diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /fs/xfs/xfs_mount.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 4.19.249.upstream/4.19.249upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/xfs/xfs_mount.c')
-rw-r--r-- | fs/xfs/xfs_mount.c | 1442 |
1 files changed, 1442 insertions, 0 deletions
diff --git a/fs/xfs/xfs_mount.c b/fs/xfs/xfs_mount.c new file mode 100644 index 000000000..02d15098d --- /dev/null +++ b/fs/xfs/xfs_mount.c @@ -0,0 +1,1442 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2005 Silicon Graphics, Inc. + * All Rights Reserved. + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_bit.h" +#include "xfs_sb.h" +#include "xfs_mount.h" +#include "xfs_defer.h" +#include "xfs_da_format.h" +#include "xfs_da_btree.h" +#include "xfs_inode.h" +#include "xfs_dir2.h" +#include "xfs_ialloc.h" +#include "xfs_alloc.h" +#include "xfs_rtalloc.h" +#include "xfs_bmap.h" +#include "xfs_trans.h" +#include "xfs_trans_priv.h" +#include "xfs_log.h" +#include "xfs_error.h" +#include "xfs_quota.h" +#include "xfs_fsops.h" +#include "xfs_trace.h" +#include "xfs_icache.h" +#include "xfs_sysfs.h" +#include "xfs_rmap_btree.h" +#include "xfs_refcount_btree.h" +#include "xfs_reflink.h" +#include "xfs_extent_busy.h" + + +static DEFINE_MUTEX(xfs_uuid_table_mutex); +static int xfs_uuid_table_size; +static uuid_t *xfs_uuid_table; + +void +xfs_uuid_table_free(void) +{ + if (xfs_uuid_table_size == 0) + return; + kmem_free(xfs_uuid_table); + xfs_uuid_table = NULL; + xfs_uuid_table_size = 0; +} + +/* + * See if the UUID is unique among mounted XFS filesystems. + * Mount fails if UUID is nil or a FS with the same UUID is already mounted. + */ +STATIC int +xfs_uuid_mount( + struct xfs_mount *mp) +{ + uuid_t *uuid = &mp->m_sb.sb_uuid; + int hole, i; + + /* Publish UUID in struct super_block */ + uuid_copy(&mp->m_super->s_uuid, uuid); + + if (mp->m_flags & XFS_MOUNT_NOUUID) + return 0; + + if (uuid_is_null(uuid)) { + xfs_warn(mp, "Filesystem has null UUID - can't mount"); + return -EINVAL; + } + + mutex_lock(&xfs_uuid_table_mutex); + for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { + if (uuid_is_null(&xfs_uuid_table[i])) { + hole = i; + continue; + } + if (uuid_equal(uuid, &xfs_uuid_table[i])) + goto out_duplicate; + } + + if (hole < 0) { + xfs_uuid_table = kmem_realloc(xfs_uuid_table, + (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), + KM_SLEEP); + hole = xfs_uuid_table_size++; + } + xfs_uuid_table[hole] = *uuid; + mutex_unlock(&xfs_uuid_table_mutex); + + return 0; + + out_duplicate: + mutex_unlock(&xfs_uuid_table_mutex); + xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); + return -EINVAL; +} + +STATIC void +xfs_uuid_unmount( + struct xfs_mount *mp) +{ + uuid_t *uuid = &mp->m_sb.sb_uuid; + int i; + + if (mp->m_flags & XFS_MOUNT_NOUUID) + return; + + mutex_lock(&xfs_uuid_table_mutex); + for (i = 0; i < xfs_uuid_table_size; i++) { + if (uuid_is_null(&xfs_uuid_table[i])) + continue; + if (!uuid_equal(uuid, &xfs_uuid_table[i])) + continue; + memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); + break; + } + ASSERT(i < xfs_uuid_table_size); + mutex_unlock(&xfs_uuid_table_mutex); +} + + +STATIC void +__xfs_free_perag( + struct rcu_head *head) +{ + struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); + + ASSERT(atomic_read(&pag->pag_ref) == 0); + kmem_free(pag); +} + +/* + * Free up the per-ag resources associated with the mount structure. + */ +STATIC void +xfs_free_perag( + xfs_mount_t *mp) +{ + xfs_agnumber_t agno; + struct xfs_perag *pag; + + for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { + spin_lock(&mp->m_perag_lock); + pag = radix_tree_delete(&mp->m_perag_tree, agno); + spin_unlock(&mp->m_perag_lock); + ASSERT(pag); + ASSERT(atomic_read(&pag->pag_ref) == 0); + xfs_buf_hash_destroy(pag); + mutex_destroy(&pag->pag_ici_reclaim_lock); + call_rcu(&pag->rcu_head, __xfs_free_perag); + } +} + +/* + * Check size of device based on the (data/realtime) block count. + * Note: this check is used by the growfs code as well as mount. + */ +int +xfs_sb_validate_fsb_count( + xfs_sb_t *sbp, + uint64_t nblocks) +{ + ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); + ASSERT(sbp->sb_blocklog >= BBSHIFT); + + /* Limited by ULONG_MAX of page cache index */ + if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) + return -EFBIG; + return 0; +} + +int +xfs_initialize_perag( + xfs_mount_t *mp, + xfs_agnumber_t agcount, + xfs_agnumber_t *maxagi) +{ + xfs_agnumber_t index; + xfs_agnumber_t first_initialised = NULLAGNUMBER; + xfs_perag_t *pag; + int error = -ENOMEM; + + /* + * Walk the current per-ag tree so we don't try to initialise AGs + * that already exist (growfs case). Allocate and insert all the + * AGs we don't find ready for initialisation. + */ + for (index = 0; index < agcount; index++) { + pag = xfs_perag_get(mp, index); + if (pag) { + xfs_perag_put(pag); + continue; + } + + pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); + if (!pag) + goto out_unwind_new_pags; + pag->pag_agno = index; + pag->pag_mount = mp; + spin_lock_init(&pag->pag_ici_lock); + mutex_init(&pag->pag_ici_reclaim_lock); + INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); + if (xfs_buf_hash_init(pag)) + goto out_free_pag; + init_waitqueue_head(&pag->pagb_wait); + spin_lock_init(&pag->pagb_lock); + pag->pagb_count = 0; + pag->pagb_tree = RB_ROOT; + + if (radix_tree_preload(GFP_NOFS)) + goto out_hash_destroy; + + spin_lock(&mp->m_perag_lock); + if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { + BUG(); + spin_unlock(&mp->m_perag_lock); + radix_tree_preload_end(); + error = -EEXIST; + goto out_hash_destroy; + } + spin_unlock(&mp->m_perag_lock); + radix_tree_preload_end(); + /* first new pag is fully initialized */ + if (first_initialised == NULLAGNUMBER) + first_initialised = index; + } + + index = xfs_set_inode_alloc(mp, agcount); + + if (maxagi) + *maxagi = index; + + mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); + return 0; + +out_hash_destroy: + xfs_buf_hash_destroy(pag); +out_free_pag: + mutex_destroy(&pag->pag_ici_reclaim_lock); + kmem_free(pag); +out_unwind_new_pags: + /* unwind any prior newly initialized pags */ + for (index = first_initialised; index < agcount; index++) { + pag = radix_tree_delete(&mp->m_perag_tree, index); + if (!pag) + break; + xfs_buf_hash_destroy(pag); + mutex_destroy(&pag->pag_ici_reclaim_lock); + kmem_free(pag); + } + return error; +} + +/* + * xfs_readsb + * + * Does the initial read of the superblock. + */ +int +xfs_readsb( + struct xfs_mount *mp, + int flags) +{ + unsigned int sector_size; + struct xfs_buf *bp; + struct xfs_sb *sbp = &mp->m_sb; + int error; + int loud = !(flags & XFS_MFSI_QUIET); + const struct xfs_buf_ops *buf_ops; + + ASSERT(mp->m_sb_bp == NULL); + ASSERT(mp->m_ddev_targp != NULL); + + /* + * For the initial read, we must guess at the sector + * size based on the block device. It's enough to + * get the sb_sectsize out of the superblock and + * then reread with the proper length. + * We don't verify it yet, because it may not be complete. + */ + sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); + buf_ops = NULL; + + /* + * Allocate a (locked) buffer to hold the superblock. This will be kept + * around at all times to optimize access to the superblock. Therefore, + * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count + * elevated. + */ +reread: + error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, + BTOBB(sector_size), XBF_NO_IOACCT, &bp, + buf_ops); + if (error) { + if (loud) + xfs_warn(mp, "SB validate failed with error %d.", error); + /* bad CRC means corrupted metadata */ + if (error == -EFSBADCRC) + error = -EFSCORRUPTED; + return error; + } + + /* + * Initialize the mount structure from the superblock. + */ + xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); + + /* + * If we haven't validated the superblock, do so now before we try + * to check the sector size and reread the superblock appropriately. + */ + if (sbp->sb_magicnum != XFS_SB_MAGIC) { + if (loud) + xfs_warn(mp, "Invalid superblock magic number"); + error = -EINVAL; + goto release_buf; + } + + /* + * We must be able to do sector-sized and sector-aligned IO. + */ + if (sector_size > sbp->sb_sectsize) { + if (loud) + xfs_warn(mp, "device supports %u byte sectors (not %u)", + sector_size, sbp->sb_sectsize); + error = -ENOSYS; + goto release_buf; + } + + if (buf_ops == NULL) { + /* + * Re-read the superblock so the buffer is correctly sized, + * and properly verified. + */ + xfs_buf_relse(bp); + sector_size = sbp->sb_sectsize; + buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; + goto reread; + } + + xfs_reinit_percpu_counters(mp); + + /* no need to be quiet anymore, so reset the buf ops */ + bp->b_ops = &xfs_sb_buf_ops; + + mp->m_sb_bp = bp; + xfs_buf_unlock(bp); + return 0; + +release_buf: + xfs_buf_relse(bp); + return error; +} + +/* + * Update alignment values based on mount options and sb values + */ +STATIC int +xfs_update_alignment(xfs_mount_t *mp) +{ + xfs_sb_t *sbp = &(mp->m_sb); + + if (mp->m_dalign) { + /* + * If stripe unit and stripe width are not multiples + * of the fs blocksize turn off alignment. + */ + if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || + (BBTOB(mp->m_swidth) & mp->m_blockmask)) { + xfs_warn(mp, + "alignment check failed: sunit/swidth vs. blocksize(%d)", + sbp->sb_blocksize); + return -EINVAL; + } else { + /* + * Convert the stripe unit and width to FSBs. + */ + mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); + if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { + xfs_warn(mp, + "alignment check failed: sunit/swidth vs. agsize(%d)", + sbp->sb_agblocks); + return -EINVAL; + } else if (mp->m_dalign) { + mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); + } else { + xfs_warn(mp, + "alignment check failed: sunit(%d) less than bsize(%d)", + mp->m_dalign, sbp->sb_blocksize); + return -EINVAL; + } + } + + /* + * Update superblock with new values + * and log changes + */ + if (xfs_sb_version_hasdalign(sbp)) { + if (sbp->sb_unit != mp->m_dalign) { + sbp->sb_unit = mp->m_dalign; + mp->m_update_sb = true; + } + if (sbp->sb_width != mp->m_swidth) { + sbp->sb_width = mp->m_swidth; + mp->m_update_sb = true; + } + } else { + xfs_warn(mp, + "cannot change alignment: superblock does not support data alignment"); + return -EINVAL; + } + } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && + xfs_sb_version_hasdalign(&mp->m_sb)) { + mp->m_dalign = sbp->sb_unit; + mp->m_swidth = sbp->sb_width; + } + + return 0; +} + +/* + * Set the maximum inode count for this filesystem + */ +STATIC void +xfs_set_maxicount(xfs_mount_t *mp) +{ + xfs_sb_t *sbp = &(mp->m_sb); + uint64_t icount; + + if (sbp->sb_imax_pct) { + /* + * Make sure the maximum inode count is a multiple + * of the units we allocate inodes in. + */ + icount = sbp->sb_dblocks * sbp->sb_imax_pct; + do_div(icount, 100); + do_div(icount, mp->m_ialloc_blks); + mp->m_maxicount = (icount * mp->m_ialloc_blks) << + sbp->sb_inopblog; + } else { + mp->m_maxicount = 0; + } +} + +/* + * Set the default minimum read and write sizes unless + * already specified in a mount option. + * We use smaller I/O sizes when the file system + * is being used for NFS service (wsync mount option). + */ +STATIC void +xfs_set_rw_sizes(xfs_mount_t *mp) +{ + xfs_sb_t *sbp = &(mp->m_sb); + int readio_log, writeio_log; + + if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { + if (mp->m_flags & XFS_MOUNT_WSYNC) { + readio_log = XFS_WSYNC_READIO_LOG; + writeio_log = XFS_WSYNC_WRITEIO_LOG; + } else { + readio_log = XFS_READIO_LOG_LARGE; + writeio_log = XFS_WRITEIO_LOG_LARGE; + } + } else { + readio_log = mp->m_readio_log; + writeio_log = mp->m_writeio_log; + } + + if (sbp->sb_blocklog > readio_log) { + mp->m_readio_log = sbp->sb_blocklog; + } else { + mp->m_readio_log = readio_log; + } + mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); + if (sbp->sb_blocklog > writeio_log) { + mp->m_writeio_log = sbp->sb_blocklog; + } else { + mp->m_writeio_log = writeio_log; + } + mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); +} + +/* + * precalculate the low space thresholds for dynamic speculative preallocation. + */ +void +xfs_set_low_space_thresholds( + struct xfs_mount *mp) +{ + int i; + + for (i = 0; i < XFS_LOWSP_MAX; i++) { + uint64_t space = mp->m_sb.sb_dblocks; + + do_div(space, 100); + mp->m_low_space[i] = space * (i + 1); + } +} + + +/* + * Set whether we're using inode alignment. + */ +STATIC void +xfs_set_inoalignment(xfs_mount_t *mp) +{ + if (xfs_sb_version_hasalign(&mp->m_sb) && + mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) + mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; + else + mp->m_inoalign_mask = 0; + /* + * If we are using stripe alignment, check whether + * the stripe unit is a multiple of the inode alignment + */ + if (mp->m_dalign && mp->m_inoalign_mask && + !(mp->m_dalign & mp->m_inoalign_mask)) + mp->m_sinoalign = mp->m_dalign; + else + mp->m_sinoalign = 0; +} + +/* + * Check that the data (and log if separate) is an ok size. + */ +STATIC int +xfs_check_sizes( + struct xfs_mount *mp) +{ + struct xfs_buf *bp; + xfs_daddr_t d; + int error; + + d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); + if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { + xfs_warn(mp, "filesystem size mismatch detected"); + return -EFBIG; + } + error = xfs_buf_read_uncached(mp->m_ddev_targp, + d - XFS_FSS_TO_BB(mp, 1), + XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); + if (error) { + xfs_warn(mp, "last sector read failed"); + return error; + } + xfs_buf_relse(bp); + + if (mp->m_logdev_targp == mp->m_ddev_targp) + return 0; + + d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); + if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { + xfs_warn(mp, "log size mismatch detected"); + return -EFBIG; + } + error = xfs_buf_read_uncached(mp->m_logdev_targp, + d - XFS_FSB_TO_BB(mp, 1), + XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); + if (error) { + xfs_warn(mp, "log device read failed"); + return error; + } + xfs_buf_relse(bp); + return 0; +} + +/* + * Clear the quotaflags in memory and in the superblock. + */ +int +xfs_mount_reset_sbqflags( + struct xfs_mount *mp) +{ + mp->m_qflags = 0; + + /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ + if (mp->m_sb.sb_qflags == 0) + return 0; + spin_lock(&mp->m_sb_lock); + mp->m_sb.sb_qflags = 0; + spin_unlock(&mp->m_sb_lock); + + if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) + return 0; + + return xfs_sync_sb(mp, false); +} + +uint64_t +xfs_default_resblks(xfs_mount_t *mp) +{ + uint64_t resblks; + + /* + * We default to 5% or 8192 fsbs of space reserved, whichever is + * smaller. This is intended to cover concurrent allocation + * transactions when we initially hit enospc. These each require a 4 + * block reservation. Hence by default we cover roughly 2000 concurrent + * allocation reservations. + */ + resblks = mp->m_sb.sb_dblocks; + do_div(resblks, 20); + resblks = min_t(uint64_t, resblks, 8192); + return resblks; +} + +/* Ensure the summary counts are correct. */ +STATIC int +xfs_check_summary_counts( + struct xfs_mount *mp) +{ + /* + * The AG0 superblock verifier rejects in-progress filesystems, + * so we should never see the flag set this far into mounting. + */ + if (mp->m_sb.sb_inprogress) { + xfs_err(mp, "sb_inprogress set after log recovery??"); + WARN_ON(1); + return -EFSCORRUPTED; + } + + /* + * Now the log is mounted, we know if it was an unclean shutdown or + * not. If it was, with the first phase of recovery has completed, we + * have consistent AG blocks on disk. We have not recovered EFIs yet, + * but they are recovered transactionally in the second recovery phase + * later. + * + * If the log was clean when we mounted, we can check the summary + * counters. If any of them are obviously incorrect, we can recompute + * them from the AGF headers in the next step. + */ + if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && + (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || + !xfs_verify_icount(mp, mp->m_sb.sb_icount) || + mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) + mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; + + /* + * We can safely re-initialise incore superblock counters from the + * per-ag data. These may not be correct if the filesystem was not + * cleanly unmounted, so we waited for recovery to finish before doing + * this. + * + * If the filesystem was cleanly unmounted or the previous check did + * not flag anything weird, then we can trust the values in the + * superblock to be correct and we don't need to do anything here. + * Otherwise, recalculate the summary counters. + */ + if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || + XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && + !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) + return 0; + + return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); +} + +/* + * This function does the following on an initial mount of a file system: + * - reads the superblock from disk and init the mount struct + * - if we're a 32-bit kernel, do a size check on the superblock + * so we don't mount terabyte filesystems + * - init mount struct realtime fields + * - allocate inode hash table for fs + * - init directory manager + * - perform recovery and init the log manager + */ +int +xfs_mountfs( + struct xfs_mount *mp) +{ + struct xfs_sb *sbp = &(mp->m_sb); + struct xfs_inode *rip; + uint64_t resblks; + uint quotamount = 0; + uint quotaflags = 0; + int error = 0; + + xfs_sb_mount_common(mp, sbp); + + /* + * Check for a mismatched features2 values. Older kernels read & wrote + * into the wrong sb offset for sb_features2 on some platforms due to + * xfs_sb_t not being 64bit size aligned when sb_features2 was added, + * which made older superblock reading/writing routines swap it as a + * 64-bit value. + * + * For backwards compatibility, we make both slots equal. + * + * If we detect a mismatched field, we OR the set bits into the existing + * features2 field in case it has already been modified; we don't want + * to lose any features. We then update the bad location with the ORed + * value so that older kernels will see any features2 flags. The + * superblock writeback code ensures the new sb_features2 is copied to + * sb_bad_features2 before it is logged or written to disk. + */ + if (xfs_sb_has_mismatched_features2(sbp)) { + xfs_warn(mp, "correcting sb_features alignment problem"); + sbp->sb_features2 |= sbp->sb_bad_features2; + mp->m_update_sb = true; + + /* + * Re-check for ATTR2 in case it was found in bad_features2 + * slot. + */ + if (xfs_sb_version_hasattr2(&mp->m_sb) && + !(mp->m_flags & XFS_MOUNT_NOATTR2)) + mp->m_flags |= XFS_MOUNT_ATTR2; + } + + if (xfs_sb_version_hasattr2(&mp->m_sb) && + (mp->m_flags & XFS_MOUNT_NOATTR2)) { + xfs_sb_version_removeattr2(&mp->m_sb); + mp->m_update_sb = true; + + /* update sb_versionnum for the clearing of the morebits */ + if (!sbp->sb_features2) + mp->m_update_sb = true; + } + + /* always use v2 inodes by default now */ + if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { + mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; + mp->m_update_sb = true; + } + + /* + * Check if sb_agblocks is aligned at stripe boundary + * If sb_agblocks is NOT aligned turn off m_dalign since + * allocator alignment is within an ag, therefore ag has + * to be aligned at stripe boundary. + */ + error = xfs_update_alignment(mp); + if (error) + goto out; + + xfs_alloc_compute_maxlevels(mp); + xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); + xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); + xfs_ialloc_compute_maxlevels(mp); + xfs_rmapbt_compute_maxlevels(mp); + xfs_refcountbt_compute_maxlevels(mp); + + xfs_set_maxicount(mp); + + /* enable fail_at_unmount as default */ + mp->m_fail_unmount = true; + + error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); + if (error) + goto out; + + error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, + &mp->m_kobj, "stats"); + if (error) + goto out_remove_sysfs; + + error = xfs_error_sysfs_init(mp); + if (error) + goto out_del_stats; + + error = xfs_errortag_init(mp); + if (error) + goto out_remove_error_sysfs; + + error = xfs_uuid_mount(mp); + if (error) + goto out_remove_errortag; + + /* + * Set the minimum read and write sizes + */ + xfs_set_rw_sizes(mp); + + /* set the low space thresholds for dynamic preallocation */ + xfs_set_low_space_thresholds(mp); + + /* + * Set the inode cluster size. + * This may still be overridden by the file system + * block size if it is larger than the chosen cluster size. + * + * For v5 filesystems, scale the cluster size with the inode size to + * keep a constant ratio of inode per cluster buffer, but only if mkfs + * has set the inode alignment value appropriately for larger cluster + * sizes. + */ + mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; + if (xfs_sb_version_hascrc(&mp->m_sb)) { + int new_size = mp->m_inode_cluster_size; + + new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; + if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) + mp->m_inode_cluster_size = new_size; + } + + /* + * If enabled, sparse inode chunk alignment is expected to match the + * cluster size. Full inode chunk alignment must match the chunk size, + * but that is checked on sb read verification... + */ + if (xfs_sb_version_hassparseinodes(&mp->m_sb) && + mp->m_sb.sb_spino_align != + XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { + xfs_warn(mp, + "Sparse inode block alignment (%u) must match cluster size (%llu).", + mp->m_sb.sb_spino_align, + XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); + error = -EINVAL; + goto out_remove_uuid; + } + + /* + * Set inode alignment fields + */ + xfs_set_inoalignment(mp); + + /* + * Check that the data (and log if separate) is an ok size. + */ + error = xfs_check_sizes(mp); + if (error) + goto out_remove_uuid; + + /* + * Initialize realtime fields in the mount structure + */ + error = xfs_rtmount_init(mp); + if (error) { + xfs_warn(mp, "RT mount failed"); + goto out_remove_uuid; + } + + /* + * Copies the low order bits of the timestamp and the randomly + * set "sequence" number out of a UUID. + */ + mp->m_fixedfsid[0] = + (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | + get_unaligned_be16(&sbp->sb_uuid.b[4]); + mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); + + error = xfs_da_mount(mp); + if (error) { + xfs_warn(mp, "Failed dir/attr init: %d", error); + goto out_remove_uuid; + } + + /* + * Initialize the precomputed transaction reservations values. + */ + xfs_trans_init(mp); + + /* + * Allocate and initialize the per-ag data. + */ + error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); + if (error) { + xfs_warn(mp, "Failed per-ag init: %d", error); + goto out_free_dir; + } + + if (!sbp->sb_logblocks) { + xfs_warn(mp, "no log defined"); + XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); + error = -EFSCORRUPTED; + goto out_free_perag; + } + + /* + * Log's mount-time initialization. The first part of recovery can place + * some items on the AIL, to be handled when recovery is finished or + * cancelled. + */ + error = xfs_log_mount(mp, mp->m_logdev_targp, + XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), + XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); + if (error) { + xfs_warn(mp, "log mount failed"); + goto out_fail_wait; + } + + /* Make sure the summary counts are ok. */ + error = xfs_check_summary_counts(mp); + if (error) + goto out_log_dealloc; + + /* + * Get and sanity-check the root inode. + * Save the pointer to it in the mount structure. + */ + error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, + XFS_ILOCK_EXCL, &rip); + if (error) { + xfs_warn(mp, + "Failed to read root inode 0x%llx, error %d", + sbp->sb_rootino, -error); + goto out_log_dealloc; + } + + ASSERT(rip != NULL); + + if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { + xfs_warn(mp, "corrupted root inode %llu: not a directory", + (unsigned long long)rip->i_ino); + xfs_iunlock(rip, XFS_ILOCK_EXCL); + XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, + mp); + error = -EFSCORRUPTED; + goto out_rele_rip; + } + mp->m_rootip = rip; /* save it */ + + xfs_iunlock(rip, XFS_ILOCK_EXCL); + + /* + * Initialize realtime inode pointers in the mount structure + */ + error = xfs_rtmount_inodes(mp); + if (error) { + /* + * Free up the root inode. + */ + xfs_warn(mp, "failed to read RT inodes"); + goto out_rele_rip; + } + + /* + * If this is a read-only mount defer the superblock updates until + * the next remount into writeable mode. Otherwise we would never + * perform the update e.g. for the root filesystem. + */ + if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { + error = xfs_sync_sb(mp, false); + if (error) { + xfs_warn(mp, "failed to write sb changes"); + goto out_rtunmount; + } + } + + /* + * Initialise the XFS quota management subsystem for this mount + */ + if (XFS_IS_QUOTA_RUNNING(mp)) { + error = xfs_qm_newmount(mp, "amount, "aflags); + if (error) + goto out_rtunmount; + } else { + ASSERT(!XFS_IS_QUOTA_ON(mp)); + + /* + * If a file system had quotas running earlier, but decided to + * mount without -o uquota/pquota/gquota options, revoke the + * quotachecked license. + */ + if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { + xfs_notice(mp, "resetting quota flags"); + error = xfs_mount_reset_sbqflags(mp); + if (error) + goto out_rtunmount; + } + } + + /* + * Finish recovering the file system. This part needed to be delayed + * until after the root and real-time bitmap inodes were consistently + * read in. + */ + error = xfs_log_mount_finish(mp); + if (error) { + xfs_warn(mp, "log mount finish failed"); + goto out_rtunmount; + } + + /* + * Now the log is fully replayed, we can transition to full read-only + * mode for read-only mounts. This will sync all the metadata and clean + * the log so that the recovery we just performed does not have to be + * replayed again on the next mount. + * + * We use the same quiesce mechanism as the rw->ro remount, as they are + * semantically identical operations. + */ + if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == + XFS_MOUNT_RDONLY) { + xfs_quiesce_attr(mp); + } + + /* + * Complete the quota initialisation, post-log-replay component. + */ + if (quotamount) { + ASSERT(mp->m_qflags == 0); + mp->m_qflags = quotaflags; + + xfs_qm_mount_quotas(mp); + } + + /* + * Now we are mounted, reserve a small amount of unused space for + * privileged transactions. This is needed so that transaction + * space required for critical operations can dip into this pool + * when at ENOSPC. This is needed for operations like create with + * attr, unwritten extent conversion at ENOSPC, etc. Data allocations + * are not allowed to use this reserved space. + * + * This may drive us straight to ENOSPC on mount, but that implies + * we were already there on the last unmount. Warn if this occurs. + */ + if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { + resblks = xfs_default_resblks(mp); + error = xfs_reserve_blocks(mp, &resblks, NULL); + if (error) + xfs_warn(mp, + "Unable to allocate reserve blocks. Continuing without reserve pool."); + + /* Recover any CoW blocks that never got remapped. */ + error = xfs_reflink_recover_cow(mp); + if (error) { + xfs_err(mp, + "Error %d recovering leftover CoW allocations.", error); + xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); + goto out_quota; + } + + /* Reserve AG blocks for future btree expansion. */ + error = xfs_fs_reserve_ag_blocks(mp); + if (error && error != -ENOSPC) + goto out_agresv; + } + + return 0; + + out_agresv: + xfs_fs_unreserve_ag_blocks(mp); + out_quota: + xfs_qm_unmount_quotas(mp); + out_rtunmount: + xfs_rtunmount_inodes(mp); + out_rele_rip: + xfs_irele(rip); + /* Clean out dquots that might be in memory after quotacheck. */ + xfs_qm_unmount(mp); + /* + * Cancel all delayed reclaim work and reclaim the inodes directly. + * We have to do this /after/ rtunmount and qm_unmount because those + * two will have scheduled delayed reclaim for the rt/quota inodes. + * + * This is slightly different from the unmountfs call sequence + * because we could be tearing down a partially set up mount. In + * particular, if log_mount_finish fails we bail out without calling + * qm_unmount_quotas and therefore rely on qm_unmount to release the + * quota inodes. + */ + cancel_delayed_work_sync(&mp->m_reclaim_work); + xfs_reclaim_inodes(mp, SYNC_WAIT); + out_log_dealloc: + mp->m_flags |= XFS_MOUNT_UNMOUNTING; + xfs_log_mount_cancel(mp); + out_fail_wait: + if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) + xfs_wait_buftarg(mp->m_logdev_targp); + xfs_wait_buftarg(mp->m_ddev_targp); + out_free_perag: + xfs_free_perag(mp); + out_free_dir: + xfs_da_unmount(mp); + out_remove_uuid: + xfs_uuid_unmount(mp); + out_remove_errortag: + xfs_errortag_del(mp); + out_remove_error_sysfs: + xfs_error_sysfs_del(mp); + out_del_stats: + xfs_sysfs_del(&mp->m_stats.xs_kobj); + out_remove_sysfs: + xfs_sysfs_del(&mp->m_kobj); + out: + return error; +} + +/* + * This flushes out the inodes,dquots and the superblock, unmounts the + * log and makes sure that incore structures are freed. + */ +void +xfs_unmountfs( + struct xfs_mount *mp) +{ + uint64_t resblks; + int error; + + xfs_icache_disable_reclaim(mp); + xfs_fs_unreserve_ag_blocks(mp); + xfs_qm_unmount_quotas(mp); + xfs_rtunmount_inodes(mp); + xfs_irele(mp->m_rootip); + + /* + * We can potentially deadlock here if we have an inode cluster + * that has been freed has its buffer still pinned in memory because + * the transaction is still sitting in a iclog. The stale inodes + * on that buffer will have their flush locks held until the + * transaction hits the disk and the callbacks run. the inode + * flush takes the flush lock unconditionally and with nothing to + * push out the iclog we will never get that unlocked. hence we + * need to force the log first. + */ + xfs_log_force(mp, XFS_LOG_SYNC); + + /* + * Wait for all busy extents to be freed, including completion of + * any discard operation. + */ + xfs_extent_busy_wait_all(mp); + flush_workqueue(xfs_discard_wq); + + /* + * We now need to tell the world we are unmounting. This will allow + * us to detect that the filesystem is going away and we should error + * out anything that we have been retrying in the background. This will + * prevent neverending retries in AIL pushing from hanging the unmount. + */ + mp->m_flags |= XFS_MOUNT_UNMOUNTING; + + /* + * Flush all pending changes from the AIL. + */ + xfs_ail_push_all_sync(mp->m_ail); + + /* + * And reclaim all inodes. At this point there should be no dirty + * inodes and none should be pinned or locked, but use synchronous + * reclaim just to be sure. We can stop background inode reclaim + * here as well if it is still running. + */ + cancel_delayed_work_sync(&mp->m_reclaim_work); + xfs_reclaim_inodes(mp, SYNC_WAIT); + + xfs_qm_unmount(mp); + + /* + * Unreserve any blocks we have so that when we unmount we don't account + * the reserved free space as used. This is really only necessary for + * lazy superblock counting because it trusts the incore superblock + * counters to be absolutely correct on clean unmount. + * + * We don't bother correcting this elsewhere for lazy superblock + * counting because on mount of an unclean filesystem we reconstruct the + * correct counter value and this is irrelevant. + * + * For non-lazy counter filesystems, this doesn't matter at all because + * we only every apply deltas to the superblock and hence the incore + * value does not matter.... + */ + resblks = 0; + error = xfs_reserve_blocks(mp, &resblks, NULL); + if (error) + xfs_warn(mp, "Unable to free reserved block pool. " + "Freespace may not be correct on next mount."); + + error = xfs_log_sbcount(mp); + if (error) + xfs_warn(mp, "Unable to update superblock counters. " + "Freespace may not be correct on next mount."); + + + xfs_log_unmount(mp); + xfs_da_unmount(mp); + xfs_uuid_unmount(mp); + +#if defined(DEBUG) + xfs_errortag_clearall(mp); +#endif + xfs_free_perag(mp); + + xfs_errortag_del(mp); + xfs_error_sysfs_del(mp); + xfs_sysfs_del(&mp->m_stats.xs_kobj); + xfs_sysfs_del(&mp->m_kobj); +} + +/* + * Determine whether modifications can proceed. The caller specifies the minimum + * freeze level for which modifications should not be allowed. This allows + * certain operations to proceed while the freeze sequence is in progress, if + * necessary. + */ +bool +xfs_fs_writable( + struct xfs_mount *mp, + int level) +{ + ASSERT(level > SB_UNFROZEN); + if ((mp->m_super->s_writers.frozen >= level) || + XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) + return false; + + return true; +} + +/* + * xfs_log_sbcount + * + * Sync the superblock counters to disk. + * + * Note this code can be called during the process of freezing, so we use the + * transaction allocator that does not block when the transaction subsystem is + * in its frozen state. + */ +int +xfs_log_sbcount(xfs_mount_t *mp) +{ + /* allow this to proceed during the freeze sequence... */ + if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) + return 0; + + /* + * we don't need to do this if we are updating the superblock + * counters on every modification. + */ + if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) + return 0; + + return xfs_sync_sb(mp, true); +} + +/* + * Deltas for the inode count are +/-64, hence we use a large batch size + * of 128 so we don't need to take the counter lock on every update. + */ +#define XFS_ICOUNT_BATCH 128 +int +xfs_mod_icount( + struct xfs_mount *mp, + int64_t delta) +{ + percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); + if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { + ASSERT(0); + percpu_counter_add(&mp->m_icount, -delta); + return -EINVAL; + } + return 0; +} + +int +xfs_mod_ifree( + struct xfs_mount *mp, + int64_t delta) +{ + percpu_counter_add(&mp->m_ifree, delta); + if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { + ASSERT(0); + percpu_counter_add(&mp->m_ifree, -delta); + return -EINVAL; + } + return 0; +} + +/* + * Deltas for the block count can vary from 1 to very large, but lock contention + * only occurs on frequent small block count updates such as in the delayed + * allocation path for buffered writes (page a time updates). Hence we set + * a large batch count (1024) to minimise global counter updates except when + * we get near to ENOSPC and we have to be very accurate with our updates. + */ +#define XFS_FDBLOCKS_BATCH 1024 +int +xfs_mod_fdblocks( + struct xfs_mount *mp, + int64_t delta, + bool rsvd) +{ + int64_t lcounter; + long long res_used; + s32 batch; + + if (delta > 0) { + /* + * If the reserve pool is depleted, put blocks back into it + * first. Most of the time the pool is full. + */ + if (likely(mp->m_resblks == mp->m_resblks_avail)) { + percpu_counter_add(&mp->m_fdblocks, delta); + return 0; + } + + spin_lock(&mp->m_sb_lock); + res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); + + if (res_used > delta) { + mp->m_resblks_avail += delta; + } else { + delta -= res_used; + mp->m_resblks_avail = mp->m_resblks; + percpu_counter_add(&mp->m_fdblocks, delta); + } + spin_unlock(&mp->m_sb_lock); + return 0; + } + + /* + * Taking blocks away, need to be more accurate the closer we + * are to zero. + * + * If the counter has a value of less than 2 * max batch size, + * then make everything serialise as we are real close to + * ENOSPC. + */ + if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, + XFS_FDBLOCKS_BATCH) < 0) + batch = 1; + else + batch = XFS_FDBLOCKS_BATCH; + + percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); + if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, + XFS_FDBLOCKS_BATCH) >= 0) { + /* we had space! */ + return 0; + } + + /* + * lock up the sb for dipping into reserves before releasing the space + * that took us to ENOSPC. + */ + spin_lock(&mp->m_sb_lock); + percpu_counter_add(&mp->m_fdblocks, -delta); + if (!rsvd) + goto fdblocks_enospc; + + lcounter = (long long)mp->m_resblks_avail + delta; + if (lcounter >= 0) { + mp->m_resblks_avail = lcounter; + spin_unlock(&mp->m_sb_lock); + return 0; + } + printk_once(KERN_WARNING + "Filesystem \"%s\": reserve blocks depleted! " + "Consider increasing reserve pool size.", + mp->m_fsname); +fdblocks_enospc: + spin_unlock(&mp->m_sb_lock); + return -ENOSPC; +} + +int +xfs_mod_frextents( + struct xfs_mount *mp, + int64_t delta) +{ + int64_t lcounter; + int ret = 0; + + spin_lock(&mp->m_sb_lock); + lcounter = mp->m_sb.sb_frextents + delta; + if (lcounter < 0) + ret = -ENOSPC; + else + mp->m_sb.sb_frextents = lcounter; + spin_unlock(&mp->m_sb_lock); + return ret; +} + +/* + * xfs_getsb() is called to obtain the buffer for the superblock. + * The buffer is returned locked and read in from disk. + * The buffer should be released with a call to xfs_brelse(). + * + * If the flags parameter is BUF_TRYLOCK, then we'll only return + * the superblock buffer if it can be locked without sleeping. + * If it can't then we'll return NULL. + */ +struct xfs_buf * +xfs_getsb( + struct xfs_mount *mp, + int flags) +{ + struct xfs_buf *bp = mp->m_sb_bp; + + if (!xfs_buf_trylock(bp)) { + if (flags & XBF_TRYLOCK) + return NULL; + xfs_buf_lock(bp); + } + + xfs_buf_hold(bp); + ASSERT(bp->b_flags & XBF_DONE); + return bp; +} + +/* + * Used to free the superblock along various error paths. + */ +void +xfs_freesb( + struct xfs_mount *mp) +{ + struct xfs_buf *bp = mp->m_sb_bp; + + xfs_buf_lock(bp); + mp->m_sb_bp = NULL; + xfs_buf_relse(bp); +} + +/* + * If the underlying (data/log/rt) device is readonly, there are some + * operations that cannot proceed. + */ +int +xfs_dev_is_read_only( + struct xfs_mount *mp, + char *message) +{ + if (xfs_readonly_buftarg(mp->m_ddev_targp) || + xfs_readonly_buftarg(mp->m_logdev_targp) || + (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { + xfs_notice(mp, "%s required on read-only device.", message); + xfs_notice(mp, "write access unavailable, cannot proceed."); + return -EROFS; + } + return 0; +} + +/* Force the summary counters to be recalculated at next mount. */ +void +xfs_force_summary_recalc( + struct xfs_mount *mp) +{ + if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) + return; + + spin_lock(&mp->m_sb_lock); + mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; + spin_unlock(&mp->m_sb_lock); +} |