use for your
system, and then set "lpj=M" before setting "boot_delay=N".
NOTE: Using this option may adversely affect SMP systems.
I.e., processors other than the first one may not boot up.
BOOT_PRINTK_DELAY also may cause LOCKUP_DETECTOR to detect
what it believes to be lockup conditions.
config DYNAMIC_DEBUG
bool "Enable dynamic printk() support"
default n
depends on PRINTK
depends on DEBUG_FS
help
Compiles debug level messages into the kernel, which would not
otherwise be available at runtime. These messages can then be
enabled/disabled based on various levels of scope - per source file,
function, module, format string, and line number. This mechanism
implicitly compiles in all pr_debug() and dev_dbg() calls, which
enlarges the kernel text size by about 2%.
If a source file is compiled with DEBUG flag set, any
pr_debug() calls in it are enabled by default, but can be
disabled at runtime as below. Note that DEBUG flag is
turned on by many CONFIG_*DEBUG* options.
Usage:
Dynamic debugging is controlled via the 'dynamic_debug/control' file,
which is contained in the 'debugfs' filesystem. Thus, the debugfs
filesystem must first be mounted before making use of this feature.
We refer the control file as: <debugfs>/dynamic_debug/control. This
file contains a list of the debug statements that can be enabled. The
format for each line of the file is:
filename:lineno [module]function flags format
filename : source file of the debug statement
lineno : line number of the debug statement
module : module that contains the debug statement
function : function that contains the debug statement
flags : '=p' means the line is turned 'on' for printing
format : the format used for the debug statement
From a live system:
nullarbor:~ # cat <debugfs>/dynamic_debug/control
# filename:lineno [module]function flags format
fs/aio.c:222 [aio]__put_ioctx =_ "__put_ioctx:\040freeing\040%p\012"
fs/aio.c:248 [aio]ioctx_alloc =_ "ENOMEM:\040nr_events\040too\040high\012"
fs/aio.c:1770 [aio]sys_io_cancel =_ "calling\040cancel\012"
Example usage:
// enable the message at line 1603 of file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control
// enable all the messages in file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c +p' >
<debugfs>/dynamic_debug/control
// enable all the messages in the NFS server module
nullarbor:~ # echo -n 'module nfsd +p' >
<debugfs>/dynamic_debug/control
// enable all 12 messages in the function svc_process()
nullarbor:~ # echo -n 'func svc_process +p' >
<debugfs>/dynamic_debug/control
// disable all 12 messages in the function svc_process()
nullarbor:~ # echo -n 'func svc_process -p' >
<debugfs>/dynamic_debug/control
See Documentation/admin-guide/dynamic-debug-howto.rst for additional
information.
endmenu # "printk and dmesg options"
menu "Compile-time checks and compiler options"
config DEBUG_INFO
bool "Compile the kernel with debug info"
depends on DEBUG_KERNEL && !COMPILE_TEST
help
If you say Y here the resulting kernel image will include
debugging info resulting in a larger kernel image.
This adds debug symbols to the kernel and modules (gcc -g), and
is needed if you intend to use kernel crashdump or binary object
tools like crash, kgdb, LKCD, gdb, etc on the kernel.
Say Y here only if you plan to debug the kernel.
If unsure, say N.
config DEBUG_INFO_REDUCED
bool "Reduce debugging information"
depends on DEBUG_INFO
help
If you say Y here gcc is instructed to generate less debugging
information for structure types. This means that tools that
need full debugging information (like kgdb or systemtap) won't
be happy. But if you merely need debugging information to
resolve line numbers there is no loss. Advantage is that
build directory object sizes shrink dramatically over a full
DEBUG_INFO build and compile times are reduced too.
Only works with newer gcc versions.
config DEBUG_INFO_SPLIT
bool "Produce split debuginfo in .dwo files"
depends on DEBUG_INFO
help
Generate debug info into separate .dwo files. This significantly
reduces the build directory size for builds with DEBUG_INFO,
because it stores the information only once on disk in .dwo
files instead of multiple times in object files and executables.
In addition the debug information is also compressed.
Requires recent gcc (4.7+) and recent gdb/binutils.
Any tool that packages or reads debug information would need
to know about the .dwo files and include them.
Incompatible with older versions of ccache.
config DEBUG_INFO_DWARF4
bool "Generate dwarf4 debuginfo"
depends on DEBUG_INFO
help
Generate dwarf4 debug info. This requires recent versions
of gcc and gdb. It makes the debug information larger.
But it significantly improves the success of resolving
variables in gdb on optimized code.
config GDB_SCRIPTS
bool "Provide GDB scripts for kernel debugging"
depends on DEBUG_INFO
help
This creates the required links to GDB helper scripts in the
build directory. If you load vmlinux into gdb, the helper
scripts will be automatically imported by gdb as well, and
additional functions are available to analyze a Linux kernel
instance. See Documentation/dev-tools/gdb-kernel-debugging.rst
for further details.
config ENABLE_MUST_CHECK
bool "Enable __must_check logic"
default y
help
Enable the __must_check logic in the kernel build. Disable this to
suppress the "warning: ignoring return value of 'foo', declared with
attribute warn_unused_result" messages.
config FRAME_WARN
int "Warn for stack frames larger than (needs gcc 4.4)"
range 0 8192
default 3072 if KASAN_EXTRA
default 2048 if GCC_PLUGIN_LATENT_ENTROPY
default 2048 if PARISC
default 1536 if (!64BIT && XTENSA)
default 1280 if KASAN && !64BIT
default 1024 if !64BIT
default 2048 if 64BIT
help
Tell gcc to warn at build time for stack frames larger than this.
Setting this too low will cause a lot of warnings.
Setting it to 0 disables the warning.
Requires gcc 4.4
config STRIP_ASM_SYMS
bool "Strip assembler-generated symbols during link"
default n
help
Strip internal assembler-generated symbols during a link (symbols
that look like '.Lxxx') so they don't pollute the output of
get_wchan() and suchlike.
config READABLE_ASM
bool "Generate readable assembler code"
depends on DEBUG_KERNEL
help
Disable some compiler optimizations that tend to generate human unreadable
assembler output. This may make the kernel slightly slower, but it helps
to keep kernel developers who have to stare a lot at assembler listings
sane.
config UNUSED_SYMBOLS
bool "Enable unused/obsolete exported symbols"
default y if X86
help
Unused but exported symbols make the kernel needlessly bigger. For
that reason most of these unused exports will soon be removed. This
option is provided temporarily to provide a transition period in case
some external kernel module needs one of these symbols anyway. If you
encounter such a case in your module, consider if you are actually
using the right API. (rationale: since nobody in the kernel is using
this in a module, there is a pretty good chance it's actually the
wrong interface to use). If you really need the symbol, please send a
mail to the linux kernel mailing list mentioning the symbol and why
you really need it, and what the merge plan to the mainline kernel for
your module is.
config PAGE_OWNER
bool "Track page owner"
depends on DEBUG_KERNEL && STACKTRACE_SUPPORT
select DEBUG_FS
select STACKTRACE
select STACKDEPOT
select PAGE_EXTENSION
help
This keeps track of what call chain is the owner of a page, may
help to find bare alloc_page(s) leaks. Even if you include this
feature on your build, it is disabled in default. You should pass
"page_owner=on" to boot parameter in order to enable it. Eats
a fair amount of memory if enabled. See tools/vm/page_owner_sort.c
for user-space helper.
If unsure, say N.
config DEBUG_FS
bool "Debug Filesystem"
help
debugfs is a virtual file system that kernel developers use to put
debugging files into. Enable this option to be able to read and
write to these files.
For detailed documentation on the debugfs API, see
Documentation/filesystems/.
If unsure, say N.
config HEADERS_CHECK
bool "Run 'make headers_check' when building vmlinux"
depends on !UML
help
This option will extract the user-visible kernel headers whenever
building the kernel, and will run basic sanity checks on them to
ensure that exported files do not attempt to include files which
were not exported, etc.
If you're making modifications to header files which are
relevant for userspace, say 'Y', and check the headers
exported to $(INSTALL_HDR_PATH) (usually 'usr/include' in
your build tree), to make sure they're suitable.
config DEBUG_SECTION_MISMATCH
bool "Enable full Section mismatch analysis"
help
The section mismatch analysis checks if there are illegal
references from one section to another section.
During linktime or runtime, some sections are dropped;
any use of code/data previously in these sections would
most likely result in an oops.
In the code, functions and variables are annotated with
__init,, etc. (see the full list in include/linux/init.h),
which results in the code/data being placed in specific sections.
The section mismatch analysis is always performed after a full
kernel build, and enabling this option causes the following
additional steps to occur:
- Add the option -fno-inline-functions-called-once to gcc commands.
When inlining a function annotated with __init in a non-init
function, we would lose the section information and thus
the analysis would not catch the illegal reference.
This option tells gcc to inline less (but it does result in
a larger kernel).
- Run the section mismatch analysis for each module/built-in.a file.
When we run the section mismatch analysis on vmlinux.o, we
lose valuable information about where the mismatch was
introduced.
Running the analysis for each module/built-in.a file
tells where the mismatch happens much closer to the
source. The drawback is that the same mismatch is
reported at least twice.
- Enable verbose reporting from modpost in order to help resolve
the section mismatches that are reported.
config SECTION_MISMATCH_WARN_ONLY
bool "Make section mismatch errors non-fatal"
default y
help
If you say N here, the build process will fail if there are any
section mismatch, instead of just throwing warnings.
If unsure, say Y.
#
# Select this config option from the architecture Kconfig, if it
# is preferred to always offer frame pointers as a config
# option on the architecture (regardless of KERNEL_DEBUG):
#
config ARCH_WANT_FRAME_POINTERS
bool
config FRAME_POINTER
bool "Compile the kernel with frame pointers"
depends on DEBUG_KERNEL && (M68K || UML || SUPERH) || ARCH_WANT_FRAME_POINTERS
default y if (DEBUG_INFO && UML) || ARCH_WANT_FRAME_POINTERS
help
If you say Y here the resulting kernel image will be slightly
larger and slower, but it gives very useful debugging information
in case of kernel bugs. (precise oopses/stacktraces/warnings)
config STACK_VALIDATION
bool "Compile-time stack metadata validation"
depends on HAVE_STACK_VALIDATION
default n
help
Add compile-time checks to validate stack metadata, including frame
pointers (if CONFIG_FRAME_POINTER is enabled). This helps ensure
that runtime stack traces are more reliable.
This is also a prerequisite for generation of ORC unwind data, which
is needed for CONFIG_UNWINDER_ORC.
For more information, see
tools/objtool/Documentation/stack-validation.txt.
config DEBUG_FORCE_WEAK_PER_CPU
bool "Force weak per-cpu definitions"
depends on DEBUG_KERNEL
help
s390 and alpha require percpu variables in modules to be
defined weak to work around addressing range issue which
puts the following two restrictions on percpu variable
definitions.
1. percpu symbols must be unique whether static or not
2. percpu variables can't be defined inside a function
To ensure that generic code follows the above rules, this
option forces all percpu variables to be defined as weak.
endmenu # "Compiler options"
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on !UML
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/admin-guide/sysrq.rst>.
Don't say Y unless you really know what this hack does.
config MAGIC_SYSRQ_DEFAULT_ENABLE
hex "Enable magic SysRq key functions by default"
depends on MAGIC_SYSRQ
default 0x1
help
Specifies which SysRq key functions are enabled by default.
This may be set to 1 or 0 to enable or disable them all, or
to a bitmask as described in Documentation/admin-guide/sysrq.rst.
config MAGIC_SYSRQ_SERIAL
bool "Enable magic SysRq key over serial"
depends on MAGIC_SYSRQ
default y
help
Many embedded boards have a disconnected TTL level serial which can
generate some garbage that can lead to spurious false sysrq detects.
This option allows you to decide whether you want to enable the
magic SysRq key.
config DEBUG_KERNEL
bool "Kernel debugging"
help
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
menu "Memory Debugging"
source mm/Kconfig.debug
config DEBUG_OBJECTS
bool "Debug object operations"
depends on DEBUG_KERNEL
help
If you say Y here, additional code will be inserted into the
kernel to track the life time of various objects and validate
the operations on those objects.
config DEBUG_OBJECTS_SELFTEST
bool "Debug objects selftest"
depends on DEBUG_OBJECTS
help
This enables the selftest of the object debug code.
config DEBUG_OBJECTS_FREE
bool "Debug objects in freed memory"
depends on DEBUG_OBJECTS
help
This enables checks whether a k/v free operation frees an area
which contains an object which has not been deactivated
properly. This can make kmalloc/kfree-intensive workloads
much slower.
config DEBUG_OBJECTS_TIMERS
bool "Debug timer objects"
depends on DEBUG_OBJECTS
help
If you say Y here, additional code will be inserted into the
timer routines to track the life time of timer objects and
validate the timer operations.
config DEBUG_OBJECTS_WORK
bool "Debug work objects"
depends on DEBUG_OBJECTS
help
If you say Y here, additional code will be inserted into the
work queue routines to track the life time of work objects and
validate the work operations.
config DEBUG_OBJECTS_RCU_HEAD
bool "Debug RCU callbacks objects"
depends on DEBUG_OBJECTS
help
Enable this to turn on debugging of RCU list heads (call_rcu() usage).
config DEBUG_OBJECTS_PERCPU_COUNTER
bool "Debug percpu counter objects"
depends on DEBUG_OBJECTS
help
If you say Y here, additional code will be inserted into the
percpu counter routines to track the life time of percpu counter
objects and validate the percpu counter operations.
config DEBUG_OBJECTS_ENABLE_DEFAULT
int "debug_objects bootup default value (0-1)"
range 0 1
default "1"
depends on DEBUG_OBJECTS
help
Debug objects boot parameter default value
config DEBUG_SLAB
bool "Debug slab memory allocations"
depends on DEBUG_KERNEL && SLAB
help
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory. This can make kmalloc/kfree-intensive workloads much slower.
config DEBUG_SLAB_LEAK
bool "Memory leak debugging"
depends on DEBUG_SLAB
config SLUB_DEBUG_ON
bool "SLUB debugging on by default"
depends on SLUB && SLUB_DEBUG
default n
help
Boot with debugging on by default. SLUB boots by default with
the runtime debug capabilities switched off. Enabling this is
equivalent to specifying the "slub_debug" parameter on boot.
There is no support for more fine grained debug control like
possible with slub_debug=xxx. SLUB debugging may be switched
off in a kernel built with CONFIG_SLUB_DEBUG_ON by specifying
"slub_debug=-".
config SLUB_STATS
default n
bool "Enable SLUB performance statistics"
depends on SLUB && SYSFS
help
SLUB statistics are useful to debug SLUBs allocation behavior in
order find ways to optimize the allocator. This should never be
enabled for production use since keeping statistics slows down
the allocator by a few percentage points. The slabinfo command
supports the determination of the most active slabs to figure
out which slabs are relevant to a particular load.
Try running: slabinfo -DA
config HAVE_DEBUG_KMEMLEAK
bool
config DEBUG_KMEMLEAK
bool "Kernel memory leak detector"
depends on DEBUG_KERNEL && HAVE_DEBUG_KMEMLEAK
select DEBUG_FS
select STACKTRACE if STACKTRACE_SUPPORT
select KALLSYMS
select CRC32
help
Say Y here if you want to enable the memory leak
detector. The memory allocation/freeing is traced in a way
similar to the Boehm's conservative garbage collector, the
difference being that the orphan objects are not freed but
only shown in /sys/kernel/debug/kmemleak. Enabling this
feature will introduce an overhead to memory
allocations. See Documentation/dev-tools/kmemleak.rst for more
details.
Enabling DEBUG_SLAB or SLUB_DEBUG may increase the chances
of finding leaks due to the slab objects poisoning.
In order to access the kmemleak file, debugfs needs to be
mounted (usually at /sys/kernel/debug).
config DEBUG_KMEMLEAK_EARLY_LOG_SIZE
int "Maximum kmemleak early log entries"
depends on DEBUG_KMEMLEAK
range 200 40000
default 16000
help
Kmemleak must track all the memory allocations to avoid
reporting false positives. Since memory may be allocated or
freed before kmemleak is initialised, an early log buffer is
used to store these actions. If kmemleak reports "early log
buffer exceeded", please increase this value.
config DEBUG_KMEMLEAK_TEST
tristate "Simple test for the kernel memory leak detector"
depends on DEBUG_KMEMLEAK && m
help
This option enables a module that explicitly leaks memory.
If unsure, say N.
config DEBUG_KMEMLEAK_DEFAULT_OFF
bool "Default kmemleak to off"
depends on DEBUG_KMEMLEAK
help
Say Y here to disable kmemleak by default. It can then be enabled
on the command line via kmemleak=on.
config DEBUG_STACK_USAGE
bool "Stack utilization instrumentation"
depends on DEBUG_KERNEL && !IA64
help
Enables the display of the minimum amount of free stack which each
task has ever had available in the sysrq-T and sysrq-P debug output.
This option will slow down process creation somewhat.
config DEBUG_VM
bool "Debug VM"
depends on DEBUG_KERNEL
help
Enable this to turn on extended checks in the virtual-memory system
that may impact performance.
If unsure, say N.
config DEBUG_VM_VMACACHE
bool "Debug VMA caching"
depends on DEBUG_VM
help
Enable this to turn on VMA caching debug information. Doing so
can cause significant overhead, so only enable it in non-production
environments.
If unsure, say N.
config DEBUG_VM_RB
bool "Debug VM red-black trees"
depends on DEBUG_VM
help
Enable VM red-black tree debugging information and extra validations.
If unsure, say N.
config DEBUG_VM_PGFLAGS
bool "Debug page-flags operations"
depends on DEBUG_VM
help
Enables extra validation on page flags operations.
If unsure, say N.
config ARCH_HAS_DEBUG_VIRTUAL
bool
config DEBUG_VIRTUAL
bool "Debug VM translations"
depends on DEBUG_KERNEL && ARCH_HAS_DEBUG_VIRTUAL
help
Enable some costly sanity checks in virtual to page code. This can
catch mistakes with virt_to_page() and friends.
If unsure, say N.
config DEBUG_NOMMU_REGIONS
bool "Debug the global anon/private NOMMU mapping region tree"
depends on DEBUG_KERNEL && !MMU
help
This option causes the global tree of anonymous and private mapping
regions to be regularly checked for invalid topology.
config DEBUG_MEMORY_INIT
bool "Debug memory initialisation" if EXPERT
default !EXPERT
help
Enable this for additional checks during memory initialisation.
The sanity checks verify aspects of the VM such as the memory model
and other information provided by the architecture. Verbose
information will be printed at KERN_DEBUG loglevel depending
on the mminit_loglevel= command-line option.
If unsure, say Y
config MEMORY_NOTIFIER_ERROR_INJECT
tristate "Memory hotplug notifier error injection module"
depends on MEMORY_HOTPLUG_SPARSE && NOTIFIER_ERROR_INJECTION
help
This option provides the ability to inject artificial errors to
memory hotplug notifier chain callbacks. It is controlled through
debugfs interface under /sys/kernel/debug/notifier-error-inject/memory
If the notifier call chain should be failed with some events
notified, write the error code to "actions/<notifier event>/error".
Example: Inject memory hotplug offline error (-12 == -ENOMEM)
# cd /sys/kernel/debug/notifier-error-inject/memory
# echo -12 > actions/MEM_GOING_OFFLINE/error
# echo offline > /sys/devices/system/memory/memoryXXX/state
bash: echo: write error: Cannot allocate memory
To compile this code as a module, choose M here: the module will
be called memory-notifier-error-inject.
If unsure, say N.
config DEBUG_PER_CPU_MAPS
bool "Debug access to per_cpu maps"
depends on DEBUG_KERNEL
depends on SMP
help
Say Y to verify that the per_cpu map being accessed has
been set up. This adds a fair amount of code to kernel memory
and decreases performance.
Say N if unsure.
config DEBUG_HIGHMEM
bool "Highmem debugging"
depends on DEBUG_KERNEL && HIGHMEM
help
This option enables additional error checking for high memory
systems. Disable for production systems.
config HAVE_DEBUG_STACKOVERFLOW
bool
config DEBUG_STACKOVERFLOW
bool "Check for stack overflows"
depends on DEBUG_KERNEL && HAVE_DEBUG_STACKOVERFLOW
---help---
Say Y here if you want to check for overflows of kernel, IRQ
and exception stacks (if your architecture uses them). This
option will show detailed messages if free stack space drops
below a certain limit.
These kinds of bugs usually occur when call-chains in the
kernel get too deep, especially when interrupts are
involved.
Use this in cases where you see apparently random memory
corruption, especially if it appears in 'struct thread_info'
If in doubt, say "N".
source "lib/Kconfig.kasan"
endmenu # "Memory Debugging"
config ARCH_HAS_KCOV
bool
help
KCOV does not have any arch-specific code, but currently it is enabled
only for x86_64. KCOV requires testing on other archs, and most likely
disabling of instrumentation for some early boot code.
config CC_HAS_SANCOV_TRACE_PC
def_bool $(cc-option,-fsanitize-coverage=trace-pc)
config KCOV
bool "Code coverage for fuzzing"
depends on ARCH_HAS_KCOV
depends on CC_HAS_SANCOV_TRACE_PC || GCC_PLUGINS
select DEBUG_FS
select GCC_PLUGIN_SANCOV if !CC_HAS_SANCOV_TRACE_PC
help
KCOV exposes kernel code coverage information in a form suitable
for coverage-guided fuzzing (randomized testing).
If RANDOMIZE_BASE is enabled, PC values will not be stable across
different machines and across reboots. If you need stable PC values,
disable RANDOMIZE_BASE.
For more details, see Documentation/dev-tools/kcov.rst.
config KCOV_ENABLE_COMPARISONS
bool "Enable comparison operands collection by KCOV"
depends on KCOV
depends on $(cc-option,-fsanitize-coverage=trace-cmp)
help
KCOV also exposes operands of every comparison in the instrumented
code along with operand sizes and PCs of the comparison instructions.
These operands can be used by fuzzing engines to improve the quality
of fuzzing coverage.
config KCOV_INSTRUMENT_ALL
bool "Instrument all code by default"
depends on KCOV
default y
help
If you are doing generic system call fuzzing (like e.g. syzkaller),
then you will want to instrument the whole kernel and you should
say y here. If you are doing more targeted fuzzing (like e.g.
filesystem fuzzing with AFL) then you will want to enable coverage
for more specific subsets of files, and should say n here.
config DEBUG_SHIRQ
bool "Debug shared IRQ handlers"
depends on DEBUG_KERNEL
help
Enable this to generate a spurious interrupt as soon as a shared
interrupt handler is registered, and just before one is deregistered.
Drivers ought to be able to handle interrupts coming in at those
points; some don't and need to be caught.
menu "Debug Lockups and Hangs"
config LOCKUP_DETECTOR
bool
config SOFTLOCKUP_DETECTOR
bool "Detect Soft Lockups"
depends on DEBUG_KERNEL && !S390
select LOCKUP_DETECTOR
help
Say Y here to enable the kernel to act as a watchdog to detect
soft lockups.
Softlockups are bugs that cause the kernel to loop in kernel
mode for more than 20 seconds, without giving other tasks a
chance to run. The current stack trace is displayed upon
detection and the system will stay locked up.
config BOOTPARAM_SOFTLOCKUP_PANIC
bool "Panic (Reboot) On Soft Lockups"
depends on SOFTLOCKUP_DETECTOR
help
Say Y here to enable the kernel to panic on "soft lockups",
which are bugs that cause the kernel to loop in kernel
mode for more than 20 seconds (configurable using the watchdog_thresh
sysctl), without giving other tasks a chance to run.
The panic can be used in combination with panic_timeout,
to cause the system to reboot automatically after a
lockup has been detected. This feature is useful for
high-availability systems that have uptime guarantees and
where a lockup must be resolved ASAP.
Say N if unsure.
config BOOTPARAM_SOFTLOCKUP_PANIC_VALUE
int
depends on SOFTLOCKUP_DETECTOR
range 0 1
default 0 if !BOOTPARAM_SOFTLOCKUP_PANIC
default 1 if BOOTPARAM_SOFTLOCKUP_PANIC
config HARDLOCKUP_DETECTOR_PERF
bool
select SOFTLOCKUP_DETECTOR
#
# Enables a timestamp based low pass filter to compensate for perf based
# hard lockup detection which runs too fast due to turbo modes.
#
config HARDLOCKUP_CHECK_TIMESTAMP
bool
#
# arch/ can define HAVE_HARDLOCKUP_DETECTOR_ARCH to provide their own hard
# lockup detector rather than the perf based detector.
#
config HARDLOCKUP_DETECTOR
bool "Detect Hard Lockups"
depends on DEBUG_KERNEL && !S390
depends on HAVE_HARDLOCKUP_DETECTOR_PERF || HAVE_HARDLOCKUP_DETECTOR_ARCH
select LOCKUP_DETECTOR
select HARDLOCKUP_DETECTOR_PERF if HAVE_HARDLOCKUP_DETECTOR_PERF
help
Say Y here to enable the kernel to act as a watchdog to detect
hard lockups.
Hardlockups are bugs that cause the CPU to loop in kernel mode
for more than 10 seconds, without letting other interrupts have a
chance to run. The current stack trace is displayed upon detection
and the system will stay locked up.
config BOOTPARAM_HARDLOCKUP_PANIC
bool "Panic (Reboot) On Hard Lockups"
depends on HARDLOCKUP_DETECTOR
help
Say Y here to enable the kernel to panic on "hard lockups",
which are bugs that cause the kernel to loop in kernel
mode with interrupts disabled for more than 10 seconds (configurable
using the watchdog_thresh sysctl).
Say N if unsure.
config BOOTPARAM_HARDLOCKUP_PANIC_VALUE
int
depends on HARDLOCKUP_DETECTOR
range 0 1
default 0 if !BOOTPARAM_HARDLOCKUP_PANIC
default 1 if BOOTPARAM_HARDLOCKUP_PANIC
config DETECT_HUNG_TASK
bool "Detect Hung Tasks"
depends on DEBUG_KERNEL
default SOFTLOCKUP_DETECTOR
help
Say Y here to enable the kernel to detect "hung tasks",
which are bugs that cause the task to be stuck in
uninterruptible "D" state indefinitely.
When a hung task is detected, the kernel will print the
current stack trace (which you should report), but the
task will stay in uninterruptible state. If lockdep is
enabled then all held locks will also be reported. This
feature has negligible overhead.
config DEFAULT_HUNG_TASK_TIMEOUT
int "Default timeout for hung task detection (in seconds)"
depends on DETECT_HUNG_TASK
default 120
help
This option controls the default timeout (in seconds) used
to determine when a task has become non-responsive and should
be considered hung.
It can be adjusted at runtime via the kernel.hung_task_timeout_secs
sysctl or by writing a value to
/proc/sys/kernel/hung_task_timeout_secs.
A timeout of 0 disables the check. The default is two minutes.
Keeping the default should be fine in most cases.
config BOOTPARAM_HUNG_TASK_PANIC
bool "Panic (Reboot) On Hung Tasks"
depends on DETECT_HUNG_TASK
help
Say Y here to enable the kernel to panic on "hung tasks",
which are bugs that cause the kernel to leave a task stuck
in uninterruptible "D" state.
The panic can be used in combination with panic_timeout,
to cause the system to reboot automatically after a
hung task has been detected. This feature is useful for
high-availability systems that have uptime guarantees and
where a hung tasks must be resolved ASAP.
Say N if unsure.
config BOOTPARAM_HUNG_TASK_PANIC_VALUE
int
depends on DETECT_HUNG_TASK
range 0 1
default 0 if !BOOTPARAM_HUNG_TASK_PANIC
default 1 if BOOTPARAM_HUNG_TASK_PANIC
config WQ_WATCHDOG
bool "Detect Workqueue Stalls"
depends on DEBUG_KERNEL
help
Say Y here to enable stall detection on workqueues. If a
worker pool doesn't make forward progress on a pending work
item for over a given amount of time, 30s by default, a
warning message is printed along with dump of workqueue
state. This can be configured through kernel parameter
"workqueue.watchdog_thresh" and its sysfs counterpart.
endmenu # "Debug lockups and hangs"
config PANIC_ON_OOPS
bool "Panic on Oops"
help
Say Y here to enable the kernel to panic when it oopses. This
has the same effect as setting oops=panic on the kernel command
line.
This feature is useful to ensure that the kernel does not do
anything erroneous after an oops which could result in data
corruption or other issues.
Say N if unsure.
config PANIC_ON_OOPS_VALUE
int
range 0 1
default 0 if !PANIC_ON_OOPS
default 1 if PANIC_ON_OOPS
config PANIC_TIMEOUT
int "panic timeout"
default 0
help
Set the timeout value (in seconds) until a reboot occurs when the
the kernel panics. If n = 0, then we wait forever. A timeout
value n > 0 will wait n seconds before rebooting, while a timeout
value n < 0 will reboot immediately.
config SCHED_DEBUG
bool "Collect scheduler debugging info"
depends on DEBUG_KERNEL && PROC_FS
default y
help
If you say Y here, the /proc/sched_debug file will be provided
that can help debug the scheduler. The runtime overhead of this
option is minimal.
config SCHED_INFO
bool
default n
config SCHEDSTATS
bool "Collect scheduler statistics"
depends on DEBUG_KERNEL && PROC_FS
select SCHED_INFO
help
If you say Y here, additional code will be inserted into the
scheduler and related routines to collect statistics about
scheduler behavior and provide them in /proc/schedstat. These
stats may be useful for both tuning and debugging the scheduler
If you aren't debugging the scheduler or trying to tune a specific
application, you can say N to avoid the very slight overhead
this adds.
config SCHED_STACK_END_CHECK
bool "Detect stack corruption on calls to schedule()"
depends on DEBUG_KERNEL
default n
help
This option checks for a stack overrun on calls to schedule().
If the stack end location is found to be over written always panic as
the content of the corrupted region can no longer be trusted.
This is to ensure no erroneous behaviour occurs which could result in
data corruption or a sporadic crash at a later stage once the region
is examined. The runtime overhead introduced is minimal.
config DEBUG_TIMEKEEPING
bool "Enable extra timekeeping sanity checking"
help
This option will enable additional timekeeping sanity checks
which may be helpful when diagnosing issues where timekeeping
problems are suspected.
This may include checks in the timekeeping hotpaths, so this
option may have a (very small) performance impact to some
workloads.
If unsure, say N.
config DEBUG_PREEMPT
bool "Debug preemptible kernel"
depends on DEBUG_KERNEL && PREEMPT && TRACE_IRQFLAGS_SUPPORT
default y
help
If you say Y here then the kernel will use a debug variant of the
commonly used smp_processor_id() function and will print warnings
if kernel code uses it in a preemption-unsafe way. Also, the kernel
will detect preemption count underflows.
menu "Lock Debugging (spinlocks, mutexes, etc...)"
config LOCK_DEBUGGING_SUPPORT
bool
depends on TRACE_IRQFLAGS_SUPPORT && STACKTRACE_SUPPORT && LOCKDEP_SUPPORT
default y
config PROVE_LOCKING
bool "Lock debugging: prove locking correctness"
depends on DEBUG_KERNEL && LOCK_DEBUGGING_SUPPORT
select LOCKDEP
select DEBUG_SPINLOCK
select DEBUG_MUTEXES
select DEBUG_RT_MUTEXES if RT_MUTEXES
select DEBUG_RWSEMS if RWSEM_SPIN_ON_OWNER
select DEBUG_WW_MUTEX_SLOWPATH
select DEBUG_LOCK_ALLOC
select TRACE_IRQFLAGS
default n
help
This feature enables the kernel to prove that all locking
that occurs in the kernel runtime is mathematically
correct: that under no circumstance could an arbitrary (and
not yet triggered) combination of observed locking
sequences (on an arbitrary number of CPUs, running an
arbitrary number of tasks and interrupt contexts) cause a
deadlock.
In short, this feature enables the kernel to report locking
related deadlocks before they actually occur.
The proof does not depend on how hard and complex a
deadlock scenario would be to trigger: how many
participant CPUs, tasks and irq-contexts would be needed
for it to trigger. The proof also does not depend on
timing: if a race and a resulting deadlock is possible
theoretically (no matter how unlikely the race scenario
is), it will be proven so and will immediately be
reported by the kernel (once the event is observed that
makes the deadlock theoretically possible).
If a deadlock is impossible (i.e. the locking rules, as
observed by the kernel, are mathematically correct), the
kernel reports nothing.
NOTE: this feature can also be enabled for rwlocks, mutexes
and rwsems - in which case all dependencies between these
different locking variants are observed and mapped too, and
the proof of observed correctness is also maintained for an
arbitrary combination of these separate locking variants.
For more details, see Documentation/locking/lockdep-design.txt.
config LOCK_STAT
bool "Lock usage statistics"
depends on DEBUG_KERNEL && LOCK_DEBUGGING_SUPPORT
select LOCKDEP
select DEBUG_SPINLOCK
select DEBUG_MUTEXES
select DEBUG_RT_MUTEXES if RT_MUTEXES
select DEBUG_LOCK_ALLOC
default n
help
This feature enables tracking lock contention points
For more details, see Documentation/locking/lockstat.txt
This also enables lock events required by "perf lock",
subcommand of perf.
If you want to use "perf lock", you also need to turn on
CONFIG_EVENT_TRACING.
CONFIG_LOCK_STAT defines "contended" and "acquired" lock events.
(CONFIG_LOCKDEP defines "acquire" and "release" events.)
config DEBUG_RT_MUTEXES
bool "RT Mutex debugging, deadlock detection"
depends on DEBUG_KERNEL && RT_MUTEXES
help
This allows rt mutex semantics violations and rt mutex related
deadlocks (lockups) to be detected and reported automatically.
config DEBUG_SPINLOCK
bool "Spinlock and rw-lock debugging: basic checks"
depends on DEBUG_KERNEL
select UNINLINE_SPIN_UNLOCK
help
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
config DEBUG_MUTEXES
bool "Mutex debugging: basic checks"
depends on DEBUG_KERNEL
help
This feature allows mutex semantics violations to be detected and
reported.
config DEBUG_WW_MUTEX_SLOWPATH
bool "Wait/wound mutex debugging: Slowpath testing"
depends on DEBUG_KERNEL && LOCK_DEBUGGING_SUPPORT
select DEBUG_LOCK_ALLOC
select DEBUG_SPINLOCK
select DEBUG_MUTEXES
help
This feature enables slowpath testing for w/w mutex users by
injecting additional -EDEADLK wound/backoff cases. Together with
the full mutex checks enabled with (CONFIG_PROVE_LOCKING) this
will test all possible w/w mutex interface abuse with the
exception of simply not acquiring all the required locks.
Note that this feature can introduce significant overhead, so
it really should not be enabled in a production or distro kernel,
even a debug kernel. If you are a driver writer, enable it. If
you are a distro, do not.
config DEBUG_RWSEMS
bool "RW Semaphore debugging: basic checks"
depends on DEBUG_KERNEL && RWSEM_SPIN_ON_OWNER
help
This debugging feature allows mismatched rw semaphore locks and unlocks
to be detected and reported.
config DEBUG_LOCK_ALLOC
bool "Lock debugging: detect incorrect freeing of live locks"
depends on DEBUG_KERNEL && LOCK_DEBUGGING_SUPPORT
select DEBUG_SPINLOCK
select DEBUG_MUTEXES
select DEBUG_RT_MUTEXES if RT_MUTEXES
select LOCKDEP
help
This feature will check whether any held lock (spinlock, rwlock,
mutex or rwsem) is incorrectly freed by the kernel, via any of the
memory-freeing routines (kfree(), kmem_cache_free(), free_pages(),
vfree(), etc.), whether a live lock is incorrectly reinitialized via
spin_lock_init()/mutex_init()/etc., or whether there is any lock
held during task exit.
config LOCKDEP
bool
depends on DEBUG_KERNEL && LOCK_DEBUGGING_SUPPORT
select STACKTRACE
select FRAME_POINTER if !MIPS && !PPC && !ARM && !S390 && !MICROBLAZE && !ARC && !X86
select KALLSYMS
select KALLSYMS_ALL
config LOCKDEP_SMALL
bool
config DEBUG_LOCKDEP
bool "Lock dependency engine debugging"
depends on DEBUG_KERNEL && LOCKDEP
help
If you say Y here, the lock dependency engine will do
additional runtime checks to debug itself, at the price
of more runtime overhead.
config DEBUG_ATOMIC_SLEEP
bool "Sleep inside atomic section checking"
select PREEMPT_COUNT
depends on DEBUG_KERNEL
depends on !ARCH_NO_PREEMPT
help
If you say Y here, various routines which may sleep will become very
noisy if they are called inside atomic sections: when a spinlock is
held, inside an rcu read side critical section, inside preempt disabled
sections, inside an interrupt, etc...
config DEBUG_LOCKING_API_SELFTESTS
bool "Locking API boot-time self-tests"
depends on DEBUG_KERNEL
help
Say Y here if you want the kernel to run a short self-test during
bootup. The self-test checks whether common types of locking bugs
are detected by debugging mechanisms or not. (if you disable
lock debugging then those bugs wont be detected of course.)
The following locking APIs are covered: spinlocks, rwlocks,
mutexes and rwsems.
config LOCK_TORTURE_TEST
tristate "torture tests for locking"
depends on DEBUG_KERNEL
select TORTURE_TEST
help
This option provides a kernel module that runs torture tests
on kernel locking primitives. The kernel module may be built
after the fact on the running kernel to be tested, if desired.
Say Y here if you want kernel locking-primitive torture tests
to be built into the kernel.
Say M if you want these torture tests to build as a module.
Say N if you are unsure.
config WW_MUTEX_SELFTEST
tristate "Wait/wound mutex selftests"
help
This option provides a kernel module that runs tests on the
on the struct ww_mutex locking API.
It is recommended to enable DEBUG_WW_MUTEX_SLOWPATH in conjunction
with this test harness.
Say M if you want these self tests to build as a module.
Say N if you are unsure.
endmenu # lock debugging
config TRACE_IRQFLAGS
bool
help
Enables hooks to interrupt enabling and disabling for
either tracing or lock debugging.
config STACKTRACE
bool "Stack backtrace support"
depends on STACKTRACE_SUPPORT
help
This option causes the kernel to create a /proc/pid/stack for
every process, showing its current stack trace.
It is also used by various kernel debugging features that require
stack trace generation.
config WARN_ALL_UNSEEDED_RANDOM
bool "Warn for all uses of unseeded randomness"
default n
help
Some parts of the kernel contain bugs relating to their use of
cryptographically secure random numbers before it's actually possible
to generate those numbers securely. This setting ensures that these
flaws don't go unnoticed, by enabling a message, should this ever
occur. This will allow people with obscure setups to know when things
are going wrong, so that they might contact developers about fixing
it.
Unfortunately, on some models of some architectures getting
a fully seeded CRNG is extremely difficult, and so this can
result in dmesg getting spammed for a surprisingly long
time. This is really bad from a security perspective, and
so architecture maintainers really need to do what they can
to get the CRNG seeded sooner after the system is booted.
However, since users cannot do anything actionable to
address this, by default this option is disabled.
Say Y here if you want to receive warnings for all uses of
unseeded randomness. This will be of use primarily for
those developers interested in improving the security of
Linux kernels running on their architecture (or
subarchitecture).
config DEBUG_KOBJECT
bool "kobject debugging"
depends on DEBUG_KERNEL
help
If you say Y here, some extra kobject debugging messages will be sent
to the syslog.
config DEBUG_KOBJECT_RELEASE
bool "kobject release debugging"
depends on DEBUG_OBJECTS_TIMERS
help
kobjects are reference counted objects. This means that their
last reference count put is not predictable, and the kobject can
live on past the point at which a driver decides to drop it's
initial reference to the kobject gained on allocation. An
example of this would be a struct device which has just been
unregistered.
However, some buggy drivers assume that after such an operation,
the memory backing the kobject can be immediately freed. This
goes completely against the principles of a refcounted object.
If you say Y here, the kernel will delay the release of kobjects
on the last reference count to improve the visibility of this
kind of kobject release bug.
config HAVE_DEBUG_BUGVERBOSE
bool
config DEBUG_BUGVERBOSE
bool "Verbose BUG() reporting (adds 70K)" if DEBUG_KERNEL && EXPERT
depends on BUG && (GENERIC_BUG || HAVE_DEBUG_BUGVERBOSE)
default y
help
Say Y here to make BUG() panics output the file name and line number
of the BUG call as well as the EIP and oops trace. This aids
debugging but costs about 70-100K of memory.
config DEBUG_LIST
bool "Debug linked list manipulation"
depends on DEBUG_KERNEL || BUG_ON_DATA_CORRUPTION
help
Enable this to turn on extended checks in the linked-list
walking routines.
If unsure, say N.
config DEBUG_PI_LIST
bool "Debug priority linked list manipulation"
depends on DEBUG_KERNEL
help
Enable this to turn on extended checks in the priority-ordered
linked-list (plist) walking routines. This checks the entire
list multiple times during each manipulation.
If unsure, say N.
config DEBUG_SG
bool "Debug SG table operations"
depends on DEBUG_KERNEL
help
Enable this to turn on checks on scatter-gather tables. This can
help find problems with drivers that do not properly initialize
their sg tables.
If unsure, say N.
config DEBUG_NOTIFIERS
bool "Debug notifier call chains"
depends on DEBUG_KERNEL
help
Enable this to turn on sanity checking for notifier call chains.
This is most useful for kernel developers to make sure that
modules properly unregister themselves from notifier chains.
This is a relatively cheap check but if you care about maximum
performance, say N.
config DEBUG_CREDENTIALS
bool "Debug credential management"
depends on DEBUG_KERNEL
help
Enable this to turn on some debug checking for credential
management. The additional code keeps track of the number of
pointers from task_structs to any given cred struct, and checks to
see that this number never exceeds the usage count of the cred
struct.
Furthermore, if SELinux is enabled, this also checks that the
security pointer in the cred struct is never seen to be invalid.
If unsure, say N.
source "kernel/rcu/Kconfig.debug"
config DEBUG_WQ_FORCE_RR_CPU
bool "Force round-robin CPU selection for unbound work items"
depends on DEBUG_KERNEL
default n
help
Workqueue used to implicitly guarantee that work items queued
without explicit CPU specified are put on the local CPU. This
guarantee is no longer true and while local CPU is still
preferred work items may be put on foreign CPUs. Kernel
parameter "workqueue.debug_force_rr_cpu" is added to force
round-robin CPU selection to flush out usages which depend on the
now broken guarantee. This config option enables the debug
feature by default. When enabled, memory and cache locality will
be impacted.
config DEBUG_BLOCK_EXT_DEVT
bool "Force extended block device numbers and spread them"
depends on DEBUG_KERNEL
depends on BLOCK
default n
help
BIG FAT WARNING: ENABLING THIS OPTION MIGHT BREAK BOOTING ON
SOME DISTRIBUTIONS. DO NOT ENABLE THIS UNLESS YOU KNOW WHAT
YOU ARE DOING. Distros, please enable this and fix whatever
is broken.
Conventionally, block device numbers are allocated from
predetermined contiguous area. However, extended block area
may introduce non-contiguous block device numbers. This
option forces most block device numbers to be allocated from
the extended space and spreads them to discover kernel or
userland code paths which assume predetermined contiguous
device number allocation.
Note that turning on this debug option shuffles all the
device numbers for all IDE and SCSI devices including libata
ones, so root partition specified using device number
directly (via rdev or root=MAJ:MIN) won't work anymore.
Textual device names (root=/dev/sdXn) will continue to work.
Say N if you are unsure.
config CPU_HOTPLUG_STATE_CONTROL
bool "Enable CPU hotplug state control"
depends on DEBUG_KERNEL
depends on HOTPLUG_CPU
default n
help
Allows to write steps between "offline" and "online" to the CPUs
sysfs target file so states can be stepped granular. This is a debug
option for now as the hotplug machinery cannot be stopped and
restarted at arbitrary points yet.
Say N if your are unsure.
config NOTIFIER_ERROR_INJECTION
tristate "Notifier error injection"
depends on DEBUG_KERNEL
select DEBUG_FS
help
This option provides the ability to inject artificial errors to
specified notifier chain callbacks. It is useful to test the error
handling of notifier call chain failures.
Say N if unsure.
config PM_NOTIFIER_ERROR_INJECT
tristate "PM notifier error injection module"
depends on PM && NOTIFIER_ERROR_INJECTION
default m if PM_DEBUG
help
This option provides the ability to inject artificial errors to
PM notifier chain callbacks. It is controlled through debugfs
interface /sys/kernel/debug/notifier-error-inject/pm
If the notifier call chain should be failed with some events
notified, write the error code to "actions/<notifier event>/error".
Example: Inject PM suspend error (-12 = -ENOMEM)
# cd /sys/kernel/debug/notifier-error-inject/pm/
# echo -12 > actions/PM_SUSPEND_PREPARE/error
# echo mem > /sys/power/state
bash: echo: write error: Cannot allocate memory
To compile this code as a module, choose M here: the module will
be called pm-notifier-error-inject.
If unsure, say N.
config OF_RECONFIG_NOTIFIER_ERROR_INJECT
tristate "OF reconfig notifier error injection module"
depends on OF_DYNAMIC && NOTIFIER_ERROR_INJECTION
help
This option provides the ability to inject artificial errors to
OF reconfig notifier chain callbacks. It is controlled
through debugfs interface under
/sys/kernel/debug/notifier-error-inject/OF-reconfig/
If the notifier call chain should be failed with some events
notified, write the error code to "actions/<notifier event>/error".
To compile this code as a module, choose M here: the module will
be called of-reconfig-notifier-error-inject.
If unsure, say N.
config NETDEV_NOTIFIER_ERROR_INJECT
tristate "Netdev notifier error injection module"
depends on NET && NOTIFIER_ERROR_INJECTION
help
This option provides the ability to inject artificial errors to
netdevice notifier chain callbacks. It is controlled through debugfs
interface /sys/kernel/debug/notifier-error-inject/netdev
If the notifier call chain should be failed with some events
notified, write the error code to "actions/<notifier event>/error".
Example: Inject netdevice mtu change error (-22 = -EINVAL)
# cd /sys/kernel/debug/notifier-error-inject/netdev
# echo -22 > actions/NETDEV_CHANGEMTU/error
# ip link set eth0 mtu 1024
RTNETLINK answers: Invalid argument
To compile this code as a module, choose M here: the module will
be called netdev-notifier-error-inject.
If unsure, say N.
config FUNCTION_ERROR_INJECTION
bool "Fault-injections of functions"
depends on HAVE_FUNCTION_ERROR_INJECTION && KPROBES
help
Add fault injections into various functions that are annotated with
ALLOW_ERROR_INJECTION() in the kernel. BPF may also modify the return
value of theses functions. This is useful to test error paths of code.
If unsure, say N
config FAULT_INJECTION
bool "Fault-injection framework"
depends on DEBUG_KERNEL
help
Provide fault-injection framework.
For more details, see Documentation/fault-injection/.
config FAILSLAB
bool "Fault-injection capability for kmalloc"
depends on FAULT_INJECTION
depends on SLAB || SLUB
help
Provide fault-injection capability for kmalloc.
config FAIL_PAGE_ALLOC
bool "Fault-injection capabilitiy for alloc_pages()"
depends on FAULT_INJECTION
help
Provide fault-injection capability for alloc_pages().
config FAIL_MAKE_REQUEST
bool "Fault-injection capability for disk IO"
depends on FAULT_INJECTION && BLOCK
help
Provide fault-injection capability for disk IO.
config FAIL_IO_TIMEOUT
bool "Fault-injection capability for faking disk interrupts"
depends on FAULT_INJECTION && BLOCK
help
Provide fault-injection capability on end IO handling. This
will make the block layer "forget" an interrupt as configured,
thus exercising the error handling.
Only works with drivers that use the generic timeout handling,
for others it wont do anything.
config FAIL_FUTEX
bool "Fault-injection capability for futexes"
select DEBUG_FS
depends on FAULT_INJECTION && FUTEX
help
Provide fault-injection capability for futexes.
config FAULT_INJECTION_DEBUG_FS
bool "Debugfs entries for fault-injection capabilities"
depends on FAULT_INJECTION && SYSFS && DEBUG_FS
help
Enable configuration of fault-injection capabilities via debugfs.
config FAIL_FUNCTION
bool "Fault-injection capability for functions"
depends on FAULT_INJECTION_DEBUG_FS && FUNCTION_ERROR_INJECTION
help
Provide function-based fault-injection capability.
This will allow you to override a specific function with a return
with given return value. As a result, function caller will see
an error value and have to handle it. This is useful to test the
error handling in various subsystems.
config FAIL_MMC_REQUEST
bool "Fault-injection capability for MMC IO"
depends on FAULT_INJECTION_DEBUG_FS && MMC
help
Provide fault-injection capability for MMC IO.
This will make the mmc core return data errors. This is
useful to test the error handling in the mmc block device
and to test how the mmc host driver handles retries from
the block device.
config FAULT_INJECTION_STACKTRACE_FILTER
bool "stacktrace filter for fault-injection capabilities"
depends on FAULT_INJECTION_DEBUG_FS && STACKTRACE_SUPPORT
depends on !X86_64
select STACKTRACE
select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM && !ARC && !X86
help
Provide stacktrace filter for fault-injection capabilities
config LATENCYTOP
bool "Latency measuring infrastructure"
depends on DEBUG_KERNEL
depends on STACKTRACE_SUPPORT
depends on PROC_FS
select FRAME_POINTER if !MIPS && !PPC && !S390 && !MICROBLAZE && !ARM && !ARC && !X86
select KALLSYMS
select KALLSYMS_ALL
select STACKTRACE
select SCHEDSTATS
select SCHED_DEBUG
help
Enable this option if you want to use the LatencyTOP tool
to find out which userspace is blocking on what kernel operations.
source kernel/trace/Kconfig
config PROVIDE_OHCI1394_DMA_INIT
bool "Remote debugging over FireWire early on boot"
depends on PCI && X86
help
If you want to debug problems which hang or crash the kernel early
on boot and the crashing machine has a FireWire port, you can use
this feature to remotely access the memory of the crashed machine
over FireWire. This employs remote DMA as part of the OHCI1394
specification which is now the standard for FireWire controllers.
With remote DMA, you can monitor the printk buffer remotely using
firescope and access all memory below 4GB using fireproxy from gdb.
Even controlling a kernel debugger is possible using remote DMA.
Usage:
If ohci1394_dma=early is used as boot parameter, it will initialize
all OHCI1394 controllers which are found in the PCI config space.
As all changes to the FireWire bus such as enabling and disabling
devices cause a bus reset and thereby disable remote DMA for all
devices, be sure to have the cable plugged and FireWire enabled on
the debugging host before booting the debug target for debugging.
This code (~1k) is freed after boot. By then, the firewire stack
in charge of the OHCI-1394 controllers should be used instead.
See Documentation/debugging-via-ohci1394.txt for more information.
config DMA_API_DEBUG
bool "Enable debugging of DMA-API usage"
select NEED_DMA_MAP_STATE
help
Enable this option to debug the use of the DMA API by device drivers.
With this option you will be able to detect common bugs in device
drivers like double-freeing of DMA mappings or freeing mappings that
were never allocated.
This also attempts to catch cases where a page owned by DMA is
accessed by the cpu in a way that could cause data corruption. For
example, this enables cow_user_page() to check that the source page is
not undergoing DMA.
This option causes a performance degradation. Use only if you want to
debug device drivers and dma interactions.
If unsure, say N.
config DMA_API_DEBUG_SG
bool "Debug DMA scatter-gather usage"
default y
depends on DMA_API_DEBUG
help
Perform extra checking that callers of dma_map_sg() have respected the
appropriate segment length/boundary limits for the given device when
preparing DMA scatterlists.
This is particularly likely to have been overlooked in cases where the
dma_map_sg() API is used for general bulk mapping of pages rather than
preparing literal scatter-gather descriptors, where there is a risk of
unexpected behaviour from DMA API implementations if the scatterlist
is technically out-of-spec.
If unsure, say N.
menuconfig RUNTIME_TESTING_MENU
bool "Runtime Testing"
def_bool y
if RUNTIME_TESTING_MENU
config LKDTM
tristate "Linux Kernel Dump Test Tool Module"
depends on DEBUG_FS
depends on BLOCK
help
This module enables testing of the different dumping mechanisms by
inducing system failures at predefined crash points.
If you don't need it: say N
Choose M here to compile this code as a module. The module will be
called lkdtm.
Documentation on how to use the module can be found in
Documentation/fault-injection/provoke-crashes.txt
config TEST_LIST_SORT
tristate "Linked list sorting test"
depends on DEBUG_KERNEL || m
help
Enable this to turn on 'list_sort()' function test. This test is
executed only once during system boot (so affects only boot time),
or at module load time.
If unsure, say N.
config TEST_SORT
tristate "Array-based sort test"
depends on DEBUG_KERNEL || m
help
This option enables the self-test function of 'sort()' at boot,
or at module load time.
If unsure, say N.
config KPROBES_SANITY_TEST
bool "Kprobes sanity tests"
depends on DEBUG_KERNEL
depends on KPROBES
help
This option provides for testing basic kprobes functionality on
boot. Samples of kprobe and kretprobe are inserted and
verified for functionality.
Say N if you are unsure.
config BACKTRACE_SELF_TEST
tristate "Self test for the backtrace code"
depends on DEBUG_KERNEL
help
This option provides a kernel module that can be used to test
the kernel stack backtrace code. This option is not useful
for distributions or general kernels, but only for kernel
developers working on architecture code.
Note that if you want to also test saved backtraces, you will
have to enable STACKTRACE as well.
Say N if you are unsure.
config RBTREE_TEST
tristate "Red-Black tree test"
depends on DEBUG_KERNEL
help
A benchmark measuring the performance of the rbtree library.
Also includes rbtree invariant checks.
config INTERVAL_TREE_TEST
tristate "Interval tree test"
depends on DEBUG_KERNEL
select INTERVAL_TREE
help
A benchmark measuring the performance of the interval tree library
config PERCPU_TEST
tristate "Per cpu operations test"
depends on m && DEBUG_KERNEL
help
Enable this option to build test module which validates per-cpu
operations.
If unsure, say N.
config ATOMIC64_SELFTEST
tristate "Perform an atomic64_t self-test"
help
Enable this option to test the atomic64_t functions at boot or
at module load time.
If unsure, say N.
config ASYNC_RAID6_TEST
tristate "Self test for hardware accelerated raid6 recovery"
depends on ASYNC_RAID6_RECOV
select ASYNC_MEMCPY
---help---
This is a one-shot self test that permutes through the
recovery of all the possible two disk failure scenarios for a
N-disk array. Recovery is performed with the asynchronous
raid6 recovery routines, and will optionally use an offload
engine if one is available.
If unsure, say N.
config TEST_HEXDUMP
tristate "Test functions located in the hexdump module at runtime"
config TEST_STRING_HELPERS
tristate "Test functions located in the string_helpers module at runtime"
config TEST_KSTRTOX
tristate "Test kstrto*() family of functions at runtime"
config TEST_PRINTF
tristate "Test printf() family of functions at runtime"
config TEST_BITMAP
tristate "Test bitmap_*() family of functions at runtime"
help
Enable this option to test the bitmap functions at boot.
If unsure, say N.
config TEST_BITFIELD
tristate "Test bitfield functions at runtime"
help
Enable this option to test the bitfield functions at boot.
If unsure, say N.
config TEST_UUID
tristate "Test functions located in the uuid module at runtime"
config TEST_OVERFLOW
tristate "Test check_*_overflow() functions at runtime"
config TEST_RHASHTABLE
tristate "Perform selftest on resizable hash table"
help
Enable this option to test the rhashtable functions at boot.
If unsure, say N.
config TEST_HASH
tristate "Perform selftest on hash functions"
help
Enable this option to test the kernel's integer (<linux/hash.h>),
string (<linux/stringhash.h>), and siphash (<linux/siphash.h>)
hash functions on boot (or module load).
This is intended to help people writing architecture-specific
optimized versions. If unsure, say N.
config TEST_IDA
tristate "Perform selftest on IDA functions"
config TEST_PARMAN
tristate "Perform selftest on priority array manager"
depends on PARMAN
help
Enable this option to test priority array manager on boot
(or module load).
If unsure, say N.
config TEST_LKM
tristate "Test module loading with 'hello world' module"
depends on m
help
This builds the "test_module" module that emits "Hello, world"
on printk when loaded. It is designed to be used for basic
evaluation of the module loading subsystem (for example when
validating module verification). It lacks any extra dependencies,
and will not normally be loaded by the system unless explicitly
requested by name.
If unsure, say N.
config TEST_USER_COPY
tristate "Test user/kernel boundary protections"
depends on m
help
This builds the "test_user_copy" module that runs sanity checks
on the copy_to/from_user infrastructure, making sure basic
user/kernel boundary testing is working. If it fails to load,
a regression has been detected in the user/kernel memory boundary
protections.
If unsure, say N.
config TEST_BPF
tristate "Test BPF filter functionality"
depends on m && NET
help
This builds the "test_bpf" module that runs various test vectors
against the BPF interpreter or BPF JIT compiler depending on the
current setting. This is in particular useful for BPF JIT compiler
development, but also to run regression tests against changes in
the interpreter code. It also enables test stubs for eBPF maps and
verifier used by user space verifier testsuite.
If unsure, say N.
config FIND_BIT_BENCHMARK
tristate "Test find_bit functions"
help
This builds the "test_find_bit" module that measure find_*_bit()
functions performance.
If unsure, say N.
config TEST_FIRMWARE
tristate "Test firmware loading via userspace interface"
depends on FW_LOADER
help
This builds the "test_firmware" module that creates a userspace
interface for testing firmware loading. This can be used to
control the triggering of firmware loading without needing an
actual firmware-using device. The contents can be rechecked by
userspace.
If unsure, say N.
config TEST_SYSCTL
tristate "sysctl test driver"
depends on PROC_SYSCTL
help
This builds the "test_sysctl" module. This driver enables to test the
proc sysctl interfaces available to drivers safely without affecting
production knobs which might alter system functionality.
If unsure, say N.
config TEST_UDELAY
tristate "udelay test driver"
help
This builds the "udelay_test" module that helps to make sure
that udelay() is working properly.
If unsure, say N.
config TEST_STATIC_KEYS
tristate "Test static keys"
depends on m
help
Test the static key interfaces.
If unsure, say N.
config TEST_KMOD
tristate "kmod stress tester"
depends on m
depends on BLOCK && (64BIT || LBDAF) # for XFS, BTRFS
depends on NETDEVICES && NET_CORE && INET # for TUN
depends on BLOCK
select TEST_LKM
select XFS_FS
select TUN
select BTRFS_FS
help
Test the kernel's module loading mechanism: kmod. kmod implements
support to load modules using the Linux kernel's usermode helper.
This test provides a series of tests against kmod.
Although technically you can either build test_kmod as a module or
into the kernel we disallow building it into the kernel since
it stress tests request_module() and this will very likely cause
some issues by taking over precious threads available from other
module load requests, ultimately this could be fatal.
To run tests run:
tools/testing/selftests/kmod/kmod.sh --help
If unsure, say N.
config TEST_DEBUG_VIRTUAL
tristate "Test CONFIG_DEBUG_VIRTUAL feature"
depends on DEBUG_VIRTUAL
help
Test the kernel's ability to detect incorrect calls to
virt_to_phys() done against the non-linear part of the
kernel's virtual address map.
If unsure, say N.
endif # RUNTIME_TESTING_MENU
config MEMTEST
bool "Memtest"
depends on HAVE_MEMBLOCK
---help---
This option adds a kernel parameter 'memtest', which allows memtest
to be set.
memtest=0, mean disabled; -- default
memtest=1, mean do 1 test pattern;
...
memtest=17, mean do 17 test patterns.
If you are unsure how to answer this question, answer N.
config BUG_ON_DATA_CORRUPTION
bool "Trigger a BUG when data corruption is detected"
select DEBUG_LIST
help
Select this option if the kernel should BUG when it encounters
data corruption in kernel memory structures when they get checked
for validity.
If unsure, say N.
source "samples/Kconfig"
source "lib/Kconfig.kgdb"
source "lib/Kconfig.ubsan"
config ARCH_HAS_DEVMEM_IS_ALLOWED
bool
config STRICT_DEVMEM
bool "Filter access to /dev/mem"
depends on MMU && DEVMEM
depends on ARCH_HAS_DEVMEM_IS_ALLOWED
default y if PPC || X86 || ARM64
---help---
If this option is disabled, you allow userspace (root) access to all
of memory, including kernel and userspace memory. Accidental
access to this is obviously disastrous, but specific access can
be used by people debugging the kernel. Note that with PAT support
enabled, even in this case there are restrictions on /dev/mem
use due to the cache aliasing requirements.
If this option is switched on, and IO_STRICT_DEVMEM=n, the /dev/mem
file only allows userspace access to PCI space and the BIOS code and
data regions. This is sufficient for dosemu and X and all common
users of /dev/mem.
If in doubt, say Y.
config IO_STRICT_DEVMEM
bool "Filter I/O access to /dev/mem"
depends on STRICT_DEVMEM
---help---
If this option is disabled, you allow userspace (root) access to all
io-memory regardless of whether a driver is actively using that
range. Accidental access to this is obviously disastrous, but
specific access can be used by people debugging kernel drivers.
If this option is switched on, the /dev/mem file only allows
userspace access to *idle* io-memory ranges (see /proc/iomem) This
may break traditional users of /dev/mem (dosemu, legacy X, etc...)
if the driver using a given range cannot be disabled.
If in doubt, say Y.
source "arch/$(SRCARCH)/Kconfig.debug"
endmenu # Kernel hacking
|