diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/infiniband/hw/hfi1/affinity.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/infiniband/hw/hfi1/affinity.c')
-rw-r--r-- | drivers/infiniband/hw/hfi1/affinity.c | 1234 |
1 files changed, 1234 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/hfi1/affinity.c b/drivers/infiniband/hw/hfi1/affinity.c new file mode 100644 index 000000000..01ed0a667 --- /dev/null +++ b/drivers/infiniband/hw/hfi1/affinity.c @@ -0,0 +1,1234 @@ +/* + * Copyright(c) 2015 - 2018 Intel Corporation. + * + * This file is provided under a dual BSD/GPLv2 license. When using or + * redistributing this file, you may do so under either license. + * + * GPL LICENSE SUMMARY + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of version 2 of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * - Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * - Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * - Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ +#include <linux/topology.h> +#include <linux/cpumask.h> +#include <linux/module.h> +#include <linux/interrupt.h> + +#include "hfi.h" +#include "affinity.h" +#include "sdma.h" +#include "trace.h" + +struct hfi1_affinity_node_list node_affinity = { + .list = LIST_HEAD_INIT(node_affinity.list), + .lock = __MUTEX_INITIALIZER(node_affinity.lock) +}; + +/* Name of IRQ types, indexed by enum irq_type */ +static const char * const irq_type_names[] = { + "SDMA", + "RCVCTXT", + "GENERAL", + "OTHER", +}; + +/* Per NUMA node count of HFI devices */ +static unsigned int *hfi1_per_node_cntr; + +static inline void init_cpu_mask_set(struct cpu_mask_set *set) +{ + cpumask_clear(&set->mask); + cpumask_clear(&set->used); + set->gen = 0; +} + +/* Increment generation of CPU set if needed */ +static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set) +{ + if (cpumask_equal(&set->mask, &set->used)) { + /* + * We've used up all the CPUs, bump up the generation + * and reset the 'used' map + */ + set->gen++; + cpumask_clear(&set->used); + } +} + +static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set) +{ + if (cpumask_empty(&set->used) && set->gen) { + set->gen--; + cpumask_copy(&set->used, &set->mask); + } +} + +/* Get the first CPU from the list of unused CPUs in a CPU set data structure */ +static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff) +{ + int cpu; + + if (!diff || !set) + return -EINVAL; + + _cpu_mask_set_gen_inc(set); + + /* Find out CPUs left in CPU mask */ + cpumask_andnot(diff, &set->mask, &set->used); + + cpu = cpumask_first(diff); + if (cpu >= nr_cpu_ids) /* empty */ + cpu = -EINVAL; + else + cpumask_set_cpu(cpu, &set->used); + + return cpu; +} + +static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu) +{ + if (!set) + return; + + cpumask_clear_cpu(cpu, &set->used); + _cpu_mask_set_gen_dec(set); +} + +/* Initialize non-HT cpu cores mask */ +void init_real_cpu_mask(void) +{ + int possible, curr_cpu, i, ht; + + cpumask_clear(&node_affinity.real_cpu_mask); + + /* Start with cpu online mask as the real cpu mask */ + cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask); + + /* + * Remove HT cores from the real cpu mask. Do this in two steps below. + */ + possible = cpumask_weight(&node_affinity.real_cpu_mask); + ht = cpumask_weight(topology_sibling_cpumask( + cpumask_first(&node_affinity.real_cpu_mask))); + /* + * Step 1. Skip over the first N HT siblings and use them as the + * "real" cores. Assumes that HT cores are not enumerated in + * succession (except in the single core case). + */ + curr_cpu = cpumask_first(&node_affinity.real_cpu_mask); + for (i = 0; i < possible / ht; i++) + curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); + /* + * Step 2. Remove the remaining HT siblings. Use cpumask_next() to + * skip any gaps. + */ + for (; i < possible; i++) { + cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask); + curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); + } +} + +int node_affinity_init(void) +{ + int node; + struct pci_dev *dev = NULL; + const struct pci_device_id *ids = hfi1_pci_tbl; + + cpumask_clear(&node_affinity.proc.used); + cpumask_copy(&node_affinity.proc.mask, cpu_online_mask); + + node_affinity.proc.gen = 0; + node_affinity.num_core_siblings = + cpumask_weight(topology_sibling_cpumask( + cpumask_first(&node_affinity.proc.mask) + )); + node_affinity.num_possible_nodes = num_possible_nodes(); + node_affinity.num_online_nodes = num_online_nodes(); + node_affinity.num_online_cpus = num_online_cpus(); + + /* + * The real cpu mask is part of the affinity struct but it has to be + * initialized early. It is needed to calculate the number of user + * contexts in set_up_context_variables(). + */ + init_real_cpu_mask(); + + hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes, + sizeof(*hfi1_per_node_cntr), GFP_KERNEL); + if (!hfi1_per_node_cntr) + return -ENOMEM; + + while (ids->vendor) { + dev = NULL; + while ((dev = pci_get_device(ids->vendor, ids->device, dev))) { + node = pcibus_to_node(dev->bus); + if (node < 0) + goto out; + + hfi1_per_node_cntr[node]++; + } + ids++; + } + + return 0; + +out: + /* + * Invalid PCI NUMA node information found, note it, and populate + * our database 1:1. + */ + pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n"); + pr_err("HFI: System BIOS may need to be upgraded\n"); + for (node = 0; node < node_affinity.num_possible_nodes; node++) + hfi1_per_node_cntr[node] = 1; + + return 0; +} + +static void node_affinity_destroy(struct hfi1_affinity_node *entry) +{ + free_percpu(entry->comp_vect_affinity); + kfree(entry); +} + +void node_affinity_destroy_all(void) +{ + struct list_head *pos, *q; + struct hfi1_affinity_node *entry; + + mutex_lock(&node_affinity.lock); + list_for_each_safe(pos, q, &node_affinity.list) { + entry = list_entry(pos, struct hfi1_affinity_node, + list); + list_del(pos); + node_affinity_destroy(entry); + } + mutex_unlock(&node_affinity.lock); + kfree(hfi1_per_node_cntr); +} + +static struct hfi1_affinity_node *node_affinity_allocate(int node) +{ + struct hfi1_affinity_node *entry; + + entry = kzalloc(sizeof(*entry), GFP_KERNEL); + if (!entry) + return NULL; + entry->node = node; + entry->comp_vect_affinity = alloc_percpu(u16); + INIT_LIST_HEAD(&entry->list); + + return entry; +} + +/* + * It appends an entry to the list. + * It *must* be called with node_affinity.lock held. + */ +static void node_affinity_add_tail(struct hfi1_affinity_node *entry) +{ + list_add_tail(&entry->list, &node_affinity.list); +} + +/* It must be called with node_affinity.lock held */ +static struct hfi1_affinity_node *node_affinity_lookup(int node) +{ + struct list_head *pos; + struct hfi1_affinity_node *entry; + + list_for_each(pos, &node_affinity.list) { + entry = list_entry(pos, struct hfi1_affinity_node, list); + if (entry->node == node) + return entry; + } + + return NULL; +} + +static int per_cpu_affinity_get(cpumask_var_t possible_cpumask, + u16 __percpu *comp_vect_affinity) +{ + int curr_cpu; + u16 cntr; + u16 prev_cntr; + int ret_cpu; + + if (!possible_cpumask) { + ret_cpu = -EINVAL; + goto fail; + } + + if (!comp_vect_affinity) { + ret_cpu = -EINVAL; + goto fail; + } + + ret_cpu = cpumask_first(possible_cpumask); + if (ret_cpu >= nr_cpu_ids) { + ret_cpu = -EINVAL; + goto fail; + } + + prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu); + for_each_cpu(curr_cpu, possible_cpumask) { + cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); + + if (cntr < prev_cntr) { + ret_cpu = curr_cpu; + prev_cntr = cntr; + } + } + + *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1; + +fail: + return ret_cpu; +} + +static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask, + u16 __percpu *comp_vect_affinity) +{ + int curr_cpu; + int max_cpu; + u16 cntr; + u16 prev_cntr; + + if (!possible_cpumask) + return -EINVAL; + + if (!comp_vect_affinity) + return -EINVAL; + + max_cpu = cpumask_first(possible_cpumask); + if (max_cpu >= nr_cpu_ids) + return -EINVAL; + + prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu); + for_each_cpu(curr_cpu, possible_cpumask) { + cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); + + if (cntr > prev_cntr) { + max_cpu = curr_cpu; + prev_cntr = cntr; + } + } + + *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1; + + return max_cpu; +} + +/* + * Non-interrupt CPUs are used first, then interrupt CPUs. + * Two already allocated cpu masks must be passed. + */ +static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd, + struct hfi1_affinity_node *entry, + cpumask_var_t non_intr_cpus, + cpumask_var_t available_cpus) + __must_hold(&node_affinity.lock) +{ + int cpu; + struct cpu_mask_set *set = dd->comp_vect; + + lockdep_assert_held(&node_affinity.lock); + if (!non_intr_cpus) { + cpu = -1; + goto fail; + } + + if (!available_cpus) { + cpu = -1; + goto fail; + } + + /* Available CPUs for pinning completion vectors */ + _cpu_mask_set_gen_inc(set); + cpumask_andnot(available_cpus, &set->mask, &set->used); + + /* Available CPUs without SDMA engine interrupts */ + cpumask_andnot(non_intr_cpus, available_cpus, + &entry->def_intr.used); + + /* If there are non-interrupt CPUs available, use them first */ + if (!cpumask_empty(non_intr_cpus)) + cpu = cpumask_first(non_intr_cpus); + else /* Otherwise, use interrupt CPUs */ + cpu = cpumask_first(available_cpus); + + if (cpu >= nr_cpu_ids) { /* empty */ + cpu = -1; + goto fail; + } + cpumask_set_cpu(cpu, &set->used); + +fail: + return cpu; +} + +static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu) +{ + struct cpu_mask_set *set = dd->comp_vect; + + if (cpu < 0) + return; + + cpu_mask_set_put(set, cpu); +} + +/* _dev_comp_vect_mappings_destroy() is reentrant */ +static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd) +{ + int i, cpu; + + if (!dd->comp_vect_mappings) + return; + + for (i = 0; i < dd->comp_vect_possible_cpus; i++) { + cpu = dd->comp_vect_mappings[i]; + _dev_comp_vect_cpu_put(dd, cpu); + dd->comp_vect_mappings[i] = -1; + hfi1_cdbg(AFFINITY, + "[%s] Release CPU %d from completion vector %d", + rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i); + } + + kfree(dd->comp_vect_mappings); + dd->comp_vect_mappings = NULL; +} + +/* + * This function creates the table for looking up CPUs for completion vectors. + * num_comp_vectors needs to have been initilized before calling this function. + */ +static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd, + struct hfi1_affinity_node *entry) + __must_hold(&node_affinity.lock) +{ + int i, cpu, ret; + cpumask_var_t non_intr_cpus; + cpumask_var_t available_cpus; + + lockdep_assert_held(&node_affinity.lock); + + if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL)) + return -ENOMEM; + + if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) { + free_cpumask_var(non_intr_cpus); + return -ENOMEM; + } + + dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus, + sizeof(*dd->comp_vect_mappings), + GFP_KERNEL); + if (!dd->comp_vect_mappings) { + ret = -ENOMEM; + goto fail; + } + for (i = 0; i < dd->comp_vect_possible_cpus; i++) + dd->comp_vect_mappings[i] = -1; + + for (i = 0; i < dd->comp_vect_possible_cpus; i++) { + cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus, + available_cpus); + if (cpu < 0) { + ret = -EINVAL; + goto fail; + } + + dd->comp_vect_mappings[i] = cpu; + hfi1_cdbg(AFFINITY, + "[%s] Completion Vector %d -> CPU %d", + rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu); + } + + free_cpumask_var(available_cpus); + free_cpumask_var(non_intr_cpus); + return 0; + +fail: + free_cpumask_var(available_cpus); + free_cpumask_var(non_intr_cpus); + _dev_comp_vect_mappings_destroy(dd); + + return ret; +} + +int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd) +{ + int ret; + struct hfi1_affinity_node *entry; + + mutex_lock(&node_affinity.lock); + entry = node_affinity_lookup(dd->node); + if (!entry) { + ret = -EINVAL; + goto unlock; + } + ret = _dev_comp_vect_mappings_create(dd, entry); +unlock: + mutex_unlock(&node_affinity.lock); + + return ret; +} + +void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd) +{ + _dev_comp_vect_mappings_destroy(dd); +} + +int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect) +{ + struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); + struct hfi1_devdata *dd = dd_from_dev(verbs_dev); + + if (!dd->comp_vect_mappings) + return -EINVAL; + if (comp_vect >= dd->comp_vect_possible_cpus) + return -EINVAL; + + return dd->comp_vect_mappings[comp_vect]; +} + +/* + * It assumes dd->comp_vect_possible_cpus is available. + */ +static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd, + struct hfi1_affinity_node *entry, + bool first_dev_init) + __must_hold(&node_affinity.lock) +{ + int i, j, curr_cpu; + int possible_cpus_comp_vect = 0; + struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask; + + lockdep_assert_held(&node_affinity.lock); + /* + * If there's only one CPU available for completion vectors, then + * there will only be one completion vector available. Othewise, + * the number of completion vector available will be the number of + * available CPUs divide it by the number of devices in the + * local NUMA node. + */ + if (cpumask_weight(&entry->comp_vect_mask) == 1) { + possible_cpus_comp_vect = 1; + dd_dev_warn(dd, + "Number of kernel receive queues is too large for completion vector affinity to be effective\n"); + } else { + possible_cpus_comp_vect += + cpumask_weight(&entry->comp_vect_mask) / + hfi1_per_node_cntr[dd->node]; + + /* + * If the completion vector CPUs available doesn't divide + * evenly among devices, then the first device device to be + * initialized gets an extra CPU. + */ + if (first_dev_init && + cpumask_weight(&entry->comp_vect_mask) % + hfi1_per_node_cntr[dd->node] != 0) + possible_cpus_comp_vect++; + } + + dd->comp_vect_possible_cpus = possible_cpus_comp_vect; + + /* Reserving CPUs for device completion vector */ + for (i = 0; i < dd->comp_vect_possible_cpus; i++) { + curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask, + entry->comp_vect_affinity); + if (curr_cpu < 0) + goto fail; + + cpumask_set_cpu(curr_cpu, dev_comp_vect_mask); + } + + hfi1_cdbg(AFFINITY, + "[%s] Completion vector affinity CPU set(s) %*pbl", + rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), + cpumask_pr_args(dev_comp_vect_mask)); + + return 0; + +fail: + for (j = 0; j < i; j++) + per_cpu_affinity_put_max(&entry->comp_vect_mask, + entry->comp_vect_affinity); + + return curr_cpu; +} + +/* + * It assumes dd->comp_vect_possible_cpus is available. + */ +static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd, + struct hfi1_affinity_node *entry) + __must_hold(&node_affinity.lock) +{ + int i, cpu; + + lockdep_assert_held(&node_affinity.lock); + if (!dd->comp_vect_possible_cpus) + return; + + for (i = 0; i < dd->comp_vect_possible_cpus; i++) { + cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask, + entry->comp_vect_affinity); + /* Clearing CPU in device completion vector cpu mask */ + if (cpu >= 0) + cpumask_clear_cpu(cpu, &dd->comp_vect->mask); + } + + dd->comp_vect_possible_cpus = 0; +} + +/* + * Interrupt affinity. + * + * non-rcv avail gets a default mask that + * starts as possible cpus with threads reset + * and each rcv avail reset. + * + * rcv avail gets node relative 1 wrapping back + * to the node relative 1 as necessary. + * + */ +int hfi1_dev_affinity_init(struct hfi1_devdata *dd) +{ + int node = pcibus_to_node(dd->pcidev->bus); + struct hfi1_affinity_node *entry; + const struct cpumask *local_mask; + int curr_cpu, possible, i, ret; + bool new_entry = false; + + /* + * If the BIOS does not have the NUMA node information set, select + * NUMA 0 so we get consistent performance. + */ + if (node < 0) { + dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); + node = 0; + } + dd->node = node; + + local_mask = cpumask_of_node(dd->node); + if (cpumask_first(local_mask) >= nr_cpu_ids) + local_mask = topology_core_cpumask(0); + + mutex_lock(&node_affinity.lock); + entry = node_affinity_lookup(dd->node); + + /* + * If this is the first time this NUMA node's affinity is used, + * create an entry in the global affinity structure and initialize it. + */ + if (!entry) { + entry = node_affinity_allocate(node); + if (!entry) { + dd_dev_err(dd, + "Unable to allocate global affinity node\n"); + ret = -ENOMEM; + goto fail; + } + new_entry = true; + + init_cpu_mask_set(&entry->def_intr); + init_cpu_mask_set(&entry->rcv_intr); + cpumask_clear(&entry->comp_vect_mask); + cpumask_clear(&entry->general_intr_mask); + /* Use the "real" cpu mask of this node as the default */ + cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask, + local_mask); + + /* fill in the receive list */ + possible = cpumask_weight(&entry->def_intr.mask); + curr_cpu = cpumask_first(&entry->def_intr.mask); + + if (possible == 1) { + /* only one CPU, everyone will use it */ + cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); + cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); + } else { + /* + * The general/control context will be the first CPU in + * the default list, so it is removed from the default + * list and added to the general interrupt list. + */ + cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); + cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); + curr_cpu = cpumask_next(curr_cpu, + &entry->def_intr.mask); + + /* + * Remove the remaining kernel receive queues from + * the default list and add them to the receive list. + */ + for (i = 0; + i < (dd->n_krcv_queues - 1) * + hfi1_per_node_cntr[dd->node]; + i++) { + cpumask_clear_cpu(curr_cpu, + &entry->def_intr.mask); + cpumask_set_cpu(curr_cpu, + &entry->rcv_intr.mask); + curr_cpu = cpumask_next(curr_cpu, + &entry->def_intr.mask); + if (curr_cpu >= nr_cpu_ids) + break; + } + + /* + * If there ends up being 0 CPU cores leftover for SDMA + * engines, use the same CPU cores as general/control + * context. + */ + if (cpumask_weight(&entry->def_intr.mask) == 0) + cpumask_copy(&entry->def_intr.mask, + &entry->general_intr_mask); + } + + /* Determine completion vector CPUs for the entire node */ + cpumask_and(&entry->comp_vect_mask, + &node_affinity.real_cpu_mask, local_mask); + cpumask_andnot(&entry->comp_vect_mask, + &entry->comp_vect_mask, + &entry->rcv_intr.mask); + cpumask_andnot(&entry->comp_vect_mask, + &entry->comp_vect_mask, + &entry->general_intr_mask); + + /* + * If there ends up being 0 CPU cores leftover for completion + * vectors, use the same CPU core as the general/control + * context. + */ + if (cpumask_weight(&entry->comp_vect_mask) == 0) + cpumask_copy(&entry->comp_vect_mask, + &entry->general_intr_mask); + } + + ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry); + if (ret < 0) + goto fail; + + if (new_entry) + node_affinity_add_tail(entry); + + mutex_unlock(&node_affinity.lock); + + return 0; + +fail: + if (new_entry) + node_affinity_destroy(entry); + mutex_unlock(&node_affinity.lock); + return ret; +} + +void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd) +{ + struct hfi1_affinity_node *entry; + + if (dd->node < 0) + return; + + mutex_lock(&node_affinity.lock); + entry = node_affinity_lookup(dd->node); + if (!entry) + goto unlock; + + /* + * Free device completion vector CPUs to be used by future + * completion vectors + */ + _dev_comp_vect_cpu_mask_clean_up(dd, entry); +unlock: + mutex_unlock(&node_affinity.lock); + dd->node = -1; +} + +/* + * Function updates the irq affinity hint for msix after it has been changed + * by the user using the /proc/irq interface. This function only accepts + * one cpu in the mask. + */ +static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu) +{ + struct sdma_engine *sde = msix->arg; + struct hfi1_devdata *dd = sde->dd; + struct hfi1_affinity_node *entry; + struct cpu_mask_set *set; + int i, old_cpu; + + if (cpu > num_online_cpus() || cpu == sde->cpu) + return; + + mutex_lock(&node_affinity.lock); + entry = node_affinity_lookup(dd->node); + if (!entry) + goto unlock; + + old_cpu = sde->cpu; + sde->cpu = cpu; + cpumask_clear(&msix->mask); + cpumask_set_cpu(cpu, &msix->mask); + dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n", + msix->irq, irq_type_names[msix->type], + sde->this_idx, cpu); + irq_set_affinity_hint(msix->irq, &msix->mask); + + /* + * Set the new cpu in the hfi1_affinity_node and clean + * the old cpu if it is not used by any other IRQ + */ + set = &entry->def_intr; + cpumask_set_cpu(cpu, &set->mask); + cpumask_set_cpu(cpu, &set->used); + for (i = 0; i < dd->num_msix_entries; i++) { + struct hfi1_msix_entry *other_msix; + + other_msix = &dd->msix_entries[i]; + if (other_msix->type != IRQ_SDMA || other_msix == msix) + continue; + + if (cpumask_test_cpu(old_cpu, &other_msix->mask)) + goto unlock; + } + cpumask_clear_cpu(old_cpu, &set->mask); + cpumask_clear_cpu(old_cpu, &set->used); +unlock: + mutex_unlock(&node_affinity.lock); +} + +static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify, + const cpumask_t *mask) +{ + int cpu = cpumask_first(mask); + struct hfi1_msix_entry *msix = container_of(notify, + struct hfi1_msix_entry, + notify); + + /* Only one CPU configuration supported currently */ + hfi1_update_sdma_affinity(msix, cpu); +} + +static void hfi1_irq_notifier_release(struct kref *ref) +{ + /* + * This is required by affinity notifier. We don't have anything to + * free here. + */ +} + +static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix) +{ + struct irq_affinity_notify *notify = &msix->notify; + + notify->irq = msix->irq; + notify->notify = hfi1_irq_notifier_notify; + notify->release = hfi1_irq_notifier_release; + + if (irq_set_affinity_notifier(notify->irq, notify)) + pr_err("Failed to register sdma irq affinity notifier for irq %d\n", + notify->irq); +} + +static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix) +{ + struct irq_affinity_notify *notify = &msix->notify; + + if (irq_set_affinity_notifier(notify->irq, NULL)) + pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n", + notify->irq); +} + +/* + * Function sets the irq affinity for msix. + * It *must* be called with node_affinity.lock held. + */ +static int get_irq_affinity(struct hfi1_devdata *dd, + struct hfi1_msix_entry *msix) +{ + cpumask_var_t diff; + struct hfi1_affinity_node *entry; + struct cpu_mask_set *set = NULL; + struct sdma_engine *sde = NULL; + struct hfi1_ctxtdata *rcd = NULL; + char extra[64]; + int cpu = -1; + + extra[0] = '\0'; + cpumask_clear(&msix->mask); + + entry = node_affinity_lookup(dd->node); + + switch (msix->type) { + case IRQ_SDMA: + sde = (struct sdma_engine *)msix->arg; + scnprintf(extra, 64, "engine %u", sde->this_idx); + set = &entry->def_intr; + break; + case IRQ_GENERAL: + cpu = cpumask_first(&entry->general_intr_mask); + break; + case IRQ_RCVCTXT: + rcd = (struct hfi1_ctxtdata *)msix->arg; + if (rcd->ctxt == HFI1_CTRL_CTXT) + cpu = cpumask_first(&entry->general_intr_mask); + else + set = &entry->rcv_intr; + scnprintf(extra, 64, "ctxt %u", rcd->ctxt); + break; + default: + dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type); + return -EINVAL; + } + + /* + * The general and control contexts are placed on a particular + * CPU, which is set above. Skip accounting for it. Everything else + * finds its CPU here. + */ + if (cpu == -1 && set) { + if (!zalloc_cpumask_var(&diff, GFP_KERNEL)) + return -ENOMEM; + + cpu = cpu_mask_set_get_first(set, diff); + if (cpu < 0) { + free_cpumask_var(diff); + dd_dev_err(dd, "Failure to obtain CPU for IRQ\n"); + return cpu; + } + + free_cpumask_var(diff); + } + + cpumask_set_cpu(cpu, &msix->mask); + dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n", + msix->irq, irq_type_names[msix->type], + extra, cpu); + irq_set_affinity_hint(msix->irq, &msix->mask); + + if (msix->type == IRQ_SDMA) { + sde->cpu = cpu; + hfi1_setup_sdma_notifier(msix); + } + + return 0; +} + +int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) +{ + int ret; + + mutex_lock(&node_affinity.lock); + ret = get_irq_affinity(dd, msix); + mutex_unlock(&node_affinity.lock); + return ret; +} + +void hfi1_put_irq_affinity(struct hfi1_devdata *dd, + struct hfi1_msix_entry *msix) +{ + struct cpu_mask_set *set = NULL; + struct hfi1_ctxtdata *rcd; + struct hfi1_affinity_node *entry; + + mutex_lock(&node_affinity.lock); + entry = node_affinity_lookup(dd->node); + + switch (msix->type) { + case IRQ_SDMA: + set = &entry->def_intr; + hfi1_cleanup_sdma_notifier(msix); + break; + case IRQ_GENERAL: + /* Don't do accounting for general contexts */ + break; + case IRQ_RCVCTXT: + rcd = (struct hfi1_ctxtdata *)msix->arg; + /* Don't do accounting for control contexts */ + if (rcd->ctxt != HFI1_CTRL_CTXT) + set = &entry->rcv_intr; + break; + default: + mutex_unlock(&node_affinity.lock); + return; + } + + if (set) { + cpumask_andnot(&set->used, &set->used, &msix->mask); + _cpu_mask_set_gen_dec(set); + } + + irq_set_affinity_hint(msix->irq, NULL); + cpumask_clear(&msix->mask); + mutex_unlock(&node_affinity.lock); +} + +/* This should be called with node_affinity.lock held */ +static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask, + struct hfi1_affinity_node_list *affinity) +{ + int possible, curr_cpu, i; + uint num_cores_per_socket = node_affinity.num_online_cpus / + affinity->num_core_siblings / + node_affinity.num_online_nodes; + + cpumask_copy(hw_thread_mask, &affinity->proc.mask); + if (affinity->num_core_siblings > 0) { + /* Removing other siblings not needed for now */ + possible = cpumask_weight(hw_thread_mask); + curr_cpu = cpumask_first(hw_thread_mask); + for (i = 0; + i < num_cores_per_socket * node_affinity.num_online_nodes; + i++) + curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); + + for (; i < possible; i++) { + cpumask_clear_cpu(curr_cpu, hw_thread_mask); + curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); + } + + /* Identifying correct HW threads within physical cores */ + cpumask_shift_left(hw_thread_mask, hw_thread_mask, + num_cores_per_socket * + node_affinity.num_online_nodes * + hw_thread_no); + } +} + +int hfi1_get_proc_affinity(int node) +{ + int cpu = -1, ret, i; + struct hfi1_affinity_node *entry; + cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask; + const struct cpumask *node_mask, + *proc_mask = ¤t->cpus_allowed; + struct hfi1_affinity_node_list *affinity = &node_affinity; + struct cpu_mask_set *set = &affinity->proc; + + /* + * check whether process/context affinity has already + * been set + */ + if (cpumask_weight(proc_mask) == 1) { + hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl", + current->pid, current->comm, + cpumask_pr_args(proc_mask)); + /* + * Mark the pre-set CPU as used. This is atomic so we don't + * need the lock + */ + cpu = cpumask_first(proc_mask); + cpumask_set_cpu(cpu, &set->used); + goto done; + } else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) { + hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl", + current->pid, current->comm, + cpumask_pr_args(proc_mask)); + goto done; + } + + /* + * The process does not have a preset CPU affinity so find one to + * recommend using the following algorithm: + * + * For each user process that is opening a context on HFI Y: + * a) If all cores are filled, reinitialize the bitmask + * b) Fill real cores first, then HT cores (First set of HT + * cores on all physical cores, then second set of HT core, + * and, so on) in the following order: + * + * 1. Same NUMA node as HFI Y and not running an IRQ + * handler + * 2. Same NUMA node as HFI Y and running an IRQ handler + * 3. Different NUMA node to HFI Y and not running an IRQ + * handler + * 4. Different NUMA node to HFI Y and running an IRQ + * handler + * c) Mark core as filled in the bitmask. As user processes are + * done, clear cores from the bitmask. + */ + + ret = zalloc_cpumask_var(&diff, GFP_KERNEL); + if (!ret) + goto done; + ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL); + if (!ret) + goto free_diff; + ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL); + if (!ret) + goto free_hw_thread_mask; + ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL); + if (!ret) + goto free_available_mask; + + mutex_lock(&affinity->lock); + /* + * If we've used all available HW threads, clear the mask and start + * overloading. + */ + _cpu_mask_set_gen_inc(set); + + /* + * If NUMA node has CPUs used by interrupt handlers, include them in the + * interrupt handler mask. + */ + entry = node_affinity_lookup(node); + if (entry) { + cpumask_copy(intrs_mask, (entry->def_intr.gen ? + &entry->def_intr.mask : + &entry->def_intr.used)); + cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ? + &entry->rcv_intr.mask : + &entry->rcv_intr.used)); + cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask); + } + hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl", + cpumask_pr_args(intrs_mask)); + + cpumask_copy(hw_thread_mask, &set->mask); + + /* + * If HT cores are enabled, identify which HW threads within the + * physical cores should be used. + */ + if (affinity->num_core_siblings > 0) { + for (i = 0; i < affinity->num_core_siblings; i++) { + find_hw_thread_mask(i, hw_thread_mask, affinity); + + /* + * If there's at least one available core for this HW + * thread number, stop looking for a core. + * + * diff will always be not empty at least once in this + * loop as the used mask gets reset when + * (set->mask == set->used) before this loop. + */ + cpumask_andnot(diff, hw_thread_mask, &set->used); + if (!cpumask_empty(diff)) + break; + } + } + hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl", + cpumask_pr_args(hw_thread_mask)); + + node_mask = cpumask_of_node(node); + hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node, + cpumask_pr_args(node_mask)); + + /* Get cpumask of available CPUs on preferred NUMA */ + cpumask_and(available_mask, hw_thread_mask, node_mask); + cpumask_andnot(available_mask, available_mask, &set->used); + hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node, + cpumask_pr_args(available_mask)); + + /* + * At first, we don't want to place processes on the same + * CPUs as interrupt handlers. Then, CPUs running interrupt + * handlers are used. + * + * 1) If diff is not empty, then there are CPUs not running + * non-interrupt handlers available, so diff gets copied + * over to available_mask. + * 2) If diff is empty, then all CPUs not running interrupt + * handlers are taken, so available_mask contains all + * available CPUs running interrupt handlers. + * 3) If available_mask is empty, then all CPUs on the + * preferred NUMA node are taken, so other NUMA nodes are + * used for process assignments using the same method as + * the preferred NUMA node. + */ + cpumask_andnot(diff, available_mask, intrs_mask); + if (!cpumask_empty(diff)) + cpumask_copy(available_mask, diff); + + /* If we don't have CPUs on the preferred node, use other NUMA nodes */ + if (cpumask_empty(available_mask)) { + cpumask_andnot(available_mask, hw_thread_mask, &set->used); + /* Excluding preferred NUMA cores */ + cpumask_andnot(available_mask, available_mask, node_mask); + hfi1_cdbg(PROC, + "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl", + cpumask_pr_args(available_mask)); + + /* + * At first, we don't want to place processes on the same + * CPUs as interrupt handlers. + */ + cpumask_andnot(diff, available_mask, intrs_mask); + if (!cpumask_empty(diff)) + cpumask_copy(available_mask, diff); + } + hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl", + cpumask_pr_args(available_mask)); + + cpu = cpumask_first(available_mask); + if (cpu >= nr_cpu_ids) /* empty */ + cpu = -1; + else + cpumask_set_cpu(cpu, &set->used); + + mutex_unlock(&affinity->lock); + hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu); + + free_cpumask_var(intrs_mask); +free_available_mask: + free_cpumask_var(available_mask); +free_hw_thread_mask: + free_cpumask_var(hw_thread_mask); +free_diff: + free_cpumask_var(diff); +done: + return cpu; +} + +void hfi1_put_proc_affinity(int cpu) +{ + struct hfi1_affinity_node_list *affinity = &node_affinity; + struct cpu_mask_set *set = &affinity->proc; + + if (cpu < 0) + return; + + mutex_lock(&affinity->lock); + cpu_mask_set_put(set, cpu); + hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu); + mutex_unlock(&affinity->lock); +} |