summaryrefslogtreecommitdiffstats
path: root/Documentation/cpu-freq
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/cpu-freq
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/cpu-freq')
-rw-r--r--Documentation/cpu-freq/amd-powernow.txt38
-rw-r--r--Documentation/cpu-freq/core.txt120
-rw-r--r--Documentation/cpu-freq/cpu-drivers.txt295
-rw-r--r--Documentation/cpu-freq/cpufreq-nforce2.txt19
-rw-r--r--Documentation/cpu-freq/cpufreq-stats.txt125
-rw-r--r--Documentation/cpu-freq/index.txt56
-rw-r--r--Documentation/cpu-freq/pcc-cpufreq.txt207
7 files changed, 860 insertions, 0 deletions
diff --git a/Documentation/cpu-freq/amd-powernow.txt b/Documentation/cpu-freq/amd-powernow.txt
new file mode 100644
index 000000000..254da155f
--- /dev/null
+++ b/Documentation/cpu-freq/amd-powernow.txt
@@ -0,0 +1,38 @@
+
+PowerNow! and Cool'n'Quiet are AMD names for frequency
+management capabilities in AMD processors. As the hardware
+implementation changes in new generations of the processors,
+there is a different cpu-freq driver for each generation.
+
+Note that the driver's will not load on the "wrong" hardware,
+so it is safe to try each driver in turn when in doubt as to
+which is the correct driver.
+
+Note that the functionality to change frequency (and voltage)
+is not available in all processors. The drivers will refuse
+to load on processors without this capability. The capability
+is detected with the cpuid instruction.
+
+The drivers use BIOS supplied tables to obtain frequency and
+voltage information appropriate for a particular platform.
+Frequency transitions will be unavailable if the BIOS does
+not supply these tables.
+
+6th Generation: powernow-k6
+
+7th Generation: powernow-k7: Athlon, Duron, Geode.
+
+8th Generation: powernow-k8: Athlon, Athlon 64, Opteron, Sempron.
+Documentation on this functionality in 8th generation processors
+is available in the "BIOS and Kernel Developer's Guide", publication
+26094, in chapter 9, available for download from www.amd.com.
+
+BIOS supplied data, for powernow-k7 and for powernow-k8, may be
+from either the PSB table or from ACPI objects. The ACPI support
+is only available if the kernel config sets CONFIG_ACPI_PROCESSOR.
+The powernow-k8 driver will attempt to use ACPI if so configured,
+and fall back to PST if that fails.
+The powernow-k7 driver will try to use the PSB support first, and
+fall back to ACPI if the PSB support fails. A module parameter,
+acpi_force, is provided to force ACPI support to be used instead
+of PSB support.
diff --git a/Documentation/cpu-freq/core.txt b/Documentation/cpu-freq/core.txt
new file mode 100644
index 000000000..073f128af
--- /dev/null
+++ b/Documentation/cpu-freq/core.txt
@@ -0,0 +1,120 @@
+ CPU frequency and voltage scaling code in the Linux(TM) kernel
+
+
+ L i n u x C P U F r e q
+
+ C P U F r e q C o r e
+
+
+ Dominik Brodowski <linux@brodo.de>
+ David Kimdon <dwhedon@debian.org>
+ Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ Viresh Kumar <viresh.kumar@linaro.org>
+
+
+
+ Clock scaling allows you to change the clock speed of the CPUs on the
+ fly. This is a nice method to save battery power, because the lower
+ the clock speed, the less power the CPU consumes.
+
+
+Contents:
+---------
+1. CPUFreq core and interfaces
+2. CPUFreq notifiers
+3. CPUFreq Table Generation with Operating Performance Point (OPP)
+
+1. General Information
+=======================
+
+The CPUFreq core code is located in drivers/cpufreq/cpufreq.c. This
+cpufreq code offers a standardized interface for the CPUFreq
+architecture drivers (those pieces of code that do actual
+frequency transitions), as well as to "notifiers". These are device
+drivers or other part of the kernel that need to be informed of
+policy changes (ex. thermal modules like ACPI) or of all
+frequency changes (ex. timing code) or even need to force certain
+speed limits (like LCD drivers on ARM architecture). Additionally, the
+kernel "constant" loops_per_jiffy is updated on frequency changes
+here.
+
+Reference counting of the cpufreq policies is done by cpufreq_cpu_get
+and cpufreq_cpu_put, which make sure that the cpufreq driver is
+correctly registered with the core, and will not be unloaded until
+cpufreq_put_cpu is called. That also ensures that the respective cpufreq
+policy doesn't get freed while being used.
+
+2. CPUFreq notifiers
+====================
+
+CPUFreq notifiers conform to the standard kernel notifier interface.
+See linux/include/linux/notifier.h for details on notifiers.
+
+There are two different CPUFreq notifiers - policy notifiers and
+transition notifiers.
+
+
+2.1 CPUFreq policy notifiers
+----------------------------
+
+These are notified when a new policy is intended to be set. Each
+CPUFreq policy notifier is called twice for a policy transition:
+
+1.) During CPUFREQ_ADJUST all CPUFreq notifiers may change the limit if
+ they see a need for this - may it be thermal considerations or
+ hardware limitations.
+
+2.) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy
+ - if two hardware drivers failed to agree on a new policy before this
+ stage, the incompatible hardware shall be shut down, and the user
+ informed of this.
+
+The phase is specified in the second argument to the notifier.
+
+The third argument, a void *pointer, points to a struct cpufreq_policy
+consisting of several values, including min, max (the lower and upper
+frequencies (in kHz) of the new policy).
+
+
+2.2 CPUFreq transition notifiers
+--------------------------------
+
+These are notified twice for each online CPU in the policy, when the
+CPUfreq driver switches the CPU core frequency and this change has no
+any external implications.
+
+The second argument specifies the phase - CPUFREQ_PRECHANGE or
+CPUFREQ_POSTCHANGE.
+
+The third argument is a struct cpufreq_freqs with the following
+values:
+cpu - number of the affected CPU
+old - old frequency
+new - new frequency
+flags - flags of the cpufreq driver
+
+3. CPUFreq Table Generation with Operating Performance Point (OPP)
+==================================================================
+For details about OPP, see Documentation/power/opp.txt
+
+dev_pm_opp_init_cpufreq_table -
+ This function provides a ready to use conversion routine to translate
+ the OPP layer's internal information about the available frequencies
+ into a format readily providable to cpufreq.
+
+ WARNING: Do not use this function in interrupt context.
+
+ Example:
+ soc_pm_init()
+ {
+ /* Do things */
+ r = dev_pm_opp_init_cpufreq_table(dev, &freq_table);
+ if (!r)
+ policy->freq_table = freq_table;
+ /* Do other things */
+ }
+
+ NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
+ addition to CONFIG_PM_OPP.
+
+dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
diff --git a/Documentation/cpu-freq/cpu-drivers.txt b/Documentation/cpu-freq/cpu-drivers.txt
new file mode 100644
index 000000000..6e353d00c
--- /dev/null
+++ b/Documentation/cpu-freq/cpu-drivers.txt
@@ -0,0 +1,295 @@
+ CPU frequency and voltage scaling code in the Linux(TM) kernel
+
+
+ L i n u x C P U F r e q
+
+ C P U D r i v e r s
+
+ - information for developers -
+
+
+ Dominik Brodowski <linux@brodo.de>
+ Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ Viresh Kumar <viresh.kumar@linaro.org>
+
+
+
+ Clock scaling allows you to change the clock speed of the CPUs on the
+ fly. This is a nice method to save battery power, because the lower
+ the clock speed, the less power the CPU consumes.
+
+
+Contents:
+---------
+1. What To Do?
+1.1 Initialization
+1.2 Per-CPU Initialization
+1.3 verify
+1.4 target/target_index or setpolicy?
+1.5 target/target_index
+1.6 setpolicy
+1.7 get_intermediate and target_intermediate
+2. Frequency Table Helpers
+
+
+
+1. What To Do?
+==============
+
+So, you just got a brand-new CPU / chipset with datasheets and want to
+add cpufreq support for this CPU / chipset? Great. Here are some hints
+on what is necessary:
+
+
+1.1 Initialization
+------------------
+
+First of all, in an __initcall level 7 (module_init()) or later
+function check whether this kernel runs on the right CPU and the right
+chipset. If so, register a struct cpufreq_driver with the CPUfreq core
+using cpufreq_register_driver()
+
+What shall this struct cpufreq_driver contain?
+
+ .name - The name of this driver.
+
+ .init - A pointer to the per-policy initialization function.
+
+ .verify - A pointer to a "verification" function.
+
+ .setpolicy _or_ .fast_switch _or_ .target _or_ .target_index - See
+ below on the differences.
+
+And optionally
+
+ .flags - Hints for the cpufreq core.
+
+ .driver_data - cpufreq driver specific data.
+
+ .resolve_freq - Returns the most appropriate frequency for a target
+ frequency. Doesn't change the frequency though.
+
+ .get_intermediate and target_intermediate - Used to switch to stable
+ frequency while changing CPU frequency.
+
+ .get - Returns current frequency of the CPU.
+
+ .bios_limit - Returns HW/BIOS max frequency limitations for the CPU.
+
+ .exit - A pointer to a per-policy cleanup function called during
+ CPU_POST_DEAD phase of cpu hotplug process.
+
+ .stop_cpu - A pointer to a per-policy stop function called during
+ CPU_DOWN_PREPARE phase of cpu hotplug process.
+
+ .suspend - A pointer to a per-policy suspend function which is called
+ with interrupts disabled and _after_ the governor is stopped for the
+ policy.
+
+ .resume - A pointer to a per-policy resume function which is called
+ with interrupts disabled and _before_ the governor is started again.
+
+ .ready - A pointer to a per-policy ready function which is called after
+ the policy is fully initialized.
+
+ .attr - A pointer to a NULL-terminated list of "struct freq_attr" which
+ allow to export values to sysfs.
+
+ .boost_enabled - If set, boost frequencies are enabled.
+
+ .set_boost - A pointer to a per-policy function to enable/disable boost
+ frequencies.
+
+
+1.2 Per-CPU Initialization
+--------------------------
+
+Whenever a new CPU is registered with the device model, or after the
+cpufreq driver registers itself, the per-policy initialization function
+cpufreq_driver.init is called if no cpufreq policy existed for the CPU.
+Note that the .init() and .exit() routines are called only once for the
+policy and not for each CPU managed by the policy. It takes a struct
+cpufreq_policy *policy as argument. What to do now?
+
+If necessary, activate the CPUfreq support on your CPU.
+
+Then, the driver must fill in the following values:
+
+policy->cpuinfo.min_freq _and_
+policy->cpuinfo.max_freq - the minimum and maximum frequency
+ (in kHz) which is supported by
+ this CPU
+policy->cpuinfo.transition_latency the time it takes on this CPU to
+ switch between two frequencies in
+ nanoseconds (if appropriate, else
+ specify CPUFREQ_ETERNAL)
+
+policy->cur The current operating frequency of
+ this CPU (if appropriate)
+policy->min,
+policy->max,
+policy->policy and, if necessary,
+policy->governor must contain the "default policy" for
+ this CPU. A few moments later,
+ cpufreq_driver.verify and either
+ cpufreq_driver.setpolicy or
+ cpufreq_driver.target/target_index is called
+ with these values.
+policy->cpus Update this with the masks of the
+ (online + offline) CPUs that do DVFS
+ along with this CPU (i.e. that share
+ clock/voltage rails with it).
+
+For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
+frequency table helpers might be helpful. See the section 2 for more information
+on them.
+
+
+1.3 verify
+----------
+
+When the user decides a new policy (consisting of
+"policy,governor,min,max") shall be set, this policy must be validated
+so that incompatible values can be corrected. For verifying these
+values cpufreq_verify_within_limits(struct cpufreq_policy *policy,
+unsigned int min_freq, unsigned int max_freq) function might be helpful.
+See section 2 for details on frequency table helpers.
+
+You need to make sure that at least one valid frequency (or operating
+range) is within policy->min and policy->max. If necessary, increase
+policy->max first, and only if this is no solution, decrease policy->min.
+
+
+1.4 target or target_index or setpolicy or fast_switch?
+-------------------------------------------------------
+
+Most cpufreq drivers or even most cpu frequency scaling algorithms
+only allow the CPU frequency to be set to predefined fixed values. For
+these, you use the ->target(), ->target_index() or ->fast_switch()
+callbacks.
+
+Some cpufreq capable processors switch the frequency between certain
+limits on their own. These shall use the ->setpolicy() callback.
+
+
+1.5. target/target_index
+------------------------
+
+The target_index call has two arguments: struct cpufreq_policy *policy,
+and unsigned int index (into the exposed frequency table).
+
+The CPUfreq driver must set the new frequency when called here. The
+actual frequency must be determined by freq_table[index].frequency.
+
+It should always restore to earlier frequency (i.e. policy->restore_freq) in
+case of errors, even if we switched to intermediate frequency earlier.
+
+Deprecated:
+----------
+The target call has three arguments: struct cpufreq_policy *policy,
+unsigned int target_frequency, unsigned int relation.
+
+The CPUfreq driver must set the new frequency when called here. The
+actual frequency must be determined using the following rules:
+
+- keep close to "target_freq"
+- policy->min <= new_freq <= policy->max (THIS MUST BE VALID!!!)
+- if relation==CPUFREQ_REL_L, try to select a new_freq higher than or equal
+ target_freq. ("L for lowest, but no lower than")
+- if relation==CPUFREQ_REL_H, try to select a new_freq lower than or equal
+ target_freq. ("H for highest, but no higher than")
+
+Here again the frequency table helper might assist you - see section 2
+for details.
+
+1.6. fast_switch
+----------------
+
+This function is used for frequency switching from scheduler's context.
+Not all drivers are expected to implement it, as sleeping from within
+this callback isn't allowed. This callback must be highly optimized to
+do switching as fast as possible.
+
+This function has two arguments: struct cpufreq_policy *policy and
+unsigned int target_frequency.
+
+
+1.7 setpolicy
+-------------
+
+The setpolicy call only takes a struct cpufreq_policy *policy as
+argument. You need to set the lower limit of the in-processor or
+in-chipset dynamic frequency switching to policy->min, the upper limit
+to policy->max, and -if supported- select a performance-oriented
+setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
+powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
+the reference implementation in drivers/cpufreq/longrun.c
+
+1.8 get_intermediate and target_intermediate
+--------------------------------------------
+
+Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset.
+
+get_intermediate should return a stable intermediate frequency platform wants to
+switch to, and target_intermediate() should set CPU to that frequency, before
+jumping to the frequency corresponding to 'index'. Core will take care of
+sending notifications and driver doesn't have to handle them in
+target_intermediate() or target_index().
+
+Drivers can return '0' from get_intermediate() in case they don't wish to switch
+to intermediate frequency for some target frequency. In that case core will
+directly call ->target_index().
+
+NOTE: ->target_index() should restore to policy->restore_freq in case of
+failures as core would send notifications for that.
+
+
+2. Frequency Table Helpers
+==========================
+
+As most cpufreq processors only allow for being set to a few specific
+frequencies, a "frequency table" with some functions might assist in
+some work of the processor driver. Such a "frequency table" consists of
+an array of struct cpufreq_frequency_table entries, with driver specific
+values in "driver_data", the corresponding frequency in "frequency" and
+flags set. At the end of the table, you need to add a
+cpufreq_frequency_table entry with frequency set to CPUFREQ_TABLE_END.
+And if you want to skip one entry in the table, set the frequency to
+CPUFREQ_ENTRY_INVALID. The entries don't need to be in sorted in any
+particular order, but if they are cpufreq core will do DVFS a bit
+quickly for them as search for best match is faster.
+
+The cpufreq table is verified automatically by the core if the policy contains a
+valid pointer in its policy->freq_table field.
+
+cpufreq_frequency_table_verify() assures that at least one valid
+frequency is within policy->min and policy->max, and all other criteria
+are met. This is helpful for the ->verify call.
+
+cpufreq_frequency_table_target() is the corresponding frequency table
+helper for the ->target stage. Just pass the values to this function,
+and this function returns the of the frequency table entry which
+contains the frequency the CPU shall be set to.
+
+The following macros can be used as iterators over cpufreq_frequency_table:
+
+cpufreq_for_each_entry(pos, table) - iterates over all entries of frequency
+table.
+
+cpufreq_for_each_valid_entry(pos, table) - iterates over all entries,
+excluding CPUFREQ_ENTRY_INVALID frequencies.
+Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
+"table" - the cpufreq_frequency_table * you want to iterate over.
+
+For example:
+
+ struct cpufreq_frequency_table *pos, *driver_freq_table;
+
+ cpufreq_for_each_entry(pos, driver_freq_table) {
+ /* Do something with pos */
+ pos->frequency = ...
+ }
+
+If you need to work with the position of pos within driver_freq_table,
+do not subtract the pointers, as it is quite costly. Instead, use the
+macros cpufreq_for_each_entry_idx() and cpufreq_for_each_valid_entry_idx().
diff --git a/Documentation/cpu-freq/cpufreq-nforce2.txt b/Documentation/cpu-freq/cpufreq-nforce2.txt
new file mode 100644
index 000000000..babce1315
--- /dev/null
+++ b/Documentation/cpu-freq/cpufreq-nforce2.txt
@@ -0,0 +1,19 @@
+
+The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
+
+This works better than on other platforms, because the FSB of the CPU
+can be controlled independently from the PCI/AGP clock.
+
+The module has two options:
+
+ fid: multiplier * 10 (for example 8.5 = 85)
+ min_fsb: minimum FSB
+
+If not set, fid is calculated from the current CPU speed and the FSB.
+min_fsb defaults to FSB at boot time - 50 MHz.
+
+IMPORTANT: The available range is limited downwards!
+ Also the minimum available FSB can differ, for systems
+ booting with 200 MHz, 150 should always work.
+
+
diff --git a/Documentation/cpu-freq/cpufreq-stats.txt b/Documentation/cpu-freq/cpufreq-stats.txt
new file mode 100644
index 000000000..a873855c8
--- /dev/null
+++ b/Documentation/cpu-freq/cpufreq-stats.txt
@@ -0,0 +1,125 @@
+
+ CPU frequency and voltage scaling statistics in the Linux(TM) kernel
+
+
+ L i n u x c p u f r e q - s t a t s d r i v e r
+
+ - information for users -
+
+
+ Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
+
+Contents
+1. Introduction
+2. Statistics Provided (with example)
+3. Configuring cpufreq-stats
+
+
+1. Introduction
+
+cpufreq-stats is a driver that provides CPU frequency statistics for each CPU.
+These statistics are provided in /sysfs as a bunch of read_only interfaces. This
+interface (when configured) will appear in a separate directory under cpufreq
+in /sysfs (<sysfs root>/devices/system/cpu/cpuX/cpufreq/stats/) for each CPU.
+Various statistics will form read_only files under this directory.
+
+This driver is designed to be independent of any particular cpufreq_driver
+that may be running on your CPU. So, it will work with any cpufreq_driver.
+
+
+2. Statistics Provided (with example)
+
+cpufreq stats provides following statistics (explained in detail below).
+- time_in_state
+- total_trans
+- trans_table
+
+All the statistics will be from the time the stats driver has been inserted
+(or the time the stats were reset) to the time when a read of a particular
+statistic is done. Obviously, stats driver will not have any information
+about the frequency transitions before the stats driver insertion.
+
+--------------------------------------------------------------------------------
+<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
+total 0
+drwxr-xr-x 2 root root 0 May 14 16:06 .
+drwxr-xr-x 3 root root 0 May 14 15:58 ..
+--w------- 1 root root 4096 May 14 16:06 reset
+-r--r--r-- 1 root root 4096 May 14 16:06 time_in_state
+-r--r--r-- 1 root root 4096 May 14 16:06 total_trans
+-r--r--r-- 1 root root 4096 May 14 16:06 trans_table
+--------------------------------------------------------------------------------
+
+- reset
+Write-only attribute that can be used to reset the stat counters. This can be
+useful for evaluating system behaviour under different governors without the
+need for a reboot.
+
+- time_in_state
+This gives the amount of time spent in each of the frequencies supported by
+this CPU. The cat output will have "<frequency> <time>" pair in each line, which
+will mean this CPU spent <time> usertime units of time at <frequency>. Output
+will have one line for each of the supported frequencies. usertime units here
+is 10mS (similar to other time exported in /proc).
+
+--------------------------------------------------------------------------------
+<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat time_in_state
+3600000 2089
+3400000 136
+3200000 34
+3000000 67
+2800000 172488
+--------------------------------------------------------------------------------
+
+
+- total_trans
+This gives the total number of frequency transitions on this CPU. The cat
+output will have a single count which is the total number of frequency
+transitions.
+
+--------------------------------------------------------------------------------
+<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat total_trans
+20
+--------------------------------------------------------------------------------
+
+- trans_table
+This will give a fine grained information about all the CPU frequency
+transitions. The cat output here is a two dimensional matrix, where an entry
+<i,j> (row i, column j) represents the count of number of transitions from
+Freq_i to Freq_j. Freq_i is in descending order with increasing rows and
+Freq_j is in descending order with increasing columns. The output here also
+contains the actual freq values for each row and column for better readability.
+
+If the transition table is bigger than PAGE_SIZE, reading this will
+return an -EFBIG error.
+
+--------------------------------------------------------------------------------
+<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat trans_table
+ From : To
+ : 3600000 3400000 3200000 3000000 2800000
+ 3600000: 0 5 0 0 0
+ 3400000: 4 0 2 0 0
+ 3200000: 0 1 0 2 0
+ 3000000: 0 0 1 0 3
+ 2800000: 0 0 0 2 0
+--------------------------------------------------------------------------------
+
+
+3. Configuring cpufreq-stats
+
+To configure cpufreq-stats in your kernel
+Config Main Menu
+ Power management options (ACPI, APM) --->
+ CPU Frequency scaling --->
+ [*] CPU Frequency scaling
+ [*] CPU frequency translation statistics
+
+
+"CPU Frequency scaling" (CONFIG_CPU_FREQ) should be enabled to configure
+cpufreq-stats.
+
+"CPU frequency translation statistics" (CONFIG_CPU_FREQ_STAT) provides the
+statistics which includes time_in_state, total_trans and trans_table.
+
+Once this option is enabled and your CPU supports cpufrequency, you
+will be able to see the CPU frequency statistics in /sysfs.
diff --git a/Documentation/cpu-freq/index.txt b/Documentation/cpu-freq/index.txt
new file mode 100644
index 000000000..c15e75386
--- /dev/null
+++ b/Documentation/cpu-freq/index.txt
@@ -0,0 +1,56 @@
+ CPU frequency and voltage scaling code in the Linux(TM) kernel
+
+
+ L i n u x C P U F r e q
+
+
+
+
+ Dominik Brodowski <linux@brodo.de>
+
+
+
+ Clock scaling allows you to change the clock speed of the CPUs on the
+ fly. This is a nice method to save battery power, because the lower
+ the clock speed, the less power the CPU consumes.
+
+
+
+Documents in this directory:
+----------------------------
+
+amd-powernow.txt - AMD powernow driver specific file.
+
+core.txt - General description of the CPUFreq core and
+ of CPUFreq notifiers.
+
+cpu-drivers.txt - How to implement a new cpufreq processor driver.
+
+cpufreq-nforce2.txt - nVidia nForce2 platform specific file.
+
+cpufreq-stats.txt - General description of sysfs cpufreq stats.
+
+index.txt - File index, Mailing list and Links (this document)
+
+pcc-cpufreq.txt - PCC cpufreq driver specific file.
+
+
+Mailing List
+------------
+There is a CPU frequency changing CVS commit and general list where
+you can report bugs, problems or submit patches. To post a message,
+send an email to linux-pm@vger.kernel.org.
+
+Links
+-----
+the FTP archives:
+* ftp://ftp.linux.org.uk/pub/linux/cpufreq/
+
+how to access the CVS repository:
+* http://cvs.arm.linux.org.uk/
+
+the CPUFreq Mailing list:
+* http://vger.kernel.org/vger-lists.html#linux-pm
+
+Clock and voltage scaling for the SA-1100:
+* http://www.lartmaker.nl/projects/scaling
diff --git a/Documentation/cpu-freq/pcc-cpufreq.txt b/Documentation/cpu-freq/pcc-cpufreq.txt
new file mode 100644
index 000000000..9e3c3b335
--- /dev/null
+++ b/Documentation/cpu-freq/pcc-cpufreq.txt
@@ -0,0 +1,207 @@
+/*
+ * pcc-cpufreq.txt - PCC interface documentation
+ *
+ * Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
+ * Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
+ * Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
+ *
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON
+ * INFRINGEMENT. See the GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ */
+
+
+ Processor Clocking Control Driver
+ ---------------------------------
+
+Contents:
+---------
+1. Introduction
+1.1 PCC interface
+1.1.1 Get Average Frequency
+1.1.2 Set Desired Frequency
+1.2 Platforms affected
+2. Driver and /sys details
+2.1 scaling_available_frequencies
+2.2 cpuinfo_transition_latency
+2.3 cpuinfo_cur_freq
+2.4 related_cpus
+3. Caveats
+
+1. Introduction:
+----------------
+Processor Clocking Control (PCC) is an interface between the platform
+firmware and OSPM. It is a mechanism for coordinating processor
+performance (ie: frequency) between the platform firmware and the OS.
+
+The PCC driver (pcc-cpufreq) allows OSPM to take advantage of the PCC
+interface.
+
+OS utilizes the PCC interface to inform platform firmware what frequency the
+OS wants for a logical processor. The platform firmware attempts to achieve
+the requested frequency. If the request for the target frequency could not be
+satisfied by platform firmware, then it usually means that power budget
+conditions are in place, and "power capping" is taking place.
+
+1.1 PCC interface:
+------------------
+The complete PCC specification is available here:
+http://www.acpica.org/download/Processor-Clocking-Control-v1p0.pdf
+
+PCC relies on a shared memory region that provides a channel for communication
+between the OS and platform firmware. PCC also implements a "doorbell" that
+is used by the OS to inform the platform firmware that a command has been
+sent.
+
+The ACPI PCCH() method is used to discover the location of the PCC shared
+memory region. The shared memory region header contains the "command" and
+"status" interface. PCCH() also contains details on how to access the platform
+doorbell.
+
+The following commands are supported by the PCC interface:
+* Get Average Frequency
+* Set Desired Frequency
+
+The ACPI PCCP() method is implemented for each logical processor and is
+used to discover the offsets for the input and output buffers in the shared
+memory region.
+
+When PCC mode is enabled, the platform will not expose processor performance
+or throttle states (_PSS, _TSS and related ACPI objects) to OSPM. Therefore,
+the native P-state driver (such as acpi-cpufreq for Intel, powernow-k8 for
+AMD) will not load.
+
+However, OSPM remains in control of policy. The governor (eg: "ondemand")
+computes the required performance for each processor based on server workload.
+The PCC driver fills in the command interface, and the input buffer and
+communicates the request to the platform firmware. The platform firmware is
+responsible for delivering the requested performance.
+
+Each PCC command is "global" in scope and can affect all the logical CPUs in
+the system. Therefore, PCC is capable of performing "group" updates. With PCC
+the OS is capable of getting/setting the frequency of all the logical CPUs in
+the system with a single call to the BIOS.
+
+1.1.1 Get Average Frequency:
+----------------------------
+This command is used by the OSPM to query the running frequency of the
+processor since the last time this command was completed. The output buffer
+indicates the average unhalted frequency of the logical processor expressed as
+a percentage of the nominal (ie: maximum) CPU frequency. The output buffer
+also signifies if the CPU frequency is limited by a power budget condition.
+
+1.1.2 Set Desired Frequency:
+----------------------------
+This command is used by the OSPM to communicate to the platform firmware the
+desired frequency for a logical processor. The output buffer is currently
+ignored by OSPM. The next invocation of "Get Average Frequency" will inform
+OSPM if the desired frequency was achieved or not.
+
+1.2 Platforms affected:
+-----------------------
+The PCC driver will load on any system where the platform firmware:
+* supports the PCC interface, and the associated PCCH() and PCCP() methods
+* assumes responsibility for managing the hardware clocking controls in order
+to deliver the requested processor performance
+
+Currently, certain HP ProLiant platforms implement the PCC interface. On those
+platforms PCC is the "default" choice.
+
+However, it is possible to disable this interface via a BIOS setting. In
+such an instance, as is also the case on platforms where the PCC interface
+is not implemented, the PCC driver will fail to load silently.
+
+2. Driver and /sys details:
+---------------------------
+When the driver loads, it merely prints the lowest and the highest CPU
+frequencies supported by the platform firmware.
+
+The PCC driver loads with a message such as:
+pcc-cpufreq: (v1.00.00) driver loaded with frequency limits: 1600 MHz, 2933
+MHz
+
+This means that the OPSM can request the CPU to run at any frequency in
+between the limits (1600 MHz, and 2933 MHz) specified in the message.
+
+Internally, there is no need for the driver to convert the "target" frequency
+to a corresponding P-state.
+
+The VERSION number for the driver will be of the format v.xy.ab.
+eg: 1.00.02
+ ----- --
+ | |
+ | -- this will increase with bug fixes/enhancements to the driver
+ |-- this is the version of the PCC specification the driver adheres to
+
+
+The following is a brief discussion on some of the fields exported via the
+/sys filesystem and how their values are affected by the PCC driver:
+
+2.1 scaling_available_frequencies:
+----------------------------------
+scaling_available_frequencies is not created in /sys. No intermediate
+frequencies need to be listed because the BIOS will try to achieve any
+frequency, within limits, requested by the governor. A frequency does not have
+to be strictly associated with a P-state.
+
+2.2 cpuinfo_transition_latency:
+-------------------------------
+The cpuinfo_transition_latency field is 0. The PCC specification does
+not include a field to expose this value currently.
+
+2.3 cpuinfo_cur_freq:
+---------------------
+A) Often cpuinfo_cur_freq will show a value different than what is declared
+in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq.
+This is due to "turbo boost" available on recent Intel processors. If certain
+conditions are met the BIOS can achieve a slightly higher speed than requested
+by OSPM. An example:
+
+scaling_cur_freq : 2933000
+cpuinfo_cur_freq : 3196000
+
+B) There is a round-off error associated with the cpuinfo_cur_freq value.
+Since the driver obtains the current frequency as a "percentage" (%) of the
+nominal frequency from the BIOS, sometimes, the values displayed by
+scaling_cur_freq and cpuinfo_cur_freq may not match. An example:
+
+scaling_cur_freq : 1600000
+cpuinfo_cur_freq : 1583000
+
+In this example, the nominal frequency is 2933 MHz. The driver obtains the
+current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency:
+
+ 54% of 2933 MHz = 1583 MHz
+
+Nominal frequency is the maximum frequency of the processor, and it usually
+corresponds to the frequency of the P0 P-state.
+
+2.4 related_cpus:
+-----------------
+The related_cpus field is identical to affected_cpus.
+
+affected_cpus : 4
+related_cpus : 4
+
+Currently, the PCC driver does not evaluate _PSD. The platforms that support
+PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination
+to ensure that the same frequency is requested of all dependent CPUs.
+
+3. Caveats:
+-----------
+The "cpufreq_stats" module in its present form cannot be loaded and
+expected to work with the PCC driver. Since the "cpufreq_stats" module
+provides information wrt each P-state, it is not applicable to the PCC driver.