1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
/* Copyright (C) 2017 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file
* Implementation of NSEC (1) handling. Prototypes in ./impl.h
*/
#include "lib/cache/impl.h"
#include "lib/dnssec/nsec.h"
#include "lib/layer/iterate.h"
/** Reconstruct a name into a buffer (assuming length at least KNOT_DNAME_MAXLEN).
* \return kr_ok() or error code (<0). */
static int dname_wire_reconstruct(knot_dname_t *buf, const struct key *k,
knot_db_val_t kwz)
{
/* Reconstruct from key: first the ending, then zone name. */
int ret = knot_dname_lf2wire(buf, kwz.len, kwz.data);
if (ret < 0) {
VERBOSE_MSG(NULL, "=> NSEC: LF2wire ret = %d\n", ret);
assert(false);
return ret;
}
/* The last written byte is the zero label for root -> overwrite. */
knot_dname_t *zone_start = buf + ret - 1;
assert(*zone_start == '\0');
ret = knot_dname_to_wire(zone_start, k->zname, KNOT_DNAME_MAXLEN - kwz.len);
if (ret != k->zlf_len + 1) {
assert(false);
return ret < 0 ? ret : kr_error(EILSEQ);
}
return kr_ok();
}
knot_db_val_t key_NSEC1(struct key *k, const knot_dname_t *name, bool add_wildcard)
{
/* we basically need dname_lf with two bytes added
* on a correct place within the name (the cut) */
int ret;
const bool ok = k && name
&& !(ret = kr_dname_lf(k->buf, name, add_wildcard));
if (!ok) {
assert(false);
return (knot_db_val_t){ NULL, 0 };
}
uint8_t *begin = k->buf + 1 + k->zlf_len; /* one byte after zone's zero */
uint8_t *end = k->buf + 1 + k->buf[0]; /* we don't use the final zero in key,
* but move it anyway */
if (end < begin) {
assert(false);
return (knot_db_val_t){ NULL, 0 };
}
int key_len;
if (end > begin) {
memmove(begin + 2, begin, end - begin);
key_len = k->buf[0] + 1;
} else {
key_len = k->buf[0] + 2;
}
/* CACHE_KEY_DEF: key == zone's dname_lf + '\0' + '1' + dname_lf
* of the name within the zone without the final 0. Iff the latter is empty,
* there's no zero to cut and thus the key_len difference.
*/
begin[0] = 0;
begin[1] = '1'; /* tag for NSEC1 */
k->type = KNOT_RRTYPE_NSEC;
/*
VERBOSE_MSG(NULL, "<> key_NSEC1; name: ");
kr_dname_print(name, add_wildcard ? "*." : "" , " ");
kr_log_verbose("(zone name LF length: %d; total key length: %d)\n",
k->zlf_len, key_len);
*/
return (knot_db_val_t){ k->buf + 1, key_len };
}
/** Assuming that k1 < k4, find where k2 is. (Considers DNS wrap-around.)
*
* \return Intuition: position of k2 among kX.
* 0: k2 < k1; 1: k1 == k2; 2: k1 is a prefix of k2 < k4;
* 3: k1 < k2 < k4 (and not 2); 4: k2 == k4; 5: k2 > k4
* \note k1.data may be NULL, meaning assumption that k1 < k2 and not a prefix
* (i.e. return code will be > 2)
*/
static int kwz_between(knot_db_val_t k1, knot_db_val_t k2, knot_db_val_t k4)
{
assert(k2.data && k4.data);
/* CACHE_KEY_DEF; we need to beware of one key being a prefix of another */
int ret_maybe; /**< result, assuming we confirm k2 < k4 */
if (k1.data) {
const int cmp12 = memcmp(k1.data, k2.data, MIN(k1.len, k2.len));
if (cmp12 == 0 && k1.len == k2.len) /* iff k1 == k2 */
return 1;
if (cmp12 > 0 || (cmp12 == 0 && k1.len > k2.len)) /* iff k1 > k2 */
return 0;
ret_maybe = cmp12 == 0 ? 2 : 3;
} else {
ret_maybe = 3;
}
if (k4.len == 0) { /* wrap-around */
return k2.len > 0 ? ret_maybe : 4;
} else {
const int cmp24 = memcmp(k2.data, k4.data, MIN(k2.len, k4.len));
if (cmp24 == 0 && k2.len == k4.len) /* iff k2 == k4 */
return 4;
if (cmp24 > 0 || (cmp24 == 0 && k2.len > k4.len)) /* iff k2 > k4 */
return 5;
return ret_maybe;
}
}
/** NSEC1 range search.
*
* \param key Pass output of key_NSEC1(k, ...)
* \param value[out] The raw data of the NSEC cache record (optional; consistency checked).
* \param exact_match[out] Whether the key was matched exactly or just covered (optional).
* \param kwz_low[out] Output the low end of covering NSEC, pointing within DB (optional).
* \param kwz_high[in,out] Storage for the high end of covering NSEC (optional).
* It's only set if !exact_match.
* \param new_ttl[out] New TTL of the NSEC (optional).
* \return Error message or NULL.
* \note The function itself does *no* bitmap checks, e.g. RFC 6840 sec. 4.
*/
static const char * find_leq_NSEC1(struct kr_cache *cache, const struct kr_query *qry,
const knot_db_val_t key, const struct key *k, knot_db_val_t *value,
bool *exact_match, knot_db_val_t *kwz_low, knot_db_val_t *kwz_high,
uint32_t *new_ttl)
{
/* Do the cache operation. */
const size_t nwz_off = key_nwz_off(k);
if (!key.data || key.len < nwz_off) {
assert(false);
return "range search ERROR";
}
knot_db_val_t key_nsec = key;
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read_leq, &key_nsec, &val);
if (ret < 0) {
if (ret == kr_error(ENOENT)) {
return "range search miss";
} else {
assert(false);
return "range search ERROR";
}
}
if (value) {
*value = val;
}
/* Check consistency, TTL, rank. */
const bool is_exact = (ret == 0);
if (exact_match) {
*exact_match = is_exact;
}
const struct entry_h *eh = entry_h_consistent_NSEC(val);
if (!eh) {
/* This might be just finding something else than NSEC1 entry,
* in case we searched before the very first one in the zone. */
return "range search found inconsistent entry";
}
/* Passing just zone name instead of owner, as we don't
* have it reconstructed at this point. */
int32_t new_ttl_ = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_NSEC,
qry->timestamp.tv_sec);
if (new_ttl_ < 0 || !kr_rank_test(eh->rank, KR_RANK_SECURE)) {
return "range search found stale or insecure entry";
/* TODO: remove the stale record *and* retry,
* in case we haven't run off. Perhaps start by in_zone check. */
}
if (new_ttl) {
*new_ttl = new_ttl_;
}
if (kwz_low) {
*kwz_low = (knot_db_val_t){
.data = (uint8_t *)key_nsec.data + nwz_off,
.len = key_nsec.len - nwz_off,
}; /* CACHE_KEY_DEF */
}
if (is_exact) {
/* Nothing else to do. */
return NULL;
}
/* The NSEC starts strictly before our target name;
* now check that it still belongs into that zone. */
const bool nsec_in_zone = key_nsec.len >= nwz_off
/* CACHE_KEY_DEF */
&& memcmp(key.data, key_nsec.data, nwz_off) == 0;
if (!nsec_in_zone) {
return "range search miss (!nsec_in_zone)";
}
/* We know it starts before sname, so let's check the other end.
* 1. construct the key for the next name - kwz_hi. */
/* it's *full* name ATM */
const knot_rdata_t *next = (const knot_rdata_t *)
(eh->data + KR_CACHE_RR_COUNT_SIZE);
if (KR_CACHE_RR_COUNT_SIZE != 2 || get_uint16(eh->data) == 0) {
assert(false);
return "ERROR";
/* TODO: more checks? */
}
/*
WITH_VERBOSE {
VERBOSE_MSG(qry, "=> NSEC: next name: ");
kr_dname_print(next, "", "\n");
}
*/
knot_dname_t ch_buf[KNOT_DNAME_MAXLEN];
knot_dname_t *chs = kwz_high ? kwz_high->data : ch_buf;
if (!chs) {
assert(false);
return "EINVAL";
}
{
/* Lower-case chs; see also RFC 6840 5.1.
* LATER(optim.): we do lots of copying etc. */
knot_dname_t lower_buf[KNOT_DNAME_MAXLEN];
ret = knot_dname_to_wire(lower_buf, next->data,
MIN(next->len, KNOT_DNAME_MAXLEN));
if (ret < 0) { /* _ESPACE */
return "range search found record with incorrect contents";
}
knot_dname_to_lower(lower_buf);
ret = kr_dname_lf(chs, lower_buf, false);
}
if (ret) {
assert(false);
return "ERROR";
}
knot_db_val_t kwz_hi = { /* skip the zone name */
.data = chs + 1 + k->zlf_len,
.len = chs[0] - k->zlf_len,
};
assert((ssize_t)(kwz_hi.len) >= 0);
/* 2. do the actual range check. */
const knot_db_val_t kwz_sname = {
.data = (void *)/*const-cast*/(k->buf + 1 + nwz_off),
.len = k->buf[0] - k->zlf_len,
};
assert((ssize_t)(kwz_sname.len) >= 0);
bool covers = /* we know for sure that the low end is before kwz_sname */
3 == kwz_between((knot_db_val_t){ NULL, 0 }, kwz_sname, kwz_hi);
if (!covers) {
return "range search miss (!covers)";
}
if (kwz_high) {
*kwz_high = kwz_hi;
}
return NULL;
}
int nsec1_encloser(struct key *k, struct answer *ans,
const int sname_labels, int *clencl_labels,
knot_db_val_t *cover_low_kwz, knot_db_val_t *cover_hi_kwz,
const struct kr_query *qry, struct kr_cache *cache)
{
static const int ESKIP = ABS(ENOENT);
/* Basic sanity check. */
const bool ok = k && ans && clencl_labels && cover_low_kwz && cover_hi_kwz
&& qry && cache;
if (!ok) {
assert(!EINVAL);
return kr_error(EINVAL);
}
/* Find a previous-or-equal name+NSEC in cache covering the QNAME,
* checking TTL etc. */
knot_db_val_t key = key_NSEC1(k, qry->sname, false);
knot_db_val_t val = { NULL, 0 };
bool exact_match;
uint32_t new_ttl;
const char *err = find_leq_NSEC1(cache, qry, key, k, &val,
&exact_match, cover_low_kwz, cover_hi_kwz, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC sname: %s\n", err);
return ESKIP;
}
/* Get owner name of the record. */
const knot_dname_t *owner;
knot_dname_t owner_buf[KNOT_DNAME_MAXLEN];
if (exact_match) {
owner = qry->sname;
} else {
int ret = dname_wire_reconstruct(owner_buf, k, *cover_low_kwz);
if (unlikely(ret)) return ESKIP;
owner = owner_buf;
}
/* Basic checks OK -> materialize data. */
{
const struct entry_h *nsec_eh = val.data;
int ret = entry2answer(ans, AR_NSEC, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC, new_ttl);
if (ret) return kr_error(ret);
}
/* Final checks, split for matching vs. covering our sname. */
const knot_rrset_t *nsec_rr = ans->rrsets[AR_NSEC].set.rr;
const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata);
assert(bm);
if (exact_match) {
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) != 0) {
VERBOSE_MSG(qry,
"=> NSEC sname: match but failed type check\n");
return ESKIP;
}
/* NODATA proven; just need to add SOA+RRSIG later */
VERBOSE_MSG(qry, "=> NSEC sname: match proved NODATA, new TTL %d\n",
new_ttl);
ans->rcode = PKT_NODATA;
return kr_ok();
} /* else */
/* Inexact match. First check if sname is delegated by that NSEC. */
const int nsec_matched = knot_dname_matched_labels(nsec_rr->owner, qry->sname);
const bool is_sub = nsec_matched == knot_dname_labels(nsec_rr->owner, NULL);
if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry, "=> NSEC sname: covered but delegated (or error)\n");
return ESKIP;
}
/* NXDOMAIN proven *except* for wildcards. */
WITH_VERBOSE(qry) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner),
*next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata));
VERBOSE_MSG(qry, "=> NSEC sname: covered by: %s -> %s, new TTL %d\n",
owner_str, next_str, new_ttl);
}
/* Find label count of the closest encloser.
* Both endpoints in an NSEC do exist (though possibly in a child zone)
* and any prefixes of those names as well (empty non-terminals),
* but nothing else exists inside this "triangle".
*
* Note that we have to lower-case the next name for comparison,
* even though we have canonicalized NSEC already; see RFC 6840 5.1.
* LATER(optim.): it might be faster to use the LFs we already have.
*/
knot_dname_t next[KNOT_DNAME_MAXLEN];
int ret = knot_dname_to_wire(next, knot_nsec_next(nsec_rr->rrs.rdata), sizeof(next));
if (ret < 0) {
assert(!ret);
return kr_error(ret);
}
knot_dname_to_lower(next);
*clencl_labels = MAX(
nsec_matched,
knot_dname_matched_labels(qry->sname, next)
);
/* Empty non-terminals don't need to have
* a matching NSEC record. */
if (sname_labels == *clencl_labels) {
ans->rcode = PKT_NODATA;
VERBOSE_MSG(qry,
"=> NSEC sname: empty non-terminal by the same RR\n");
} else {
ans->rcode = PKT_NXDOMAIN;
}
return kr_ok();
}
/** Verify non-existence after kwz_between() call. */
static bool nonexistence_ok(int cmp, const knot_rrset_t *rrs)
{
if (cmp == 3) {
return true;
}
if (cmp != 2) {
return false;
}
const uint8_t *bm = knot_nsec_bitmap(rrs->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(rrs->rrs.rdata);
return kr_nsec_children_in_zone_check(bm, bm_size) != 0;
}
int nsec1_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
knot_db_val_t cover_low_kwz, knot_db_val_t cover_hi_kwz,
const struct kr_query *qry, struct kr_cache *cache)
{
/* Construct key for the source of synthesis. */
knot_db_val_t key = key_NSEC1(k, clencl_name, true);
const size_t nwz_off = key_nwz_off(k);
if (!key.data || key.len < nwz_off) {
assert(false);
return kr_error(1);
}
/* Check if our sname-covering NSEC also covers/matches SS. */
knot_db_val_t kwz = {
.data = (uint8_t *)key.data + nwz_off,
.len = key.len - nwz_off,
};
assert((ssize_t)(kwz.len) >= 0);
const int cmp = kwz_between(cover_low_kwz, kwz, cover_hi_kwz);
if (nonexistence_ok(cmp, ans->rrsets[AR_NSEC].set.rr)) {
VERBOSE_MSG(qry, "=> NSEC wildcard: covered by the same RR\n");
return AR_SOA;
}
const knot_rrset_t *nsec_rr = NULL; /**< the wildcard proof NSEC */
bool exact_match; /**< whether it matches the source of synthesis */
if (cmp == 1) {
exact_match = true;
nsec_rr = ans->rrsets[AR_NSEC].set.rr;
} else {
/* Try to find the NSEC for SS. */
knot_db_val_t val = { NULL, 0 };
knot_db_val_t wild_low_kwz = { NULL, 0 };
uint32_t new_ttl;
const char *err = find_leq_NSEC1(cache, qry, key, k, &val,
&exact_match, &wild_low_kwz, NULL, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC wildcard: %s\n", err);
return kr_ok();
}
/* Materialize the record into answer (speculatively). */
knot_dname_t owner[KNOT_DNAME_MAXLEN];
int ret = dname_wire_reconstruct(owner, k, wild_low_kwz);
if (ret) return kr_error(ret);
const struct entry_h *nsec_eh = val.data;
ret = entry2answer(ans, AR_WILD, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC, new_ttl);
if (ret) return kr_error(ret);
nsec_rr = ans->rrsets[AR_WILD].set.rr;
}
assert(nsec_rr);
const uint32_t new_ttl_log =
kr_verbose_status ? nsec_rr->ttl : -1;
const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata);
int ret;
struct answer_rrset * const arw = &ans->rrsets[AR_WILD];
if (!bm) {
assert(false);
ret = kr_error(1);
goto clean_wild;
}
if (!exact_match) {
/* Finish verification that the source of synthesis doesn't exist. */
const int nsec_matched =
knot_dname_matched_labels(nsec_rr->owner, clencl_name);
/* we don't need to use the full source of synthesis ^ */
const bool is_sub =
nsec_matched == knot_dname_labels(nsec_rr->owner, NULL);
if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry,
"=> NSEC wildcard: covered but delegated (or error)\n");
ret = kr_ok();
goto clean_wild;
}
/* We have a record proving wildcard non-existence. */
WITH_VERBOSE(qry) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner),
*next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata));
VERBOSE_MSG(qry, "=> NSEC wildcard: covered by: %s -> %s, new TTL %d\n",
owner_str, next_str, new_ttl_log);
}
return AR_SOA;
}
/* The wildcard exists. Find if it's NODATA - check type bitmap. */
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) == 0) {
/* NODATA proven; just need to add SOA+RRSIG later */
WITH_VERBOSE(qry) {
const char *msg_start = "=> NSEC wildcard: match proved NODATA";
if (arw->set.rr) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner);
VERBOSE_MSG(qry, "%s: %s, new TTL %d\n",
msg_start, owner_str, new_ttl_log);
} else {
/* don't repeat the RR if it's the same */
VERBOSE_MSG(qry, "%s, by the same RR\n", msg_start);
}
}
ans->rcode = PKT_NODATA;
return AR_SOA;
} /* else */
/* The data probably exists -> don't add this NSEC
* and (later) try to find the real wildcard data */
VERBOSE_MSG(qry, "=> NSEC wildcard: should exist (or error)\n");
ans->rcode = PKT_NOERROR;
ret = kr_ok();
clean_wild:
if (arw->set.rr) { /* we may have matched AR_NSEC */
knot_rrset_free(arw->set.rr, ans->mm);
arw->set.rr = NULL;
knot_rdataset_clear(&arw->sig_rds, ans->mm);
}
return ret;
}
|